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Abstract Nicotine has a broad impact on both the central
and peripheral nervous systems. Over the past decades, an
increasing number of genes potentially involved in nicotine
addiction have been identified by different technical ap-
proaches. However, the molecular mechanisms underlying
nicotine addiction remain largely unknown. Under such
situation, prioritizing the candidate genes for further investi-
gation is becoming increasingly important. In this study, we
presented a multi-source-based gene prioritization approach
for nicotine addiction by utilizing the vast amounts of infor-
mation generated from for nicotine addiction study during
the past years. In this approach, we first collected and
curated genes from studies in four categories, i.e., genetic
association analysis, genetic linkage analysis, high-
throughput gene/protein expression analysis, and literature
search of single gene/protein-based studies. Based on these
resources, the genes were scored and a weight value was
determined for each category. Finally, the genes were ranked
by their combined scores, and 220 genes were selected as
the prioritized nicotine addiction-related genes. Evaluation
suggested the prioritized genes were promising targets for
further analysis and replication study.
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Introduction

Cigarette smoking is the most common form of tobacco use
[1] and is one of the most significant sources of morbidity and
death worldwide [2]. The World Health Organization esti-
mates that there are 1.3 billion tobacco users worldwide, with
more than 5 million dying from tobacco-related illness each
year [3,4]. If the current patterns persist, annual tobacco-
attributable deaths will rise to more than 10 million a few
decades hence. Smoking presents key issues in public health
in both developed and developing countries. For example, in
the United States, more than 20 % of adults are current
smokers [5], and cigarette smoking is responsible for approx-
imately 438,000 premature deaths and an estimated economic
cost of $167 billion annually [6]. In China, about 350 million
people are smokers, and more than 50 % of the population is
exposed to second-hand smoke, which results in 1.2 million
annual deaths attributed to tobacco use [7]. Although a large
fraction of smokers try to quit [5], available treatments are
effective for only a fraction of them [8,9]. Thus, development
of therapeutic approaches that can help smokers achieve and
sustain abstinence from smoking, as well as methods that can
prevent people from starting smoking, remains a huge chal-
lenge in public health.

Smoking is a complex behavior that involves the interplay
of genetic and environmental factors [9–12]. As the main
psychoactive ingredient responsible for smoking addiction,
nicotine mainly evokes its physiological effects through inter-
actions with nicotinic acetylcholine receptors (nAChRs) in the
central nervous system. Nicotine exposure not only stimulates
the mesocorticolimbic dopamine system in the outer shell of
the nucleus accumbens and other brain regions [13–16], but
also modulates the release of neurotransmitters such as nor-
epinephrine, serotonin, and GABA [17–19]. Nicotine treat-
ment can regulate the expression of genes/proteins involved in
various functions including ERK1/2 and CREB [20], as well
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as their downstream targets such as c-FOS and FOSB [21–23].
Furthermore, biochemical pathways underlying various phys-
iological processes, e.g., MAPK signaling, phos-
phatidylinositol phosphatase signaling, growth factor signal-
ing, and ubiquitin–proteasome pathways, are modulated by
nicotine [24–26]. Through its direct or indirect interactions
with these genes and biological pathways, nicotine is involved
in the regulation of various physiological processes, such as
learning and memory, angiogenesis, energy metabolism, syn-
aptic function, response to oxidative stress, and addiction
[27–33].

Although nicotine exposure can evoke multiple effects in
the neuronal system, the underlyingmolecular mechanism has
not been completely understood. Studies have indicated that
for complex behaviors like cigarette smoking, the individual
differences can be attributed to hundreds of genes and their
variants. Genes involved in different biological functions may
act in concert to account for the risk of vulnerability to
smoking behavior, with each gene having a moderate effect
[34–36]. Rather than acting as sole factors, a large number of
genes may cooperate in a synergistic manner in modifying the
risk of smoking or responding to nicotine. Consistent with this
belief, more and more genes have been found to be correlated
with nicotine addiction over the past decades.

A lot of efforts have been devoted to identify the suscep-
tibility genes and genetic markers underlying nicotine addic-
tion via different approaches, among which include the
techniques and experimental methods that focus on the
function(s) or interaction(s) of one or a few genes/proteins,
genetic association studies, linkage analysis, and high-
throughput expression studies. Via these approaches, many
genes potentially related to the physiological response to
nicotine exposure or smoking behaviors have been identi-
fied, but none of these methods are powerful enough to
identify all the molecular targets related to nicotine addic-
tion. Although much of our knowledge of the molecular
mechanisms underlying nicotine–neuron interaction has
been accumulated through relatively traditional experiments
or candidate gene-based genetic association analysis, these
procedures usually focus on one or a small number of genes
that may affect response to nicotine (e.g., nAChRs and
nicotine metabolism) or the key neurotransmitter pathways
(e.g., dopamine and serotonin) [37]. On the other hand,
high-throughput technologies, such as microarray and prote-
omics approaches, and genome-wide association studies
(GWASs) can provide information regarding genes’ func-
tions and their interactions on a much larger scale without
the requirement of preselecting target genes, and have been
increasingly used to explore the genetic variants associated
with nicotine addiction [33,38–43]. But these methods have
their own limitations. For example, due to the complexities
of the transcriptome and proteome of neuronal system, and
the limitations of current technology, not all genes/proteins

associated with brain disorder can be detected by microarray
or proteomics approach reliably [43,44]; for GWAS, it has to
overcome issues and limitations such as insufficient sample
size, difficulty in control for multiple testing, and control for
population stratification [45]. Moreover, for the many plau-
sible candidate genes reported to be related to nicotine
addiction, only a small number (e.g., nAChRs and dopamine
signaling) have been partially replicated in different studies,
the others have seldom been verified by independent analy-
ses. This is especially true for high-throughput expression
analysis and GWAS.

In such a situation, a systematic approach that is able to
integrate information from different sources and to reveal the
biochemical processes underlying the genes associated with
nicotine exposure will not only help us to understand the
relations of these genes, but also provide further evidence of
the validity of these candidates. Till now, there are few studies
devoted to collect those data together for the prioritization of
genes related to nicotine addiction. This calls for an approach
to integrate all the data sources to prioritize candidate genes
for nicotine addiction in the further analysis.

In this study, we utilized a multi-source-based gene prior-
itization approach for nicotine addiction. In this approach, we
collected and managed multiple genetic data sets of nicotine
addiction or related phenotypes, including association studies,
linkage analysis, gene expression studies, and single-gene/
protein-based studies. By scoring the genes from different
sources and assigning a weight to each source, we were able
to rank the genes by their combined scores.

