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Abstract The Fas receptor (FasR)/Fas ligand (FasL) system
plays a significant role in the process of neuronal loss in
neurological disorders. Thus, in the present study, we used a
real-time PCR array focused apoptosis (Mouse Apoptosis RT2

PCR Array) to study the role of the Fas pathway in the
apoptotic process that occurs in a kainic acid (KA) mice
experimental model. In fact, significant changes in the tran-
scriptional activity of a total of 23 genes were found in the
hippocampus of wild-type C57BL/6 mice after 12 h of KA
treatment compared to untreated mice. Among the up-
regulated genes, we found key factors involved in the extrinsic
apoptotic pathway, such as tnf, fas and fasL, and also in
caspase genes (caspase-4, caspase-8 and caspase-3). To dis-
cern the importance of the FasR/FasL pathway, mice lacking
the functional Fas death receptor (lpr) were also treated with
KA. After 24 h of neurotoxin treatment, lpr mice exhibited a
reduced number of apoptotic positive cells, determined by the

terminal deoxynucleotidyl transferase dUTP nick end label-
ling (TUNEL) method in different regions of the hippocam-
pus, when compared to wild-type mice. In addition, treatment
of lprmice with KA did not produce significant changes in the
transcriptional activity of genes related to apoptosis in the
hippocampus, either in the fas and fas ligand genes or in
caspase-4 and caspase-8 and the executioner caspase-3 genes,
as occurred in wild-type C57BL/6 mice. Thus, these data
provide direct evidence that Fas signalling plays a key role
in the induction of apoptosis in the hippocampus following
KA treatment, making the inhibition of the death receptor
pathway a potentially suitable target for excitotoxicity neuro-
protection in neurological conditions such as epilepsy.

Keywords Kainic acid . Apoptosis . FAS . Neuroprotection .

Microglia . Caspase-3

Carme Auladell and Antoni Camins are senior co-authors.

Miren Ettcheto and Felix Junyent contributed equally to the manuscript

M. Ettcheto : F. Junyent : L. de Lemos :M. Pallas :A. Camins (*)
Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia,
Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda/
Diagonal 643, E-08028 Barcelona, Spain
e-mail: camins@ub.edu

M. Ettcheto : F. Junyent : L. de Lemos :M. Pallas : J. Folch :
R. Gómez-Sintes : J. J. Lucas :C. Auladell :A. Camins
Networking Research Center on Neurodegenerative Diseases
(CIBERNED), Instituto de Salud Carlos III, Madrid, Spain

J. Folch
Unitat de Bioquímica, Facultat de Medicina i Ciències de la Salut,
Universitat Rovira i Virgili, Reus, Tarragona, Spain

C. Beas-Zarate
Laboratorio de Neurobiología Celular y Molecular, División de
Neurociencias, CIBO, IMSS, Guadalajara, Mexico

C. Beas-Zarate
Laboratorio de Desarrollo y Regeneración Neural, Instituto de
Neurobiología, Departamento de Biología Celular y Molecular,
CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico

R. Gómez-Sintes : J. J. Lucas
Center for Molecular Biology “Severo Ochoa” (CBMSO)
CSIC/UAM, Madrid, Spain

E. Verdaguer : C. Auladell
Departament de Biologia Cel•lular, Facultat de Biologia, Universitat
de Barcelona, Barcelona, Spain

Mol Neurobiol (2015) 52:120–129
DOI 10.1007/s12035-014-8836-0



Introduction

It is widely known that the excitotoxic process is a contribut-
ing factor to acute neuronal damage in most chronic neurode-
generative diseases, such as Alzheimer’s disease, Parkinson’s
disease and Huntington’s disease [1–3]. Previous reports have
demonstrated that the administration of kainic acid (KA) in
rodents, an analogue of the excitotoxin glutamate, produces
epileptic seizures [4–9]. The greatest abundance of kainate
receptors is present in the hippocampal CA3 region, and their
activation results in neuronal loss of selective populations in
the hippocampus and other brain structures. Moreover, nu-
merous studies have demonstrated that neuronal loss observed
in this excitotoxic model involves, at least in part, apoptotic
cell death [10, 11]. Likewise, KA can stimulate CA3 neurons
directly through stimulation of their own KA receptors and
also indirectly by favouring glutamate release secondary to
KA stimulation of mossy fibres [4].

