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Abstract Alzheimer’s disease (AD) is a complex and multi-
factorial neurodegenerative condition. The complex patholo-
gy of this disease includes oxidative stress, metal deposition,
formation of aggregates of amyloid and tau, enhanced im-
mune responses, and disturbances in cholinesterase. Drugs
targeted toward reduction of amyloidal load have been dis-
covered, but there is no effective pharmacological treatment
for combating the disease so far. Natural products have be-
come an important avenue for drug discovery research. Poly-
phenols are natural products that have been shown to be
effective in the modulation of the type of neurodegenerative
changes seen in AD, suggesting a possible therapeutic role.
The present review focuses on the chemistry of polyphenols
and their role in modulating amyloid precursor protein (APP)
processing. We also provide new hypotheses on how these
therapeutic molecules may modulate APP processing, prevent
Aβ aggregation, and favor disruption of preformed fibrils.
Finally, the role of polyphenols in modulating Alzheimer’s
pathology is discussed.
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Introduction

Neurodegenerative disease occurs as a result of changes in the
native conformation of proteins, followed by accumulation of
these misfolded amyloidogenic proteins in the central nervous
system, which in turn causes progressive neurological impair-
ment and neuronal dysfunction [1, 2]. This is the molecular
basis of the most devastating neurodegenerative diseases
known to date such as Alzheimer’s disease (AD), Parkinson’s
disease (PD), Huntington’s disease (HD), and amyotrophic
lateral sclerosis (ALS) [3–5]. AD is the most prevalent neu-
rodegenerative condition with approximately 29million aging
people suffering from this disease—a figure that is expected to
triple by 2050 [6, 7].

AD is a process in which, due to uncontrolled cleavage of
amyloid precursor protein (APP) by unknown inducing fac-
tors, toxic amyloid beta fragments are generated [8–10]. AD is
also characterized by amyloid fibril and phosphorylated tau
aggregates and tangles [11–16]. At present, there are two
major challenges in AD drug discovery: first, the non-
availability of an animal model that reflects all the patholog-
ical events seen in AD human brain and, second, the lack of
reliable biomarkers to detect and understand the progression
of AD [17–20]. Scientists are trying to develop drugs that can
simultaneously perform multiple tasks such as reducing in-
flammation, inhibiting β-secretase, activating α-secretase,
preventing of Aβ and tau aggregation, and driving the disin-
tegration of preformed fibrils [21, 22]. However, no perfect
drug or perfect treatment of AD has been discovered so far,
and many drugs have failed in recent clinical trials [17].
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Consequently, research has begun to focus on natural products
as alternatives in the treatment of AD [23]. For example, the
water extract of the leaves of Caesalpinia crista has been
shown to prevent Aβ aggregation from monomers and
disintegrated preformed Aβ fibril; Centella asiatica prevents
synuclein aggregation [24, 25]; Ginkgo biloba extract has
shown to inhibit the formation of oligomers [23, 26]; extracts
prepared from the medicinal herb Paeonia suffruticosa
inhibited Aβ fibril formation and also de-stabilized the
preformed amyloid fibril [26, 27]. The anti-amyloidogenic
properties observed are attributed to the polyphenolic com-
pounds present in the extracts. The present review focuses on
the chemistry of polyphenols and the mechanisms by which
polyphenols may induce changes in APP processing, reduc-
tion of Aβ load, prevention of Aβ aggregation, and disinte-
gration of preformed fibrils. Newmechanisms that explain the
binding pattern of polyphenols to Aβ and modulation of APP
processing by polyphenols are also proposed.

Chemistry of Polyphenol Compounds

Polyphenols (PPs) are natural compounds that are widespread
in fruits, vegetables, seeds, cereals, oils, etc. [28]. More than
8,000 polyphenolic compounds have been identified in foods.
These secondary metabolites provide protection to plants from
ultraviolet light, defense against herbivory, and also attract
pollinating insects [29, 30]. In the past, polyphenols have not
been considered to have any substantial nutritional value;
however, there is now an increased interest in exploring their
potential as antioxidants [31–33]. Moreover, it has been pro-
posed that polyphenolic compounds may play a role in the
prevention of multiple diseases, such as atherosclerosis, can-
cer, type II diabetes, and cardiovascular and neurodegenera-
tive diseases [34–37].