Materials and Methods

Identification of Nicotine Addiction-Related Genes

We utilized a comprehensive approach to prioritize candi-
date genes involved in biological response to nicotine. This
approach included five steps, i.e., gene collection, gene
scoring, weight optimization, gene prioritization, and evalu-
ation. Genes were collected from the following four sources,
i.e., association studies, linkage analysis, gene expression
studies, and literature search of single-gene/protein-based
studies. Second, we scored the candidate genes in the light
of different categories. Third, we searched the optimal
weight matrix by using simulated annealing (SA), with the
values of different dimensions reflecting the importance of
corresponding sources. Fourth, with the different matrix and
scores of different categories, we got combined scores for
the candidate genes and then prioritized them based on their
combined scores. Fifth, we evaluated the top genes by gene
set enrichment analysis. The framework of our study was
shown in Fig. 1.
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Gene Collection

For association study, the list of candidate genes for smoking-
related phenotypes was constructed by searching all human
genetics association studies deposited in PUBMED (http://
www.ncbi.nlm.nih.gov/pubmed/). Similar to earlier work
[46,47], we queried the item “(Smoking [MeSH] OR
Tobacco Use Disorder [MeSH]) AND (Polymorphism
[MeSH] OR Genotype [MeSH] OR Alleles [MeSH]) NOT
(Neoplasms [MeSH]),” and a total of 2,780 hits was retrieved
by July 2013. The abstracts of these articles were reviewed,
and the association studies of smoking-related behaviors, such
as smoking initiation, smoking dependence, smoking cessa-
tion, or other neuronal disorders, were selected. From the
selected publications, we narrowed our selection by focusing
on those reporting a significant association of one or more
genes with any of the phenotypes. To reduce the number of
false-positive findings, the studies reporting negative or insig-
nificant associations were not included, although it is likely
that some genes analyzed in these studies might be associated
with the phenotypes we were interested in. The full reports of
the selected publications were reviewed to ensure the

conclusions were supported by the content. From these stud-
ies, genes reported to be associated with each phenotype were
selected for the current study. The results from several
GWASs were also included [48–50]. For such studies, all the
genes nominated to be nicotine addiction related by the orig-
inal reports were included in our list. In another study on
smoking cessation, Uhl et al. [40] performed a GWAS on
three independent samples to identify genes facilitating
smoking cessation success with bupropion hydrochloride ver-
sus nicotine replacement therapy. Multiple genes involved in
cell adhesion, transcription regulation, transportation, and sig-
naling transduction were suggested to contribute to successful
smoking cessation. Among genes reported by Uhl et al., those
showed significant association with smoking cessation in two
or three samples were retrieved (63 genes). As a result, we
retrieved 267 genes reported to be positive associated with
nicotine addiction in the association studies.

Linkage analysis is useful in detecting genetic loci linked
with susceptibility to nicotine addiction or smoking-related
diseases. Multiple genome-wide linkage scans on smoking
behavior have been performed using a variety of smoking
behavior assessments. Numerous putative susceptibility loci

267 genes, Score1 = 1
otherwise, Score1 = 0

S = w1× Score1 +   w2× Score2 + w3× Score3 + w4× Score4

Sorting genes by combined scores

Calculating R: proportion of base genes in the top
c% candidate genes accounting for all base genes

Is this R potentially the
optimal one?

Searching for new weight matrix

No

Yes

Prioritizing the candidate genes

Optimal weight matrix

Association study Linkage analysis Gene expression Literature search

5701 genes, Score2 = 1
otherwise, Score2 = 0

1938 genes, Score3 = 1
otherwise, Score3 = 0

7716 genes, Score4 = 1
otherwise, Score4 = 0

Further analysis

Fig. 1 The flow chart for nicotine addiction-related genes prioritization.
Genes are collected from four resources, i.e., association study, linkage
analysis, gene expression analysis, and literature search of single-gene/
protein-based studies. When a gene shows up in a certain category, a
score of 1 point is assigned; otherwise, 0 is assigned. Each of the four

categories has a weight value, which is determined by the optimization
algorithm simulated annealing. The genes are ranked by their combined
scores computed from scores corresponding to the four categories and
their weights. Genes are ranked and prioritized by their combined scores,
and further analysis is performed for the selected genes
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have been identified. On the base of 15 genome-wide linkage
scans of smoking behavior, Han et al. performed a compre-
hensive meta-analysis and identified the chromosome regions
linked with smoking behavior with nominal significance [51].
From each of these chromosome regions, we retrieved all the
genes within it. This resulted in a total of 5,701 genes, includ-
ing both known genes with official gene symbols and the
hypothetical genes.

The use of high-throughput expression profiling tools such
as microarray and proteomics is becoming more integrated
into research and their application to drug abuse studies is no
exception. New insights gained through the use of microarray
and proteomics technology have helped us to improve the
understanding of the biological effects of drugs on animal or
tissues of interest [25]. These techniques are also important to
discover the genes/proteins that may be associated with nico-
tine addiction. Altogether, 33 datasets were collected from 31
publications reporting the effect of nicotine on cell lines or
animal brains via microarray or proteomics; the genes or
proteins reported to be significantly modulated by nicotine
exposure were retrieved from these datasets. This resulted in a
total of 1,938 genes.

A large fraction of our insight into the molecular mecha-
nisms of nicotine addiction has been achieved via relatively
traditional experimental approaches, which mainly focus on
only one or a few genes or proteins for detailed analyses. Due
to the large number of studies available, it is infeasible to
collect all the publications to check the relations between
genes/proteins and nicotine or smoking-related behaviors re-
ported in them. Since co-occurrence of two items in a docu-
ment can be utilized to identify their relationship [52], we
searched the PUBMED for information on the potential cor-
relation between genes and nicotine exposure. For this reason,
this approach was referred to as literature search of single-
gene/protein-based studies or simply as literature search in this
study. Briefly, the human gene set was downloaded from
NCBI (ftp://ftp.ncbi.nlm.nih.gov/gene/) and 26,811 known
or predicted protein-coding genes extracted. Nicotine or to-
bacco smoking-related behaviors were evaluated with four
terms, i.e., ‘smoking,’ ‘nicotine,’ ‘tobacco,’ and ‘nicotinic.’
For every gene, the combinations of the gene symbol and each
of the four terms was used to query the related reports in
PUBMED. For example, gene BDNF and term ‘nicotine’
formed a query item ‘BDNF and nicotine,’ and 68 hits were
returned. If a gene has multiple aliases, then each alias was
searched separately, and the result was then combined. If a
gene had one or more hits with any of the four keywords, it
was assigned 1 point, and if it did not co-occur with any of the
keywords, 0 point was assigned. The total hit number of each
gene was obtained by pooling all the hits of the combinations
of its aliases and the four keywords searched. If a gene had a
total hit number less than 5, then the abstracts of the corre-
sponding articles were reviewed to make sure at least one

study reporting the connection between gene and the key-
words; otherwise, it was re-assigned 0 point. In total, 7,716
genes were collected via this approach.