One important point is the characterisation of the
mechanism involved in KA-induced neurodegeneration.
Thus, a large number of studies have been conducted to
identify the potential biochemical pathways involved in
KA-induced apoptosis, such as oxidative stress, cell cycle
re-entry and calpain/cdk5 activation [8, 10–16]. Pro-
grammed cell death is primarily mediated by the extrinsic
or death receptor pathway, and the intrinsic or mitochon-
drial pathway, which converge to activate mitochondria
[17, 18]. This constitutes a key point because it favours
the release of some proteins such as cytochrome c,
Smac/Diablo and Omi/HrtA2 into the cytosol, which fa-
cilitates the activation of common executioner caspases
(caspase-3/7) with the final cleavage of downstream tar-
gets that include DNA repair enzymes [19].

It has been previously shown that the extrinsic apoptotic
pathway induces apoptosis in lymphoid cells and in neuronal
cells deprived of critical survival factors and also in models of
excitotoxicity [20]. The Fas receptor is known to induce
apoptosis by binding to FasL. Thus, the Fas ligand (FasL)
and TNF-related apoptosis-inducing ligand (TRAIL) are up-
regulated following experimental KA administration to ro-
dents [21–23]. In addition, previous studies have shown that
the binding of the Fas ligand to FasR triggers the formation of
a death-inducing signalling complex (DISC), which consists
of FasL, FasR, the adapter protein FADD (Fas-associated
death domain protein), and the TNFR1-associated death do-
main protein (TRADD) to induce the activation of caspase-8,
a protease which then activates downstream effector caspase-
3, which in turn is responsible for apoptosis. Thus, both
extrinsic and intrinsic apoptotic pathways converge to activate
common executioner caspases (caspase-3/7) with the final
cleavage of downstream targets. Inhibition of Fas-mediated
apoptosis is regulated by the FLICE-inhibitory protein (FLIP),
the structural homologue of procaspase-8 [24–29].

lprmice have alterations in the Fas receptor gene due to the
insertion of a retrotransposon that causes disruption in its
transcription [30]. Attenuation of the Fas signalling system
has been related to neurological damage protection in various
experimental models of pathophysiological diseases such as
ischemia and multiple sclerosis [27, 29–33]. More precisely,
lpr mice were protected from the neurotoxicity mediated by
the neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine), which causes permanent symptoms of
Parkinson’s disease [34, 35]. Interestingly, in post-mortem
brains of Parkinson’s patients, the levels of Fas are increased
in the nigrostriatal region [36]. In addition, deletions of the Fas
receptor reduced lesion size and improved brain function after
a traumatic brain injury, confirming the role of these signalling
pathways in the pathogenesis of delayed brain damage [7, 25].
All these data raised the possibility that Fas signalling activat-
ed in different pathologies may render neurons vulnerable to
dying [31, 37].

Furthermore, recent studies have specifically exemplified
the role of Fas in Alzheimer’s disease (AD) neurodegenera-
tion [28, 38–40]. It has been suggested that β-amyloid can
induce neuronal death via processes of apoptosis [40, 41].
Similarly, it has been demonstrated that neurons in the AD
brain and neuronal cultures treated with beta-amyloid show a
significant increase in Fas ligand expression and immunore-
activity [42]. Moreover, cortical cultures of lprmice that carry
mutations leading to a loss of function of Fas genes are
protected from beta-amyloid toxicity. These results, therefore,
lend support to the involvement of this pathway in AD
apoptosis.

Given the lack of direct evidence linking FasR with the
intrinsic apoptotic pathway, we sought to clarify the role of
apoptosis mediated by Fas signalling after KA treatment. The
present study examined the impact of KA administration in
C57BL/6 Fas-deficient (lpr) mice, which exhibit low levels of
Fas receptor expression [43, 44]. To investigate whether FasL
signalling is also relevant to the neurotoxic process mediated
by KA, we analysed the hippocampal apoptotic cell death
after intraperitoneal KA administration in Fas receptor-
deficient mice (lprmice). Moreover, a study of apoptotic gene
expression was performed in the hippocampus and here we
demonstrated that loss of Fas receptor activity (lpr mice) is
neuroprotective against excitotoxicity.

Material and Methods

Animals

Wild-type C57BL/6 mice were obtained from Harlan Labora-
tories or the Jackson Laboratory. Fas-deficient lpr mice
(C57BL/6 background) were obtained from Jackson Labora-
tory (B6.MRL-FasLpr/J, stock number 000482). All mice
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were housed at the Centro Biología Molecular Severo Ochoa
in Madrid. Mice were housed four per cage with food and
water available ad libitum and maintained in a temperature-
controlled environment on a 12-h light/12-h dark cycle with
light onset at 7 am. All experiments were performed under a
protocol approved by the CSIC ethical committee.