Polyphenols’ chemical structure includes two or more phe-
nol rings with hydroxyl groups in ortho or para positions,
which are necessary for redox reactions [38]. There is a direct
positive correlation between the antioxidant capacity and the
number of hydroxyl groups present in the polyphenols’ struc-
ture; i.e., an increase in the amount of hydroxyl groups in the
polyphenol chemical structure is associated with increases in
redox potential and antioxidant activity [39, 40].

Polyphenols are grouped into two main categories: flavo-
noids and non-flavonoid compounds (Fig. 1). Flavonoid com-
pounds are classified into two groups: anthoxanthins (flavo-
nol, flavanol, isoflavonoid, flavone, and flavanone) and an-
thocyanins, while non-flavonoid compounds include phenolic
acids, stilbenes, curcuminoids, lignans, and tannins [41–43].
Polyphenols are secondary metabolites produced by enzymat-
ic and non-enzymatic reactions. These reactions produce mul-
tiple secondary metabolites of biological importance (Fig. 2).
The homodimeric enzyme type III polyketide synthase (PKS)

produces a wide range of natural compounds by acetyl-
transferring, aromatization, cyclization, condensation, and de-
carboxylation [44]. PKS is involved in the biosynthesis of
polyphenolic compounds in plants by decarboxylative con-
densation of acetyl units deriving from malonyl-CoA and
thioester groups of cinnamoyl-CoA or p-coumaroyl-CoA
[45–47]. For example, curcuminoids are formed by biotrans-
formation catalyzed by curcuminoid synthase (CUS), while
stilbenes are formed by biotransformation by stilbene syn-
thase (STS). Chalcone synthase (CHS) catalyzes the forma-
tion of chalcone using p-coumaroyl-CoA and malonyl-CoA
[45–47].

Flavonoid Compounds

Flavonoids are the largest group of polyphenols, with more
than 5,000 flavonoid compounds widely distributed in plants
[48, 49]. Their basic structure consists of two aromatic rings
linked through a pyran ring (Fig. 3). Depending on the oxida-
tion state of the pyran ring, flavonoids can be classified as
flavones, flavonols, flavanols, isoflavonoids, flavanones, and
anthocyanins [50, 51]. Flavonoid hydroxylation occurs main-
ly at C5, C7, and C4′. These compounds are commonly found
glycosylated in plants, frequently as O-rhamnosyl and O-
glucoside flavonoids, and acylation and methoxylation are
less frequent [50, 52].

Flavones are characterized by the presence of a keto-pyrene
group. Hydroxylation is common at C5 [41]. Chrysin,
acacetin, and baicilein are examples of common flavones
found in citrus fruits, celery, and parsley [53, 54].

Flavonols possess a keto-hydroxypyrene group, which is
predominantly hydroxylated at C3, while C5 and C7 are fre-
quently hydroxylated [41]. Myricetin, quercetin, and fisetin
are examples of flavonols present in apples, beans, and onions
[53, 54].

Flavanols contain a pyran ring hydroxylated at C3.
Flavanols can be hydroxylated at the A-ring (C5, C7) and B-
ring (C3′, C4′, C5′) [41, 50]. Fisetinidol, catechin, and epicat-
echin are flavanols commonly found in berries, cocoa, tea, and
onions. Proanthocyanidins or condensed tannins are oligo-
mers of flavanols that are classified as A- and B-type
proanthocyanidins [52]. B-type proanthocyanidins can be
classified into two groups: procyanidins and prodelphinidins
(e.g., epicatechin, catechin, and gallic ester derivate) [55].