Combined Scores

By these steps, we collected genes related to the effect of
nicotine or tobacco smoking identified by genetic association
analysis, genetic linkage analysis, high-throughput expression
analysis, as well as single-gene/protein-based study ap-
proaches. When a gene has been identified by one approach,
we assigned a score of 1 to it; otherwise, 0 was assigned. By
this approach, we can evaluate the relation of a gene with
nicotine addiction by analyzing the types of studies involved.
However, the four types of evidences are not equal to each
other. For example, when a gene is found to be significantly
associated with smoking-related behavior in a genetic associ-
ation study, then this study provides more specific evidence
than another study reporting the inclusion of this gene in a
chromosome region linked with the same behavior. Thus,
different weight values should be assigned to different evi-
dences when a gene has been analyzed by multiple types of
studies.

The overall relation between a gene and nicotine addiction
was measured by a combined score derived from its scores in
the four categories, i.e.,

S ¼
X

i¼1

n

wi � Scorei ð1Þ

X

i¼1

n

wi ¼ 1 ð2Þ

where n is the number of categories (n=4), Scorei is the score
of a gene in the ith source, and wi is the corresponding weight
value. When a gene has been identified in a source, Scorei=1;
otherwise, Scorei=0.

To obtain the combined score S, a weight matrix is defined
according to the relative importance of the four sources. The
procedure used to prioritize the genes related to nicotine
exposure is summarized in Fig. 1. Briefly, the genes collected
from each of the four categories are assigned a category-
specific score described above. For each gene, the scores
multiply the corresponding weight values, and their sum is
the combined score. Then, all the genes are ranked based on
their combined scores, a gene with a higher rank in the list
indicating a potential higher correlation with nicotine
addiction.

Search for the Optimal Weight Matrix

The combined score of a gene depends on its scores from each
category and the corresponding weight values. In order to
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prioritize the genes collected so that the genes more likely
correlated with nicotine addiction can be ranked higher in the
list, a suitable weight matrix needs to be determined. In this
study, the following procedure was adopted:

1. Randomly selecting weight value between 0~1.0 for each
data category and normalizing the weight matrix to have a
sum of 1;

2. Calculating the combined score S for all genes by Eq. 1;
3. Ranking all genes according to their combined scores;
4. Calculating ratio R: the proportion of a set of genes known

to be related to nicotine addiction in the top c percentage
of all candidate genes accounting for all genes known to
be related to nicotine addiction;

5 Making a small change to the weight matrix and normal-
izing the weight matrix to have a sum of 1;

6. Repeating steps 2–5 until no larger R can be found, and
then the weight matrix obtained is the optimal weight
matrix.

In this procedure, in order to prioritize the genes collected,
a set of genes known to be correlated with nicotine addiction
or smoking-related phenotypes were utilized to set up the
ranking criterion. Although multiple gene sets related to nic-
otine abuse have been reported [46,53], the genes suggested
by Li and Burmeister [54] were selected in this study. Of the
62 candidate genes involved in the addiction of two or more
drugs, such as nicotine, alcohol, heroin, cocaine, or amphet-
amine, 46 genes were suggested to be associated with the
addiction of nicotine, and one or more other addictive drugs
were retrieved. These genes were called base genes in this
study (Supplemental Table 1).

In this study, 11,781 candidate genes potentially related to
nicotine addiction were collected. The correlation between
each gene and nicotine addiction was measured by its com-
bined score. As mentioned above, a suitable weight matrix
should assign higher ranks to the genes with higher correlation
with nicotine addiction. Since it was unknown how many
candidate genes should be selected, we used the proportion
of known nicotine addiction-related genes (i.e., the base
genes) included in the top c% candidate genes to evaluate
the performance of the weight matrix. Obviously, for a larger
c, more base genes would be included, but, at the same time, it
had a larger chance to include genes less correlated with
nicotine addiction. We tested different values for c, i.e., c=2,
3, 4, or 5, and found that the selection of c did not affect the
final weight matrix much. When c≥3, the number of base
genes included in the top c% candidate genes were same, and
the algorithm converged to the optimal weight matrix quickly.
Thus, c=3 was selected to check how many members of the
base genes were included in the selected candidate genes.
Furthermore, the ratio R, i.e., the proportion of base genes in
the top c% genes accounting for all base genes, was

calculated. Since 46 base genes were collected, R=m/46,
where m was the number of base genes included in the top
c% candidate genes. According to this schema, a better weight
matrix corresponded to a larger R value.

Instead of performing an exhaustive enumeration of all
possible combinations of weight values, the weight matrix
was optimized by SA algorithm [55]. SA is a generic proba-
bilistic metaheuristic for both discrete and continuous global
optimization problems [56,57]. Its inspiration comes from
annealing in metallurgy, a technique involving heating and
controlled cooling of a material to increase the size of its
crystals and reduce their defects. SA is an iterative process
that demands a variable T similar to temperature in annealing
process in metallurgy. T starts initially with a high value and
then gradually reduces toward zero at each step following an
annealing schedule and acceptance criterion, with which the
candidate solution is accepted or rejected. This process in-
cludes a means to escape the local optima by accepting worse
solutions, but the chance of accepting a worse solution re-
duces as T decreases when solution space is searched. In this
way, the system wanders initially towards a broad region of
the search space containing good solutions, ignoring small
features of the object function and then drifts towards regions
including the optimal solutions. In our case, a random weight
matrix was generated and used as the starting point for the
algorithm. Then, the weight matrix was slightly modified to
see whether more genes in the base gene set could be included
in the top 3 % candidate genes. If yes, then the new weight
matrix was used to replace the existing weight matrix; other-
wise, a T-dependent probability was calculated to decide
whether the existing weight matrix should be replaced or kept.
Eventually, the search procedure converged to a weight matrix
giving the highest R value.

With the optimal weight matrix, the combined scores of the
candidate genes were calculated and used to rank the candi-
date genes.