Kainic Acid Treatment and Sample Preparation

A total of 40 mice were used for the present study. Six-week-
old mice were treated with a single intraperitoneal (i.p.) dose
(30 mg/kg) of KA (Sigma-Aldrich, St. Louis, MO, USA) or
with saline solution for controls. For RNA analysis, 10 wild-
type C57BL/6 mice and 10 lpr mice were used. Five mice
from each group were used as controls and were treated with
KA and killed after 12 h; the hippocampus was then excised
and frozen. For immunochemistry and immunofluorescence
experiments, we used 10 wild-type C57BL/6 mice and 10 lpr
mice. Five from each group served as control and were
injected with KA and killed after 24 h.

All mice were anaesthetised by injection (i.p.) of pentobar-
bital 80 mg/kg. After that, the mice were perfused with 40 g/L
paraformaldehyde in 0.1 mol/L phosphate buffer (PB) and the
brains were removed and post-fixed for 24 h. The brains were
subsequently rinsed in the same solution with 300 g/L sucrose
for 24 h and then frozen. Coronal sections of 30 μm were
obtained by a Cryostat (Leica Microsystems, Wetzlar,
Germany).

RT2 Profiler™ PCR Array

The Mouse Apoptosis RT2 Profiler PCR Array (PAMM-
012A, Biosciences, Frederick, MD, USA) profiles the expres-
sion of 84 genes involved in apoptosis together with five
housekeeping genes. Controls for genomic DNA contamina-
tion and for the efficiency of the RT-PCR and PCR were also
included in the array and were evaluated after each run. One
microgram of total RNA was reverse transcribed in a final
reactionmix of 20μL using the RT2 First StrandKit according
to the manufacturer’s instructions. For one 96-well plate of the
PCR array, 1,100 μL of PCR master mix containing
2×SuperArray RT2 qPCR Master Mix and 102 μL of diluted
cDNA were prepared, and aliquots of 10 μL were added to
each well. The PCR was performed on the LightCycler 480
(Roche Applied Science, Manheim, Germany), and universal
cycling conditions (10 min at 95 °C, 15 s at 95 °C, 1 min at
60 °C for 40 cycles) were used. Expression of each gene was
normalised to the mean Ct for five housekeeping genes in the
PCR a r r a y (β - g l u c u r o n i d a s e , h y p o x a n t h i n e
phosphoribosyltransferase, heat shock protein 90α,
glyceraldehyde-3-phosphate dehydrogenase and β-actin).
Relative fold change in expression was calculated using the
ΔΔCt method, and the values were expressed as 2-ΔΔCt.

The statistical calculation was based on the web-based pro-
gram of RT2 Profiler™ PCR Array Data Analysis. Significant
changes in gene expression between KA-treated mice and
untreated controls were assumed as a fold change ≥1.5 and
≤0.6, with a P value<0.05. The experiments were repeated
three times.

RNA Extraction and Real-Time Reverse
Transcription-Polymerase Chain Reaction (qRT-PCR)

Total RNA was isolated from mouse hippocampus using
TRIzol (Invitrogen, Carlsbad, CA, USA) followed by chloro-
form, according to the manufacturer’s protocol. RNA concen-
tration was measured using a NanoDrop™ 1000 Spectropho-
tometer (Thermo Scientific, MA, USA).

As a general procedure, 1 μg of total RNA was reverse
transcribed using a high-capacity cDNA reverse transcription
kit (Applied Biosystems, Carlsbad, CA, USA). The same
amounts of cDNA were subsequently used for quantitative
real-time PCR using SYBR Green® PCR Master Mix and
performed on the StepOnePlus™ Real-Time PCR System (Ap-
plied Biosystems, Carlsbad, CA, USA). All samples were run in
triplicate, and expression values were normalised to the house-
keeping β-actin in the same reaction. Relative normalised
mRNA levels were calculated using theΔΔCt method. Primers
used for quantitative real-time PCR are shown in Table 1. Gene-
specific primers corresponding to the PCR targets on the PCR
RT2 array were designed using Primer Express® Software v2.0
(Applied Biosystems, Carlsbad, CA, USA).