Isoflavonoids have a basic structure containing a substitut-
ed keto group on the pyran ring. Commonly, they are
substituted at C5, while C6 and C4′ are methoxylated or
hydroxylated. Isoflavonoids may contain a glucosyl or hy-
droxyl group at C7 or C8. Soybean is a rich source of these
polyphenolic compounds [41, 50]. Flavanones also usually
have a keto-pyran group usually substituted by hydroxyl
groups on ring A at C3 and C5. Occasionally, C7 is glycosyl-
ated or hydroxylated, while C4′ has a methoxy or hydroxy
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group. Eriodictyol, naringin, and hesperetin are flavanones
present in citrus fruits [53]. Anthocyanins are ubiquitous
water-soluble compounds that are responsible for red or blue

colors in flowers and fruits and whose color changes accord-
ing to the pH value [56, 57]. The molecular structure of
anthocyanins is based on the 2-phenylbenzopyrylium cation
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Fig. 1 Classification of polyphenols. Polyphenols are divided into two
main groups: flavonoids and non-flavonoids. Flavonoids are classified
into flavones, flavonols, flavanols, flavanones, isoflavonoids, and

anthocyanins. Non-flavonoids include phenolic acids, stilbenes, lignans,
curcuminoids, and tannins
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(also named flavylium) [58]. Glucose, rhamnose, arabinose,
and galactose are the most common sugars found forming
glycosides in anthocyanins [59]. The aglycones of anthocya-
nins are known as anthocyanidins, which do not exist in nature
and are unstable water compounds [60]. These structures

perform unique biological functions like antioxidant, anti-
inflammatory, and anti-aggregation activities [61].

Non-Flavonoids

Among the non-flavonoid polyphenols are phenolic acids,
stilbenes, curcuminoids, lignans and tannins, which are prov-
en neuroprotectors. Phenolic acids are the simplest polyphe-
nols found in nature. There are classified into two categories,
namely, hydroxybenzoic and hydroxycinnamic acid derivates
[41]. Hydroxybenzoic acid derivates (C6–C1) bear one aro-
matic ring attached to a carboxylic group. Gallic acid and
protocatechuic acid are hydroxybenzoic acid derivates that
are found in red fruits, black radish, and onions [50].
Hydroxycinnamic acid derivates (C6–C3), also known as
phenylpropanoids, are more common than hydroxybenzoic
acids. Caffeic, p-coumaric, and ferulic acids are
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hydroxycinnamic acid derivates present in berries, cherries,
kiwis, and apples. These polyphenolic compounds can be
glycosylated or can be found forming esters with quinic acid,
shikimic acid, or tartaric acid. Stilbenes are formed in nature
through the phenylpropanoid pathway. These compounds
have two aromatic rings connected through a double bond
(C6–C2–C6). The widely known polyphenolic compound res-
veratrol is a stilbene found in red grapes [50]. Curcuminoids
[1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-
dione] are phenolic compounds isolated from Curcuma longa
(curcumin) [50]. Lignans have two phenylpropane units (C6–
C3–C3–C6) bound together through β–β′ bonds. Examples
include secoisolariciresinol, which is found in sesame and
pumpkin seeds [50]. Tannins are complex polymers of high
molecular weight (>30,000 Da) classified as hydrolizable and
condensed tannins. Hydrolyzable tannins are heterogeneous
polymers of phenolic acids, which are classified as
gallotannins, composed of gallic acid and glycosides and
ellagiotannins, constituted by ellagic acid [41].

The role of different polyphenols in modulating APP pro-
cessing, as well as their anti-aggregation properties, is
discussed below.

New Hypothesis on Polyphenols Modulating APP
Pathway

APP is a large type-1 transmembrane multidomain protein that
performs multiple cellular activities. APP695, APP751, and
APP770 are the most frequently expressed isoforms in the brain
[8, 62]. APP is catabolized by secretases (α, β, and γ), forming
non-amyloidal and/or amyloid-derived products [61, 63]. In the
non-amyloidal pathway, α-secretase cleaves APP at Lys 687,
producing sAPPα and a C-terminal fragment of 83 aa residues
(CTFα), which are further cleaved by γ-secretase leading to the
formation of Aβ17–42 (also known as protein 3 (p3)), and APP
intracellular domain (AICD) [64]. In the amyloidal pathway, β-
secretase cleaves APP at Met 671, releasing a fragment of the
secreted amyloid precursor protein beta (sAPPβ), and a C-
terminal fragment of 99 aa residues (CTFβ). The latter is then
cleaved by the enzyme γ-secretase at Val 711 and Ala 713,
leading to the formation of AICD, Aβ40, and Aβ42 peptides
[65–67]. Beta-site amyloid precursor protein cleaving enzyme 1
(BACE1), also known as β-secretase, is involved in the produc-
tion of amyloid-β peptide [68]. β-Secretase has 501 aa residues,
including a signal peptide of 21 aa residues, a proprotein domain
(22–45 aa), a luminal domain (46–460 aa), a transmembrane
domain (17 aa), and a cytosolic carboxyl domain of 24 aa [68]. A
BACE1 homolog, named BACE2, cleaves APP into a short
peptide. However, BACE2 is present in small quantities in the
brain, and so, this enzyme is probably not crucial in the forma-
tion of Aβ peptide. γ-Secretase is a heterotetrameric membrane-
embedded aspartyl protease consisting of four subunits:

nicastrin, presenilin, anterior pharynx, and presenilin enhancer
2 [69–71]. When α- or β-secretase cannot cleave APP, γ-
secretase cleaves it, forming the soluble amyloid precursor pro-
tein γ (sAPPγ) and AICD [72]. Finding drugs that target APP
processing is complex and challenging due to the multiple
functional enzymes and substrates involved [17].

Polyphenols are powerful anti-amyloidogenic compounds
due to physicochemical features such as the presence of
aromatic rings, molecular planarity, capacity to form hydrogen
bonds, the presence of an internal double bond, and molecular
weights below 500 g/mol, which allow for potential inhibition
of APP pathways (Fig. 4) that, in turn, reduces amyloid load
[73–76].

Polyphenols as Activators of α-Secretase

Several members of the a disintegrin and metalloproteinase
(ADAM) family have been proposed as physiologically active
α-secretases, namely: ADAM9, ADAM10, and ADAM17. It
has been demonstrated that ADAM10 has the highest α-
secretase activity “in vivo” [77–79]. Moreover, it has been
suggested that the upregulation of ADAM10 could be a poten-
tial therapeutic target for the treatment of Alzheimer’s disease.
ADAM10 has a potential neuroprotective role because it pro-
motes the non-amyloidogenic pathway [80]. This enzyme is
activated by removal of the prodomain, which is probably
promoted by the action of proprotein convertases [81–84].
Phlorotannins and epigallocatechin-3-gallate (EGCG) have
been shown to increase the overexpression of sAPPα through
activation of α-secretase favoring neuroprotection [85–87].
Other polyphenols such as curcumin induce ADAM10 activa-
tion, whereas curcumin–amino acid conjugates favor the over-
expression of sAPPα. Other esters found in nature such as
phorbol 12,13-dibutyrate (PDBU) and phorbol 12-myristate
13-acetate (PMA) also increase the overexpression of sAPPα
by activation of α-secretase [88]. Based on this similarity, we
propose a hypothetical structure–activity relationship by which
a covalent interaction between the ester group of EGCG and
curcumin–amino acid conjugates and the enzyme prodomain
promote the release of the active site, allowing the cleavage of
APP to form sAPPα fragments (Fig. 5a) [89, 90].

Polyphenols as Inhibitors of β-Secretase

The amino acids Asp32, Asp228, and two water molecules, all
located in the catalytic binding site of BACE1, are essential for
catalytic activity [91]. One of these water molecules participates
in enzymatic proteolysis, while the second water molecule is
key for stabilizing a tetrahedral intermediate that is essential for
protein cleavage [92]. Computational modeling studies indicate
that Asp32 is protonated, whereas Asp228 is not [91]. Proteo-
lytic BACE 1 activity is initiated through a nucleophilic attack
by a water molecule on the carbonyl group of the peptide bond
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[93]. Inhibition of BACE1 represents a potential therapeutic
target in AD treatment as it decreases Aβ load. Several peptides
are known to inhibit beta secretase, yet small molecules, namely
isophthalamides, have shown higher inhibitory effect upon
BACE1 [94]. Myricetin is a potential BACE1 inhibitor [95].
We propose a mechanism that explains the role of polyphenol-
induced inhibition through the displacement of a water mole-
cule, which then participates in a hydrogen bonding network
with Asp32 and Asp228 that is essential for BACE1 proteolytic
activity. It is very probable that flavonols having a myricetin-
like chemical structure cause inhibition of BACE1 following
this same mechanism (Fig. 5b) [96].