Evaluation of the Prioritized Genes

The relation of the prioritized genes with nicotine addiction
was evaluated by analyzing the Gene Ontology (GO) biolog-
ical processes or biochemical pathways enriched in these
genes. ToppGene (http://toppgene.cchmc.org) [58] was used
for GO term enrichment analysis, in which the module
ToppFun was able to detect functional enrichment of the
input gene list based on transcriptome, proteome, regulome,
GO, and so on. To simplify the analysis, only GO biological
processes terms were selected. The exported terms were
filtered by false discovery rate (FDR), only those with FDR
value smaller than 0.05 were kept.

The biochemical pathways enriched in the prioritized genes
were analyzed by Ingenuity Pathway Analysis (IPA; https://
analysis.ingenuity.com) with the goal of revealing the
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enriched biochemical pathways. This pathway-based software
is designed to identify global canonical pathways, dynamical-
ly generated biological networks, and global functions from a
given list of genes. Basically, the genes with their symbol and/
or corresponding GenBank Accession Numbers were
uploaded into the IPA and compared with the genes included
in each canonical pathway. All the pathways with one or more
genes overlapping the candidate genes were extracted. In IPA,
each of these pathways was assigned a p value, which denoted
the probability of overlap between the pathway and input
genes, via Fisher’s exact test. Because a relatively large num-
ber of pathways were examined, multiple comparison correc-
tion for the individually calculated p values was necessary in
order to obtain reliable statistical inference. The pathways
with FDR value less than 0.01, including three or more
prioritized genes were considered to be significantly enriched.
The corresponding FDR was calculated with the method of
Benjamini and Hockberg [59].

Results

Genes Collected from the Four Sources

In this study, we collected the candidate genes mainly from
four categories of resources, i.e., genetic association study,
genetic linkage analysis, high-throughput gene expression
study, and literature search of single-gene/protein-based stud-
ies. The numbers of genes collected from these categories
were not equal. For association study, 267 genes were collect-
ed; for linkage analysis, 5,701 genes were included in human
chromosome regions potentially linked with tobacco
smoking; by microarray or proteomic expression analysis,
1,938 genes/proteins were identified to be differentially
expressed under the treatment of nicotine while 7,716 genes
were found to co-occur with ‘smoking,’ ‘nicotine,’ ‘tobacco,’
or ‘nicotinic’ in the abstracts of publications deposited in
PUBMED (http://www.ncbi.nlm.nih.gov/pubmed). After
removing the redundancy, a total of 11,781 candidate genes
were left and were used as the candidate gene pool. The
distribution of these genes among the four sources was
shown in Table 1. Of the genes collected, 26 were identified

in all of the four categories; 446 were identified in three of the
four categories; 2,871 showed up in two of the four sources,
and 8,438 genes were collected from only one resource.

Search for the Optimal Weight Matrix

As mentioned earlier, as long as a gene was identified by
evidence from one category, it was assigned a score of 1 for
this category; otherwise, 0 was assigned. On the other hand,
information from each data resource could not be treated
equally. For example, when the correlation between a gene
and nicotine addiction is examined in a genetic association
study, the gene usually is selected based on a priori informa-
tion; for genes identified via GWASs, pre-selection of candi-
date genes is not necessary, but only a subset of genes signif-
icantly associated with the phenotype under investigation are
identified [40,48–50]. In a typical GWAS, a gene is consid-
ered to be significantly associated with the phenotype under
test, if one or more of single-nucleotide polymorphisms
(SNPs) corresponding to the gene have p values smaller than
a certain threshold. Due to the multiple testing issues, the p
value threshold for significance should be corrected. If multi-
ple SNPs are significantly associated with the phenotype, then
the one with the smallest p value can be used to represent the
relevance between this gene and the phenotype. Both of these
two approaches provide more specific information than link-
age analysis that identifies genomic regions co-segregating
with a given phenotype. In this study, different weight values
were assigned to the four categories. A larger weight for a
category resulted in a higher score for the genes in this group.
The final rank of each gene in the candidate gene list was
based on its combined score derived from the weight values
and the scores in the four categories.

The weight values for the four categories were searched by
SA. According to our definition, a better weight matrix would
assign higher ranks for the genes with larger correlations with
nicotine addiction. We evaluated the weight matrix by mea-
suring its performance in ranking the 46 base genes known to
be involved in the addiction of nicotine, i.e., counting the
numbers of the base genes included in the top 3 % (353 of
the 11,781 genes) of all the candidate genes ranked by their
combined scores given a weight matrix. The optimal weight

Table 1 Genes collected from
the four sources Category Number of genes Number of overlapped genes

Genetic association Linkage analysis Expression analysis

Association study 267

Linkage analysis 5,701 110

Expression analysis 1,938 198 643

Literature search 7,716 220 2,162 1,268
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matrix obtained by this procedure was [0.403 0.129 0.203
0.265], with the weight values corresponding to association
study, linkage study, gene expression study, and literature
search of single-gene/protein-based studies, respectively.With
this weight matrix, 39 out of the 46 base genes (84.8 %) were
included in the top 3 % of all the candidate genes ranked by
combined scores. As a comparison, when the weights of the
four categories were set to be equal, i.e., [1/4 1/4 1/4 1/4], 29
(63.0%) out of the 46 base genes were included in the top 3 %
of all candidate genes, indicating the optimized weights led to
higher ranks of the base genes in the overall candidate gene
list.

Among these weights, the genetic association category had
a higher value than the other three categories, which means
association study may provide more reliable evidence in can-
didate gene search for complex diseases than the other
approaches.

Identification of the Threshold

The correlation between the genes and nicotine addiction was
measured by the combined scores. Compared with other
genes, the base genes tended to have higher combined scores
and thus were enriched in the top fraction of the gene list
(Figs. 2 and 3). Most of the base genes had combined scores
equal or higher than 0.665, while for the other genes only a
small fraction had scores larger than this value. Based on such
observation, two thresholds for the combined score were
selected. For the first cutoff value (S1=0.665), 220 candidate
genes were selected (Supplemental Table 2), among which 38

base genes were included, and they accounted for 82.6 % of
all the base genes. To make the prioritized gene list more
comprehensive, another cutoff value was selected (S2=
0.598), with which 580 candidate genes were obtained.
Among these genes, 39 base genes were included, which
accounted for 84.8 % of all the base genes (Supplemental
Table 2). When the threshold decreased from 0.665 to 0.598,
more candidate genes were selected (580 vs. 220), but the
number of base genes included remained stable (38 vs. 39).
This was caused by the fact that most candidate genes had
moderate or small combined scores, which probably indicated
a higher false-positive rate among the prioritized genes as the
combined scores became smaller. So, in the following analy-
sis, we mainly focused on the 220 genes selected by the first
threshold.