Fluoro-Jade Staining

Neurodegeneration was assessed using Fluoro-Jade B
(Chemicon Europe Ltd). Slides were rinsed with phosphate-
buffered saline (PBS), followed by two washes in distilled
water. Afterwards, slides were immersed in 0.6 g/L potassium
permanganate (KMnO4) for 15 min in the dark. Then, after
two washes in distilled water, the slides were transferred to the
staining solution containing 0.1 mL/L acetic acid and
0.004 mL/L of the fluorochrome Fluoro-Jade B for 30 min
in the dark. Slides were rinsed in distilled water, dried, and
then submerged directly into xylene and mounted in DPX
medium. Slides were analysed using epifluorescence micros-
copy (Olympus BX61, Olympus, Barcelona, Spain). To de-
termine the positive cell number for Fluoro-Jade B, we count-
ed the cells in each area from serial sections of hippocampus
from each mouse brain.

TUNEL Assay

DNA damage was assessed using terminal deoxynucleotidyl
transferase dUTP nick end labelling (TUNEL) staining meth-
od. TUNEL staining was performed as described in the In situ
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Cell Death Detection Kit, TMR red (Roche Molecular Bio-
chemicals, IN, USA) with minor modifications. Sections were
rinsed with PBS and immersed in a permeabilisation solution
(0.1 % Triton X-100, 0.1 % sodium citrate) for 2 min at 4 °C.
Then, slides were washed twice with PBS and incubated with
TUNEL reaction mixture in a humidified atmosphere for
60 min at 37 °C in the dark. Afterwards, slides were rinsed
three times with PBS and then incubated with 0.1 μg/mL
Hoechst 33258 (Sigma-Aldrich, St Louis, MO, USA) nuclear
stain for 5 min in the dark. Following a final rinse with PBS,
slides were mounted in Fluoromount medium (Sigma-
Aldrich, St Louis, MO, USA) and analysed under a confocal
fluorescence microscope (Leica TCS SP2 confocal
microscope).

Immunohistochemistry

Free-floating coronal sections, 30 μm thick, were rinsed in
0.1 mol/L PB pH 7.2 and treated with 5 mL/L H2O2 and
100 mL/L methanol in PBS. After that, they were pre-

incubated in a blocking solution (100 mL/L of foetal bovine
serum (FBS), 2.5 g/L of bovine serum albumin and 0.2 mol/L
of glycine in PBST, PBS with 5 mL/L of Triton X-100). Then,
sections were incubated overnight (O/N) at 4 °C with different
primary antibodies: rabbit anti-GFAP (1:2,000; Dako,
Glostrup, Denmark) and rabbit anti-Iba1 (1:1,000; Wako,
Osaka, Japan), and sequentially incubated for 2 h with Alexa
Fluor 594 goat anti-rabbit antibody (1:500; Invitrogen, Eu-
gene, OR, USA). Sections were counterstained with 0.1 μg/
mL Hoechst 33258 (Sigma-Aldrich, St Louis, MO, USA)
nuclear stain for 5 min in the dark. Immediately, sections were
rinsed with PBS and mounted onto gelatinised slides with
Fluoromount medium (Sigma-Aldrich, St Louis, MO, USA).
Stained sections were examined under a confocal fluorescence
microscope (Leica TCS SP2 confocal microscope).

Statistical Analysis

All experiments were conducted in triplicate, and the results
were expressed as mean values±SEM. Differences are

Table 1 Significant changes in transcriptional activity of genes included
in theMouse Apoptosis RT2 Profiler PCRArray, PAMM-012A, and from
the hippocampus of KA-treated C57/Bl6 wild-type mice, at 12 h. The
administration of this neurotoxin caused significant changes in the ex-
pression of 23 genes: 17 genes resulted significantly up-regulated; the
most significant up-regulation corresponded to the tnf gene that showed a

fold change of 15.95, and the lowest significant gene activation levels
corresponded to hells, with a fold change of 1.5. Another six genes
resulted down-regulated. Significant changes in gene expression between
KA-treated mice and untreated controls were assumed as a fold change
≥1.5 and ≤0.6, with a P value<0.05. The experiments were repeated three
times

GenBank number Gene symbol Gene name Fold change P value

NM_013693 Tnfα Tumour necrosis factor 15.95 0.0017

NM_013863 Bag3 Bcl2-associated athanogene 3 9.03 0.0002

NM_011609 Tnfr1 Tumour necrosis factor receptor superfamily, member 1a 6.51 0.0004