Polyphenols as Inhibitors of γ-Secretase

Presenilin I (PS1) protein is a member of the aspartic protease
family implicated in the regulation of intramembrane proteol-
ysis [66, 70]. PS1 has been identified as the catalytic subunit
of the γ-secretase complex. This protein is composed of nine
transmembrane domains, where domains 6 and 7 form the

catalytic site. Mutations in PS1 have been linked to familial
Alzheimer’s disease (FAD). Therefore, PS1 is a potential
target in the design of drugs against AD [71, 97]. Two aspartyl
groups (Asp257 and Asp385) opposed to each other in the
active site and are required for the catalytic activity of PS1.
One of these aspartates is deprotonated and acts as a base,
activating a water molecule present in the catalytic site. The
other aspartate donates a proton to the carbonyl group of the
substrate, following an acid–base mechanism [97]. We pro-
pose that polyphenols that can occupy the active site of γ-
secretase (thus displacing the water molecule required by the
enzyme for catalysis) would disable the enzyme and reduce
Aβ formation [97] (Fig. 5c).

Structure–Activity Relationship of Polyphenols on Their
Aβ Anti-Aggregation Activity

Aβ42 aggregation is a hallmark of AD pathology; therefore,
inhibition of Aβ42 aggregation is a key factor in drug discovery.

Fig. 4 A hypothesis on the role of polyphenols in modulating the
amyloid precursor protein processing: α-, β-, and γ-secretases are in-
volved in amyloid precursor protein (APP) processing. (i) Amyloidal
pathway: β-secretase cleaves APP to produce soluble amyloid precursor
protein β (sAPPβ) and a C-terminal 99 fragment, which is then cleaved
by γ-secretase to generate Aβ peptides. Amyloid beta fibrils are formed

by aggregation of these amyloid peptides. (ii) Non-amyloidal pathway:
tα-secretase cleaves APP to form the soluble amyloid precursor proteinα
(sAPPα) and a C83 fragment. The γ-secretase cleaves this fragment to
produce non-amyloidogenic Aβ17–43 peptides. Polyphenols are potential
activators of α-secretase and inhibitors of β- and γ-secretase, leading to
reduction of amyloid fibril deposition in the brain
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Aβ42 aggregation biology is a multifold step, where monomers
form oligomers, protofibrils, andmatured fibrils. Drug discovery
efforts are focused on preventing the formation of either oligo-
mers or fibrils. There are also studies focusing on disintegration
of preformed fibrils [23–27]. However, there are limited studies
exploring how drugs bind to Aβ42 and prevent fibril formation
[23–27, 98–102]. The primary sequence of the Aβ42 peptide is
H 2 N - D A E F R H D S G Y E V H H Q K L -

VFFAEDVGSNKGAIIGLMVGGVVIA-CO2H [103–105].
More than 50 % of the amino acids in this peptide are hydro-
phobic residues [106]. It has been suggested that the hydropho-
bic core KLVFF is essential for fibrillogenesis [107–109]. Aβ
peptide may be considered as a molecule with two faces (upper
and lower), which allow it to self-assemble and to form oligo-
mers and matured fibrils [98–101]. Wang et al. have identified
significant binding sites on the Aβ42 peptide structure: F4-H6,
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Fig. 5 Binding mechanisms involved in the activation or inhibition of
secretases by polyphenols. a Curcuminoid esters activate α-secretase by
effectively releasing the prodomain. b Polyphenol occupies the position

of a water molecule essential for β-secretase proteolytic activity, leading
to enzyme inhibition. c Polyphenols might inhibit γ-secretase by
displacing the water molecule between Asp 257 and Asp 385
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Y10, F20, N27, I31-M35, M35, and M35 to V39 for molecules
like tanshinones [102]. Based on these data, we propose a model
that identifies proposed binding sites for polyphenols on amyloid
beta peptides (Fig. 6) [102].