Biological Function of the Prioritized Genes

The biological function of these genes was analyzed by
ToppGene Suite. The major enriched GO biological processes
included cell–cell signaling, synaptic transmission, neurolog-
ical system process, response to drug, and so on (Table 2).
Most genes were associated with neurodevelopment-related
processes and signal transduction. This outcome was consis-
tent with the conclusion of Sun et al. based on the analysis of a
group of addiction-related genes identified from genetic stud-
ies [60]. Also, it can be seen that some genes are associated
with the transport of amine, which is consistent with the earlier
reports [61,62]. So it may be concluded that our approach is
reliable to prioritize candidate genes for complex diseases.

Order of candidate genes
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=0.598, 39 base genes are included in the top 580 genes

Fig. 2 The distribution of the
combined scores of the candidate
genes. The genes are ranked by
their combined scores. The x-axis
is the order of the candidate
genes. The y-axis on the left side
is the combined score of the
candidate genes, and the y-axis on
the right side is the number of
base genes. The solid line shows
the distribution of the combined
scores of candidate genes, and the
dashed line shows the number of
base genes included in the
candidate genes. It can be seen
that the score drops quickly from
1.0 to about 0.60 and then drops
to about 0.47; after that, the
combined scores decrease slowly.
Such a distribution indicates that a
relatively small number of genes
have higher combined scores,
while the majority genes have
moderate or small scores
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On the basis of the 220 genes potentially related to
nicotine addiction, enriched biochemical pathways were
identified by IPA and other bioinformatics tools (Table 3).
Among these pathways, included are those signal transduc-
tion pathways related to neuronal function, e.g., cAMP-
mediated signaling, calcium signaling, G-protein coupled
receptor signaling, dopamine receptor signaling, serotonin
receptor signaling, and glutamate receptor signaling.

Pathways involved in drug or neurotransmitter metabolism
were enriched in the genes, such as nicotine degradation II,
dopamine degradation, xenobiotic metabolism signaling, and
aryl hydrocarbon receptor signaling. Some immune
response-related pathways were also enriched, e.g., role of
cytokines in mediating communication between immune
cells, T helper cell differentiation, IL-8 signaling, and ILK
signaling.
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Fig. 3 Distribution of the
combined scores of all candidate
genes and the base genes. The
percentage of each histogram bin
is measured by the genes with
scores falling in the bin divided
by the total number of candidate
genes or the number of the base
genes. Points marked by A and B
are the two thresholds to select the
genes

Table 2 Gene ontology terms
(biological processes) enriched in
nicotine addiction-related genes

Gene ontology ID Gene ontology definition Pvalue No. genes included

GO:0007267 Cell–cell signaling 7.136×10−29 77

GO:0007268 Synaptic transmission 6.343×10−24 56

GO:1901700 Response to oxygen-containing compound 1.287×10−23 61

GO:0019226 Transmission of nerve impulse 2.636×10−23 58

GO:0050877 Neurological system process 1.937×10−21 71

GO:0007610 Behavior 2.41×10−20 46

GO:0009605 Response to external stimulus 7.517×10−17 52

GO:0010243 Response to organic nitrogen 7.517×10−17 47

GO:0042493 Response to drug 1.838×10−16 36

GO:0015837 Amine transport 6.763×10−16 19

GO:0097305 Response to alcohol 1.589×10−14 29

GO:0032879 Regulation of localization 2.217×10−14 63

GO:0035094 Response to nicotine 1.871×10−13 13

GO:0031644 Regulation of neurological system process 1.029×10−12 39

GO:0006811 Ion transport 2.244×10−12 50

GO:0032940 Secretion by cell 2.276×10−12 42

GO:0050890 Cognition 3.593×10−12 22

GO:0007611 Learning or memory 6.279×10−12 21

GO:0051174 Regulation of phosphorus metabolic process 1.801×10−10 53

GO:0042220 Response to cocaine 5.246×10−10 10
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Table 3 Pathways significantly enriched in nicotine addiction-related genes

Pathway Pvalue FDR Genes includeda

cAMP-mediated signaling 6.31×10−17 2.00×10−14 ADRA2A, ADRB2, AGTR1, AKAP13, CAMK4, CHRM1, CHRM2,
CHRM5, CNR1, CREB1, DRD1, DRD2, DRD3, DRD4, DRD5,
GABBR1, GABBR2, GNAS, GRM7, HTR1F, HTR6, NPY1R,
OPRM1, PDE4D, RAPGEF3

Calcium signaling 1.00×10−15 2.00×10−13 CAMK4, CHRNA1, CHRNA10, CHRNA2, CHRNA3, CHRNA4,
CHRNA5, CHRNA6, CHRNA7, CHRNB1, CHRNB2, CHRNB3,
CHRNB4, CHRND, CHRNG, CREB1, GRIK1, GRIN2A, GRIN2B,
GRIN3A, ITPR2, TRPC7

G-Protein coupled receptor signaling 2.51×10−15 3.16×10−13 ADRA2A, ADRB2, AGTR1, CAMK4, CHRM1, CHRM2, CHRM5,
CNR1, CREB1, DRD1, DRD2, DRD3, DRD4, DRD5, GABBR1,
GABBR2, GNAS, GRM7, HTR1F, HTR2A, HTR6, NPY1R,
OPRM1, PDE4D, RAPGEF3

Dopamine receptor signaling 3.16×10−14 2.51×10−12 COMT, DRD1, DRD2, DRD3, DRD4, DRD5, GNAS, MAOA,
MAOB, NCS1, PPP1R1B, PPP2R2B, SLC18A2, SLC6A3, TH

Xenobiotic metabolism signaling 2.00×10−12 1.41×10−10 ABCB1, AHR, CAMK4, CYP1A1, CYP2B6, FMO1, GSTM1,
GSTM3, GSTP1, GSTT1, IL6, MAOA, MAOB, MAP3K4,
MGMT, NOS2, NQO1, PPP2R2B, SOD3, SULT1A1, TNF,
UGT1A9, UGT2B10

Dopamine-DARPP32 feedback in cAMP
signaling

2.69×10−10 1.45×10−8 CAMK4, CREB1, DRD1, DRD2, DRD3, DRD4, DRD5, GNAS,
GRIN2A, GRIN2B, GRIN3A, ITPR2, KCNJ6, PPP1R1B,
PPP2R2B, PRKG1