NM_007987 Fas Fas (TNF receptor superfamily member 6) 3.53 0.0001

NM_008562 Mcl1 Myeloid cell leukaemia sequence 1 3.47 0.0001

NM_009805 Cflar CASP8 and FADD-like apoptosis regulator 2.91 0.0003

NM_007609 Casp4 Caspase-4, apoptosis-related cysteine peptidase 2.21 0.0002

NM_010177 Fasl Fas ligand (TNF superfamily, member 6) 2.00 0.0017

NM_010736 LtBr Lymphotoxin B receptor 1.99 0.0001

NM_009740 Bcl10 B cell leukaemia/lymphoma 10 1.89 0.0336

NM_009422 Traf2 Tnf receptor-associated factor 2 1.83 0.0001

NM_138606 Pim2 Proviral integration site 2 1.78 0.0002

NM_009810 Casp3 Caspase-3 1.78 0.0086

NM_030693 Atf5 Activating transcription factor 5 1.73 0.0001

NM_172858 Pak7 P21 protein (Cdc42/Rac)-activated kinase 7 1.62 0.0003

NM_009812 Casp8 Caspase-8 1.54 0.0002

NM_008234 Hells Helicase, lymphoid specific 1.50 0.0214

NM_009950 Cradd CASP2 and RIPK1 domain containing adaptor with death domain −1.56 0.0001

NM_007702 Cidea Cell death-inducing DNA fragmentation, α subunit-like effector A −1.56 0.0089

NM_001163138 Card6 Caspase recruitment domain family, member 6 −1.61 0.0003

NM_173378 Trp53bp2 Transformation related protein 53 binding protein 2 −1.69 0.0008

NM_030152 Nol3 Nuclear protein 3 (apoptosis repressor with CARD domain) −1.88 0.0007

NM_080637 Nme5 Non-metastatic cells 5 −2.34 0.0001
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considered significant at P<0.05. P values were determined
by Student’s t test.

Results

Identification of the Expression of Apoptotic Genes
in the Hippocampus of Wild-Type Mice, After Treatment
with Kainic Acid

The administration of KA at a dose of 30 mg/kg in mice
favours the onset of seizures and a variety of behavioural
changes that have been previously described by a number of
laboratories [7–9, 45]. The lprmice compared to the wild type
did not show an improvement in the number of seizures.

To assess whether apoptosis-related genes showed changes
in expression in KA-treated mice at 12 h, 84 genes were
analysed using the real-time PCR array (Mouse Apoptosis
RT2 Profiler PCR Array). The results indicated that adminis-
tration of this neurotoxin caused significant changes in the
expression of 23 genes (Table 1). Among them, a total of 17
genes were significantly up-regulated, whereas the transcrip-
tional activity of six genes was below normal levels. The most
significant up-regulation corresponded to the tnf, which
showed a fold change of 15, 95 with P value=0.0017 and
the lowest significant gene activation levels corresponded to
Hells, with a fold change of 1.5 with P value=0.0214. In
relation to this observation, the exposure of the wild-type
strain to KA toxicity significantly activated genes related to
the Fas signalling pathway: fas, fasl, and caspase-4, caspase-3
and caspase-8.

Evaluation of Kainic Acid-Induced Neurotoxicity
in the Hippocampus of Fas-Deficient lpr Mice

The real-time PCR array results suggested an involvement of
the Fas pathway in the apoptotic process occurring in the
hippocampus of C57/Bl6 mice, so the next step was to eval-
uate the implication of this pathway in KA-induced neuronal
death. Then, we decided to analyse the neurodegeneration
induced in Fas-deficient lpr mice following KA injection.
After 24 h of treatment with KA, the neuronal death in
hippocampal areas was assessed using the Fluoro-Jade B
technique. Interestingly, brain sections from lpr mice exhibit-
ed a significant stain reduction compared to the wild type,
suggesting the existence of a neuroprotective effect, most
probably due to the lack of a functional Fas/CD95 protein
(Fig. 1). To clarify whether the identified dying cells were
apoptotic, DNA integrity was assessed using TUNEL stain-
ing. A decrease in the cell apoptosis in lpr mice treated with
KA compared to the wild type (WT) evidenced that the lack of

functionality of the Fas receptor plays an antiapoptotic role
(Fig. 2).

Evaluation of Glial Activation in Fas-Deficient lpr Mice
Hippocampus After Kainic Acid Treatment

In the literature, it is widely described that, in addition to
neuronal death, the administration of KA produces a glial
activation due to excitotoxicity [4, 5]. This glial reactivity is
reflected in a change in the morphology of the astrocytes and
microglia. In the case of astrocytes, these acquire a star shape
because of the growth of their extensions. In the hippocampal
brain areas of the KA-treated wild-type mice, a prominent
astrogliosis was observed; thus, we detected an increase in
GFAP immunoreactivity as well as shape alterations in astro-
cytes. The astrocyte activation mediated by KAwas not abro-
gated in lpr mice because the pattern of GFAP immunoreac-
tivity was similar to the wild type (Fig. 3).Microglia are a type

Fig. 1 Neurodegeneration observed by Fluo-Jade B stain in the CA3 and
CA1 regions of the hippocampus after 24 h of KA treatment. A decrease
of labelled neurons is observed in the CA3 region of kainic acid (KA)-
treated lpr mice versus wild-type (wt) mice (b vs a). A decrease of
labelled neurons is observed in the CA1 region of kainic acid (KA)-
treated lprmice versus wild-type (wt) mice (d vs c). Scale bar 100μm. (e)
A bar graph shows the quantification of positive neurons for Fluoro-Jade
B labelling in the CA3 and CA1 areas of the hippocampus in wild-type
and lpr mice. Each point is the mean±SEM of three independent exper-
iments, determined in five pictures per experiment (***p<0.001; with
respect to kainic acid-treated wild-type mice)
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of glial cell acting as the first and main form of active immune
defence in the central nervous system, offering an extremely
sensitive reaction when neural damage is induced. Thus,
microglial activation was analysed in wild-type mice and lpr
mice after KA treatment, with an Iba1 antibody that allows

measurement of the inflammatory response by means of
changes in the cell shape of microglial cells, characterised
by their amoeboid form. KA treatment evidenced microglial
reactivity in the hippocampus, insofar as changes in the mor-
phology of the microglial cells were detected in comparison to
saline-treated mice (Fig. 3). Likewise, activated microglial
morphology was visualised in lpr mice after KA injection,
with the data suggesting that the neuroprotection detected in
lpr mice after KA is not mediated by a prevention of glial
activation.

Expression of Apoptotic Genes in lpr Mice After Treatment
with Kainic Acid

We studied the transcriptional activity of genes involved in the
apoptotic response to the exposure to KA in the lpr mice strain
(Table 2). As a first approach, we determined the basal expres-
sion of genes in the hippocampus of both C57/Bl6 and lprmice
strains (Fig. 4). In fact, results show a clear down-regulation of
the fas gene in lpr mice, together with trp53bp2, traf2 and nol3
genes. By contrast, a total of six genes were significantly up-
regulated: tnf, casp4, casp8, fasl, cflar and cidea. Contrary to
what was observed in the C57/Bl6 wild-type strain, treatment of
lpr mice with kainic acid does not produce significant changes
in the transcriptional activity of genes related to apoptosis
(Table 2). In fact, no significant changes were observed
either in the fasl gene or in caspase-4 and caspase-8 or
the executioner caspase-3 genes. In addition to the lack of

Fig. 2 TUNEL and Hoechst 33342 staining in the CA3 region of the
hippocampus from kainic acid-treated wild-type mice (a and c) and kainic
acid-treated lpr mice (b and d), after 24 h of treatment. Scale bar 100 μm

Fig. 3 Microglial and astroglial activation under kainic acid treatment.
Iba-1 immunohistochemistry counterstained with Hoechst 33342 in the
CA1 region of the hippocampus from saline control wild-type mice (a
and e), kainic acid-treated wild-type mice (b and f), saline control lpr
mice (c and g) and kainic acid-treated lpr mice (d and h). GFAP

immunohistochemistry counterstained with Hoechst 33342 in the CA1
region of the hippocampus from saline control wild-type mice (i), kainic
acid-treatedwild-typemice (j), saline control lprmice (k) and kainic acid-
treated lpr mice (l). CA1, CA1 field, hippocampus. Scale bars a–d,
100 μm; e–h, 25 μm; i–l, 100 μm
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activity in cytoplasmic caspase genes, the cell death-
inducing DNA fragmentation factor gene, cidea, showed
no significant change in transcriptional activity. Nor were
any changes observed in the atf5 gene. Therefore, it can
be concluded that Fas signalling is involved in kainic
acid-induced apoptosis in hippocampal cells (Fig. 5).

Discussion

In the present paper, we report evidence of a novel role for Fas
in the apoptosis of hippocampal neurons after treatment with
the neurotoxin KA. To provide a mechanistic basis for these
findings, we demonstrated that lpr mice treated with this
neurotoxin exhibit a significant reduction in neuronal cell
death and apoptosis compared with wild-type mice.