Aryl hydrocarbon receptor signaling 2.88×10−10 1.45×10−8 AHR, CCND1, CHEK2, CYP1A1, ESR1, GSTM1, GSTM3,
GSTP1, GSTT1, IL6, MDM2, NQO1, TGFB1, TNF, TP53

LPS/IL-1-mediated inhibition of RXR
function

4.37×10−10 1.78×10−8 ABCB1, ABCC4, APOE, CD14, CETP, CYP2A6, CYP2B6, FMO1,
GSTM1, GSTM3, GSTP1, GSTT1, MAOA, MAOB, MGMT,
SOD3, SULT1A1, TNF

Serotonin receptor signaling 6.17×10−9 1.95×10−7 HTR2A, HTR6, MAOA, MAOB, SLC18A2, SLC6A4, TPH1, TPH2

eNOS signaling 1.17×10−8 3.39×10−7 CAMK4, CHRNA10, CHRNA3, CHRNA4, CHRNA5, CHRNB1,
CHRNB4, ESR1, GNAS, HSPA4, ITPR2, NOS3, PRKG1

Glucocorticoid receptor signaling 3.89×10−8 1.05×10−6 ADRB2, CCNH, CREB1, ERCC2, ESR1, HSPA4, ICAM1, IFNG,
IL13, IL6, IL8, NOS2, NPPA, NR3C1, PTGS2, TGFB1, TNF

Glutamate receptor signaling 5.13×10−8 1.29×10−6 CAMK4, DLG4, GRIK1, GRIK2, GRIN2A, GRIN2B, GRIN3A,
GRM7, SLC1A2

Neuropathic pain signaling in dorsal
horn neurons

5.50×10−7 1.29×10−5 BDNF, CAMK4, CREB1, GRIN2A, GRIN2B, GRIN3A, GRM7,
ITPR2, KCNQ3, NTRK2

AMPK signaling 1.10×10−6 2.40×10−5 ADRA2A, ADRB2, CHRNA10, CHRNA3, CHRNA4, CHRNA5,
CHRNB1, CHRNB4, GNAS, NOS3, PPP2R2B

GABA receptor signaling 1.95×10−6 3.47×10−5 DNM1, GABARAP, GABBR1, GABBR2, GABRA2, GABRA4, GABRE

PXR/RXR activation 2.00×10−6 3.47×10−5 ABCB1, CYP2A6, CYP2B6, GSTM1, IL6, NR3C1, TNF, UGT1A9

Role of cytokines in mediating
communication between immune cells

5.75×10−6 8.71×10−5 IFNG, IL13, IL15, IL6, IL8, TGFB1, TNF

Dopamine degradation 1.07×10−5 1.55×10−4 ALDH2, COMT, MAOA, MAOB, SULT1A1

Nicotine degradation II 1.15×10−5 1.55×10−4 CYP1A1, CYP2A6, CYP2B6, CYP2D6, FMO1, UGT1A9, UGT2B10

Serotonin degradation 1.15×10−5 1.55×10−4 ADH1B, ALDH2, MAOA, MAOB, SULT1A1, UGT1A9, UGT2B10

Corticotropin releasing hormone signaling 1.35×10−5 1.78×10−4 BDNF, CAMK4, CNR1, CREB1, GNAS, ITPR2, NOS2, NOS3, PTGS2

Cdk5 signaling 1.55×10−5 1.95×10−4 BDNF, DRD1, DRD5, GNAS, LAMA1, NTRK2, PPP1R1B, PPP2R2B

DNA double-strand break repair
by non-homologous end joining

2.24×10−5 2.57×10−4 MRE11A, NBN, PRKDC, XRCC1

Atherosclerosis signaling 2.34×10−5 2.57×10−4 APOE, ICAM1, IFNG, IL6, IL8, MMP3, PON1, TGFB1, TNF

T helper cell differentiation 2.63×10−5 2.82×10−4 HLA-DQA1, HLA-DRB1, IFNG, IL13, IL6, TGFB1, TNF

Protein kinase a signaling 2.82×10−5 2.95×10−4 ACP1, AKAP13, ANAPC1, CAMK4, CREB1, GNAS, ITPR2, NOS3,
PDE4D, PPP1R1B, PTEN, PTGS2, PTPRD, RHOA, TGFB1, TH

Nicotine degradation III 4.79×10−5 4.68×10−4 CYP1A1, CYP2A6, CYP2B6, CYP2D6, UGT1A9, UGT2B10

Nucleotide excision repair pathway 7.41×10−5 6.92×10−4 CCNH, ERCC2, ERCC6, RAD23B, XPC

Noradrenaline and adrenaline degradation 8.51×10−5 7.76×10−4 ADH1B, ALDH2, COMT, MAOA, MAOB
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Discussion

Over the past years, much has been learnt about the molecular
mechanisms underlying nicotine addiction from studies on

human subjects, animal, or cell models. Numerous genes
and pathways have been found to play a role, either directly
or indirectly, in smoking-related phenotypes. On the other
hand, although more and more genes/proteins have been

Table 3 (continued)

Pathway Pvalue FDR Genes includeda

NRF2-mediated oxidative stress response 1.00×10−4 8.91×10−4 ABCC4, EPHX1, FMO1, GSTM1, GSTM3, GSTP1, GSTT1, NQO1,
SOD2, SOD3

ATM signaling 1.10×10−4 9.12×10−4 CHEK2, CREB1, MDM2, MRE11A, NBN, TP53

Altered T cell and B cell signaling
in rheumatoid arthritis

1.10×10−4 9.12×10−4 HLA-DQA1, HLA-DRB1, IFNG, IL15, IL6, TGFB1, TNF

IL-8 signaling 1.38×10−4 1.05×10−3 ARRB2, CCND1, GNAS, ICAM1, IL8, ITGB3, MPO, PTGS2, RHOA, TEK

ILK signaling 1.38×10−4 1.05×10−3 ACTN1, CCND1, CREB1, ITGB3, NOS2, PPP2R2B, PTEN, PTGS2,
RHOA, TNF

Synaptic long term potentiation 1.45×10−4 1.07×10−3 CAMK4, CREB1, GRIN2A, GRIN2B, GRIN3A, GRM7, ITPR2,
RAPGEF3

Communication between Innate
and adaptive immune cells

1.55×10−4 1.15×10−3 HLA-B, HLA-DRB1, IFNG, IL15, IL6, IL8, TNF

Leukocyte extravasation signaling 2.19×10−4 1.55×10−3 ACTN1, CTNNA2, CTNNA3, ICAM1, ITGB3, MAP3K4, MMP12,
MMP3, RAPGEF3, RHOA