Real-time PCR array analysis showed that KA significantly
regulated 23 apoptosis-related genes (fold change≥±1.5 and P
value 0.05). It is well established that the extrinsic signalling
pathway that initiates apoptosis involves death receptor mem-
bers of the Tnf receptor gene superfamily [21, 23, 26, 42, 46,
47]. Our study demonstrated that Fas, Tnfr1, Fasl and Tnf
genes were highly expressed in the hippocampus following
KA treatment in wild-type animals. In addition, our findings
also prove an overexpression of the Casp8 gene that encodes
an initiator caspase and the Casp3 gene that encodes an
effector caspase. However, it is noteworthy that KA treatment
at 12 h does not promote significant changes in the expression
of key genes involved in the intrinsic apoptotic pathway such
as caspase-9 and Apaf1, among others. These data suggest
that the cell death observed at 24 h of KA treatment may be
due mainly to the activation of genes involved in the extrinsic
pathway of apoptosis.

Several reports have demonstrated that the expression of
the Fas receptor gene is induced after neuropathological
lesions including those produced byKA [23–25, 38, 48].With
the aim of reporting more data in the involvement of the Fas
signalling pathway in the mechanisms of neuronal death in-
duced by excitotoxicity, we performed a treatment with KA in
lpr mice. Previous studies have described that these mice
exhibit neuroprotection against traumatic brain injury (TBI),
in preclinical models of Parkinson’s disease (MPTP) and
amyotrophic lateral sclerosis (ALS), and also models of is-
chemia, demonstrating the involvement of the Fas pathway in
neuronal death [24, 25, 29, 32, 41, 47, 49]. We observed a
significant decrease in neurodegeneration in the hippocampus
of the KA-treated lpr mice compared to the wild type, so the
results strongly suggest that the lack of Fas receptor function-
ali ty plays a neuroprotective role following KA
administration.

In the model of KA-induced excitotoxicity, it is widely
demonstrated that there is clear astroglial and microglial acti-
vation [4, 5, 50]. Here, in the present study, we have also
observed glial reactivity after KA treatment in the hippocam-
pus of wild-type mice. In the case of the lpr mice, although
there was a significant reduction in neuronal death, the glial
reactivity induction was similar to that of wild-type mice,
indicating that while the Fas pathway prevents neuronal death,
it is not involved in the regulation of neuroinflammatory
processes. Likewise, KA-induced glial activation may occur
through mechanisms independent of Fas [27].

Table 2 Significant changes in transcriptional activity of genes included
in the Mouse Apoptosis RT2 Profiler PCR Array, PAMM-012A, from the
hippocampus of KA-treated lprmice, at 12 h. Genes that did not prove to
be related, directly or indirectly, to apoptotic processes were excluded
from the analysis. By contrast to the observation in the C57/Bl6 wild-type
strain, treatment of lprmice with KA, at 12 h, did not produce significant
changes in transcriptional activity of genes related to apoptosis, neither in
fas ligand gene fasl, nor in caspase-4 and caspase-8 or the executioner
caspase-3 genes. Any changes were also not observed in atf5

Gene symbol lpr KAversus lpr CT

tnf 8.86**

bag3 5.00***

tnfrsf1a 5.05**

fas 3.14**

mcl1 2.69**

cflar 1.25*

casp4 0.76ns

fasl 0.95ns

ltBr 1.63**

traf2 1.47**

atf5 1.39ns

bcl10 1.4**

casp3 1.11ns

casp8 1.09ns

nol3 0.48**

cidea 0.85ns

cradd 0.43*

trp53bp2 0.56***

Asterisks different levels of significance

ns non significant (non statistical differences)

Fig. 4 Significant changes in the transcriptional activity of genes includ-
ed in the Mouse Apoptosis RT2 Profiler PCR Array, PAMM-012A, from
the hippocampus of both C57/Bl6 wild-type and lpr mice. In lpr mice, a
clear down-regulation of the fas, trp53bp2, traf2 and nol3 genes is
observed when compared with C57/Bl6. By contrast, a total of six genes
were significantly up-regulated: tnf, casp4, casp8, fasl, cflar and cidea
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Because reduced neuronal death was observed in lpr mice
following KA treatment, we analysed the differentially
expressed apoptosis-related genes detected, comparing wild-
type KA-treated mice to untreated mice. For this, first of all,
we compared the gene expression levels between the two
genotypes (wild type and lpr). The lpr mice showed higher
expression levels of genes encoding the death receptor ligands
(FasL and TNF): caspase-8 that codifies an essential protease
for the extrinsic apoptotic pathway, caspase-4 encoding a
caspase that plays a role in inflammation, cflar that codifies
an apoptotic regulator protein that lacks caspase activity and
appears to be itself cleaved into two peptides by Caspase-8
and the pro-apoptotic cidea gene [42, 51]. Furthermore, a
down-regulation of the nol3 (nucleolar protein 3) gene was
detected, which encodes the antiapoptotic protein ARC (apo-
ptosis repressor with a caspase recruitment domain) that in-
teracts with Caspase-2 and Caspase-8 and inhibits receptor-
mediated apoptosis. In addition, nol3 does not play a key role
in lpr neuroprotection, because we did not find an increase in
gene expression after lpr mice KA treatment.