Amyotrophic lateral sclerosis signaling 2.63×10−4 1.74×10−3 GRIK1, GRIK2, GRIN2A, GRIN2B, GRIN3A, SLC1A2, TP53

Bupropion degradation 3.02×10−4 1.95×10−3 CYP1A1, CYP2A6, CYP2B6, CYP2D6

nNOS signaling in neurons 3.09×10−4 2.00×10−3 CAMK4, DLG4, GRIN2A, GRIN2B, GRIN3A

HIF1α signaling 3.31×10−4 2.09×10−3 EGLN2, MDM2, MMP12, MMP3, NOS2, NOS3, TP53

Acetone degradation I (to methylglyoxal) 3.47×10−4 2.14×10−3 CYP1A1, CYP2A6, CYP2B6, CYP2D6

CREB signaling in neurons 3.98×10−4 2.40×10−3 CAMK4, CREB1, GNAS, GRIK1, GRIK2, GRIN2A, GRIN2B, GRM7,
ITPR2

Glutathione-mediated detoxification 3.98×10−4 2.40×10−3 GSTM1, GSTM3, GSTP1, GSTT1

Production of nitric oxide and reactive
oxygen species in macrophages

4.68×10−4 2.75×10−3 APOE, IFNG, MAP3K4, MPO, NOS2, PON1, PPP2R2B, RHOA, TNF

Role of macrophages, fibroblasts and
endothelial cells in rheumatoid arthritis

5.25×10−4 2.95×10−3 CAMK4, CCND1, CREB1, ICAM1, IL15, IL6, IL8, MMP3, NOS2,
RHOA, TGFB1, TNF

Role of CHK proteins in cell cycle
checkpoint control

6.46×10−4 3.47×10−3 CHEK2, MRE11A, NBN, PPP2R2B, TP53

Circadian rhythm signaling 8.51×10−4 4.47×10−3 CREB1, GRIN2A, GRIN2B, GRIN3A

Trem1 signaling 8.91×10−4 4.57×10−3 ICAM1, IL6, IL8, MPO, TNF

Role of BRCA1 in DNA damage response 9.55×10−4 4.68×10−3 CHEK2, MLH1, MRE11A, NBN, TP53

PI3K/AKT signaling 9.77×10−4 4.68×10−3 CCND1, MDM2, NOS3, PPP2R2B, PTEN, PTGS2, TP53

Crosstalk between dendritic cells
and natural killer cells

9.77×10−4 4.68×10−3 HLA-B, HLA-DRB1, IFNG, IL15, IL6, TNF

P53 signaling 1.17×10−3 5.50×10−3 CCND1, CHEK2, MDM2, PRKDC, PTEN, TP53

Antigen presentation pathway 1.17×10−3 5.50×10−3 HLA-B, HLA-DQA1, HLA-DRB1, IFNG

Estrogen biosynthesis 1.32×10−3 5.89×10−3 CYP1A1, CYP2A6, CYP2B6, CYP2D6

MIF regulation of Innate Immunity 1.74×10−3 7.41×10−3 CD14, NOS2, PTGS2, TP53

Sertoli cell-sertoli cell junction signaling 1.91×10−3 7.94×10−3 ACTN1, CTNNA2, MAP3K4, NOS2, NOS3, PRKG1, PTEN, TNF

Dendritic cell maturation 1.95×10−3 7.94×10−3 CREB1, HLA-B, HLA-DQA1, HLA-DRB1, ICAM1, IL15, IL6, TNF

Synaptic long term depression 2.04×10−3 8.13×10−3 GNAS, GRM7, ITPR2, NOS2, NOS3, PPP2R2B, PRKG1

IL-17 signaling 2.19×10−3 8.51×10−3 IL6, IL8, MMP3, NOS2, PTGS2

iNOS signaling 2.29×10−3 8.71×10−3 CAMK4, CD14, IFNG, NOS2

Cell cycle: G2/M DNA damage
checkpoint regulation

2.29×10−3 8.71×10−3 CHEK2, MDM2, PRKDC, TP53

Clathrin-mediated endocytosis signaling 2.51×10−3 9.33×10−3 APOE, ARRB1, ARRB2, DNM1, FGF12, ITGB3, MDM2, PON1

a Prioritized nicotine addiction-related genes included in the pathway

Mol Neurobiol (2015) 52:442–455 451



identified through various approaches, a detailed understand-
ing of the biological processes related to the effects of nicotine
treatment at the molecular level is still far from complete.
Under such situation, integrating evidences obtained from
different sources to prioritize the genes and the biochemical
pathways associated with them will not only guide us to select
the most likely vulnerable genes for further analysis, but also
provide insight about the major biological mechanisms under-
lying nicotine addiction by reducing the potentially less im-
portant genes.

In this study, we utilized a multi-source-based approach to
prioritize the genes involved in nicotine addiction. For the
base genes known to be related to the addiction of nicotine and
other addictive drugs, most of them were correctly included in
the prioritized nicotine addiction-related gene list, indicating
our method is reliable in identifying the potential targets by
incorporating information from different sources.

Of the 220 genes in the prioritization list, genes having
been studied extensively in nicotine addiction are include,
such as the nicotinic receptors (e.g., CHRNA1, CHRNA4,
CHRNA7, CHRNA10, and CHRNB2) and dopamine recep-
tors (DRD1, DRD2, DRD3, DRD4 and DRD5). The GO
biological processes enriched in these genes, e.g., cell–cell
signaling, synaptic transmission, neurological system process,
the transport of amine, and ion transport, are also among the
major GO terms underlying a group of addiction-related genes
identified from genetic studies [60]. Several essential biolog-
ical processes, e.g., response to drug, response to alcohol,
response to nicotine, response to cocaine, and response to
organic nitrogen are also among the enriched GO terms. Thus,
it is likely most of the prioritized genes may be involved in
addiction-related biological functions, and our results, espe-
cially, provide further evidence that nicotine may share some
biological mechanisms with other substances in addiction
conditions.