A down-regulation was also detected in traf2 encoding
TRAF2 protein required for TNF-alpha-mediated activation
of MAPK8/JNK and NF-κB and in trp53bp2 that codifies a
pro-apoptotic member of a family of p53 binding proteins
[52]. All these data indicate that the lpr mice genotype does
not respond to a neuroprotective profile.

However, after KA administration, we found that some
genes implicated in the death pathway did not show signifi-
cant changes in expression in lprmice compared to WT, such

as fasl, decreasing the FasR/FasL interaction: caspase-3 and
caspase-8, the main caspases involved in the extrinsic apo-
ptotic pathway; caspase-4 involved in inflammatory process-
es; cidea that codifies a apoptotic protein activator and pim2
that codifies an enzyme serine/threonine kinase that has roles
in apoptosis and regulation of signal transduction cascades
[18, 25, 52–58]. This fact suggests that the expression of these
genes could be regulated by the expression of fas in the model
of KA-induced neurotoxicity, indicating that they play an
important role in the apoptotic cascade in the excitotoxic
process.

In agreement with Torres-Peraza et al. [59], we also ob-
served an increase of atf5 gene expression mediated by KA-
induced seizures; interestingly, a neuronal increase in atf5
expression has a neuroprotective role [59]. It has been pro-
posed that the neuroprotective effects of ATF5 are mediated
by the transcriptional induction of some proteins with a neu-
roprotective effect, such as Hsp27, Bcl2 and Mcl1 [58–61].
Likewise, in our study, we found a significant up-regulation in
mcl1, which was also up-regulated in other models of status
epilepticus, such as pilocarpine administration in rodents [62].

Furthermore, in our study, after KA treatment in lpr mice
compared to WT, we observed a non-significant increase in
atf5, possibly resulting from the decrease in apoptotic neuro-
nal death that occurs in lprKA-treated mice. At the same time,
other genes showed similar changes in gene expression pro-
files between the two genotypes, including bag3, mcl1, traf2
and bcl10. Interestingly, these genes encode proteins that
confer antiapoptotic neuroprotection, which could account

Fig. 5 Drawing of the 23 genes
identified by the Mouse
Apoptosis RT2 Profiler PCR
Array, PAMM-012A, with a
significative differential
expression (fold change≥±1.5
and P value 0.05) between KA
wild-type treated and untreated
mice, at 12 h. Fas/FasL
interaction induces caspase-8 and
caspase-3 activity. Caspase-3 is a
key mediator of apoptosis in
neuronal cells. This pathway is
blocked in the lpr mice fold
change ≥±1.5
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for the increase in expression in both WT and lpr mice after
KA treatment [62]. Therefore, our results suggest neuropro-
tective effects in lpr mice after KA administration based on
genes that are not activated in this model. Furthermore, these
genes could be considered as potential therapeutic drug targets
in neurodegenerative diseases. In this line, recent data have
demonstrated that a mouse with neuronal caspase-8 deficien-
cy was protected against neuronal injury caused by KA-
induced excitotoxicity [63]. The apoptotic prevention ob-
served in lpr mice after KA administration may be at least
partly attributable to a decrease in caspase-8, which is also
involved in caspase-3 activation. At the same time, the differ-
ential gene expression observed in some apoptosis-related
genes between untreated genotypes should be intensively
studied to determine their functional significance in the pro-
cess of neuroprotection observed in mice deficient in the Fas
receptor.

In conclusion, in the present work, we report evidence
of the key role played by the Fas/FasL-mediating apopto-
sis of neurons in contributing to the process of KA-
induced neurodegeneration and affecting neuronal function
and survival (Fig. 5). Interestingly, FasR-deficient mice
exhibit significantly reduced cell death, although inflam-
matory cells (microglia/macrophages) and the level of
GFAP when compared with the wild type were un-
changed. Thus, we propose that targeting the Fas receptor
could provide a compelling rationale for therapeutic
strategies against neurodegeneration but not against
neuroinflammation.
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