Pathway analysis, which takes account of the biochemical
relevance of genes, can not only be more robust to potential
false-positives caused by various factors in different studies,
but may also yield a more comprehensive view of the molec-
ular mechanism underlying nicotine addiction. Thus, pathway
analysis becomes more necessary to detect the main biological
themes from the genes involved in different functions. Path-
ways enriched in the prioritized genes further reveal that the
prioritized genes are involved in a wide range of biological
processes. For example, we found that several signaling path-
ways related to neural activity are enriched in the prioritized
genes, e.g., cAMP-mediated signaling, calcium signaling,
dopamine receptor signaling, serotonin receptor signaling,
glutamate receptor signaling, and synaptic long-term potenti-
ation. In an earlier study, based on genes identified from
genetic association analysis, we reported that these pathways
were involved in different tobacco smoking-related behaviors,
including smoking initiation/progression, nicotine addiction,

and smoking cessation [46]. However, in this study, a larger
gene set prioritized from multiple sources were used, and in
each overrepresented pathway, more genes were included
(Table 3). Moreover, some pathways not overrepresented in
the earlier study were enriched in the current gene set, e.g.,
nicotine degradation II, dopamine degradation, serotonin deg-
radation, noradrenaline and adrenaline degradation, and
dopamine-DARPP32 feedback in cAMP signaling.

These results suggest that the mechanisms underlying nic-
otine addiction are complex and the pathways presented here,
and the genes included may be potential targets for further
investigation.

Several base genes were not among the 220 genes priori-
tized, which included CYP2E1, DDC, FAAH, GRIN1, HO-
MER1, HOMER2, OPRD1, and SLC6A2. CYP2E1 had a
combined score of 0.606 and was included in the 580 priori-
tized genes. The other seven genes had values smaller than
0.598. The relation between these genes and nicotine addic-
tion was examined by reviewing the available reports in
PUBMED. For these genes, there are relatively few available
reports on their roles in nicotine addiction, but some studies
have focused on the association of these genes with the
addiction of alcohol or other drugs. Thus, more investigation
is needed to elucidate the roles of these genes in nicotine
addiction. On the other hand, it means describing the correla-
tion of a gene with nicotine addiction with a priori informa-
tion used in this analysis is insufficient.

It should be noted that this study has some limitations.
First, the prioritization procedure is based on the evidence
from available association studies, linkage analyses, high-
throughput expression analyses, and literature search of sin-
gle-gene/protein-based studies, which means it cannot be used
to predict novel genes related to nicotine addiction. Second,
since the identification of susceptibility genes for nicotine
addiction is still an ongoing process, the genes and pathways
identified in this report are incomplete. At the same time,
cu r r en t ava i l ab l e s t ud i e s a r e unba l anced and
incomprehensive. For example, for single-gene/protein-based
studies, the candidates selected are usually biased toward
better-studied targets; for high-throughout gene expression
analysis, although no candidates are pre-selected, the results
are still limited by available models and experiment condi-
tions. It can be expected that, as more studies become avail-
able in each category, more genetic factors and pathways
related to nicotine addiction will be determined.

There are several available studies devoted to the collection
and prioritization of nicotine addiction related genes. By com-
paring genes located in chromosome regions implicated in
nicotine addiction from a genome-wide linkage scan with a
list of genes suggested by microarray studies of experimental
nicotine exposure and candidate genes from the literature,
Sullivan et al. [47] found that genes such as mitogen-
activated protein kinase (MAPK), nuclear factor kappa B
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(NFKB), neuropeptide Y (NPY), nicotinic receptor subunit
alpha 2 (CHRNA2), and related biochemical pathways were
identified by all these approaches. They further developed a
bioinformatic tool to provide a searchable archive of findings
from genome-wide linkage, genome-wide association, and
microarray studies for psychiatric disorders including nicotine
addiction [63]. By integrating two gene resources (Entrez
Gene and HomoloGene) and three pathway resources
(KEGG, Reactome, and BioCyc), Sahoo et al. created a se-
mantic web-based knowledge base for nicotine dependence,
which could be used for gene query and pathway identifica-
tion [64]. To balance the statistical evidence of genotype–
phenotype correlation with the a priori evidence of biological
relevance in a GWAS for complex disorders like nicotine
addiction, Saccone at al. [65] developed a method to prioritize
SNPs for further study after a GWAS. The method combined
evidence from genotype–phenotype correlation, known path-
ways, SNP/gene functional properties, comparative genomics,
prior evidence of genetic linkage, and linkage disequilibrium.
In an earlier study [46], we collected genes associated with the
risk of smoking initiation and progression, nicotine depen-
dence, and smoking cessation by reviewing the related asso-
ciation studies. Further analysis revealed a number of com-
mon and unique pathways enriched in the genes associated
with these phenotypes. These studies have demonstrated that
integrating information from different sources to explore the
molecular candidates related to nicotine addiction is not only
feasible, but also necessary in order to obtain a comprehensive
and unbiased understand about these genetic factors. These
reports mainly focused on some specific types of study such as
linkage analysis or association study, or a relatively small
number of studies. The current study, on the other hand, has
tried to provide a more comprehensive collection and analysis
on the information from different sources.

By applying their method to a GWAS data [48,49],
Saccone et al. [65] prioritized the SNPs associated with nico-
tine dependence. Of the top ten prioritized SNPs, nine SNPs
could be mapped to eight candidate genes, i.e., rs16969968
(CHRNA5), rs1051730 (CHRNA3), rs6474413 (CHRNB3),
rs578776 (CHRNA3), rs4142041 (CTNNA3), rs999 (PBX2),
rs12623467 (NRXN1), rs12380218 (VPS13A), and
rs2673931 (TRPC7). Among these eight genes, seven were
included in the 220 prioritized genes in our study except
PBX2 (this gene was not included in our candidate genes),
indicating the high accuracy of our method. Similarly,
Lewinger et al. [66] developed a hierarchical regression
modeling approach to prioritize a subset of SNPs from a
genome-wide association scan for further test. Rather than
simply selecting a subset of most significant SNPs at certain
cutoff, they utilized a prior model and included the prior
information of the markers, such as their location relative to
genes or evolutionary conserved regions, or prior linkage or
association data. Then, the SNPs on the top ranked posterior

expectations were selected for confirmation in following anal-
ysis. The methods developed by Saccone at al. and Lewinger
et al., as well as the one described in this study, all take
advantage of the prior knowledge. While those two methods
are devoted for the prioritization of SNPs in a genome-wide
association scan, our method is more suitable for the prioriti-
zation of genes related to complex diseases.

In conclusion, by incorporating information from multiple
sources, we developed a gene prioritization approach to pri-
oritize nicotine addiction-related genes. Evaluation suggested
this approach was reliable for candidate gene prioritization for
complex diseases, and the prioritized genes and the related
pathways were potential targets for further analysis and repli-
cation study.
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