Aβ fibrillization is a multistep process, which begins with
the formation of Aβ oligomers constituted by 24 monomers
[110–113]. The toxic spherical oligomers are considered an
intermediate into fibril formation and are 3–10 nm in size. Aβ
fibrils are characterized by highly stable crossed β-sheet
structures at 4.75 and 9.8–10.6 Å [114–117]. Amyloid fibril
formation depends on the increase in the concentration of
Aβ42 peptide, low pH, the time of incubation, and the length
of the carboxyl chain [118]. Studies have indicated that hy-
drophobic forces, aromatic stacking, and electrostatic interac-
tions stabilize the Aβ structure [119, 120]. The main physi-
cochemical properties of molecules with the potential to in-
hibit amyloidal fibril formation might be due to the presence
of aromatic rings in their chemical structure and the ability to

form non-covalent interactions with amino acids residues of
the Aβ peptide sequence [73, 74]. Moreover, the planarity of
the inhibitor is essential for increasing surface contact with
Aβ peptides [75]. Most polyphenols have more than two
aromatic rings essential for π–π stacking interactions with
hydrophobic amino acid residues of Aβ (Tyr, Phe) and at least
three hydroxyl groups that form hydrogen bonds with hydro-
philic amino acid residues of Aβ (His6, Ser8, Tyr10, His14,
Lys16) [121–123]. The resonance structure of polyphenols
provides enough planarity to penetrate the Aβ fibril hydro-
phobic grove, thus disturbing the fibril structure [124].

Polyphenolic compounds such as resveratrol, curcumin, and
myricetin have demonstrated anti-Aβ aggregation properties
[111, 125–130]. The differences observed in the anti-
aggregation activity among polyphenols are related to their
chemical structure. Generally, non-flavonoids (tannins>stil-
benes>curcuminoids) show higher anti-amylodogenic activity
than flavonoids (flavonols>anthocyanins> flavanol>

Fig. 6 Proposed binding sites of polyphenols on amyloid beta peptides.
Seven binding sites have been proposed in the amyloid beta peptide
(highlighted amino acids residues). The three first sites are characterized

by having aromatic rings, which may be involved in molecular recogni-
tion and self-assembly. The sites 4 to 7 form a hydrophobic groove region
in the amyloid fibril

Fig. 7 Hypothetical model to
understand the anti-aggregation
activity of polyphenols.
Polyphenols have demonstrated
anti-aggregation activity. Non-
flavonoids showed higher anti-
aggregation activity than
flavonoids. We propose a
relationship between polyphenol
structure and anti-aggregation
activity, in which polyphenols
with more aromatic rings,
planarity, and hydroxyl and keto
groups might have the largest
inhibition activity
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isoflavonoid) [131, 132]. Nevertheless, no clear mechanisms
have been proposed so far to explain how polyphenols prevent
Aβ aggregation. Therefore, we suggest hypothetical structure–
activity relationships (Fig. 7) based on structural comparisons of
polyphenols to explain how polyphenolic compounds prevent
Aβ aggregation [133, 134].

Isoflavonoids generally show lower anti-aggregation activ-
ity than other flavonoids. Structure–activity relationships of
isoflavonoids and other flavonoids suggest that the aromatic B
ring at C2 is essential for decreasing amyloid fibril formation
due to favorable non-covalent interactions between polyphe-
nols and amino acids of the Aβ peptide sequence [135].

Flavanols possess more anti-amyloidogenic activity than
isoflavonoids because they contain more hydroxyl groups
able to form hydrogen bonds with Aβ peptides. Nevertheless,
flavanols have two chiral centers (C2, C3) that may diminish
molecular planarity [136]. Furthermore, these compounds
lack the presence of a keto group at C4 in the C ring, leading

to less non-covalent interactions with Aβ peptides. Both
physicochemical features have negative effects on the inhibi-
tion of fibril formation [132, 137].

Anthocyanins are characterized by having a pseudo aromatic
ring C that increases their structural planarity and promotes
amyloid fibril disruption due to effective incorporation of antho-
cyanins inside the amyloid beta fibril groove. Curcuminoids are
more hydrophobic than flavonoids. This physicochemical prop-
erty might enhance their affinity for binding with the hydropho-
bic core of Aβ fibril, resulting in an increased anti-amyloidal
activity [132]. Stilbenes have more hydroxyl groups in their
chemical structure than curcuminoids, which may explain the
strong anti-aggregation activity observed for these polyphenols
[137, 138]. Tannins are complex polyphenols having the highest
number of hydroxyl groups among polyphenolic compounds
and therefore the strongest anti-aggregation activity [139–142].
Nevertheless, their large molecular weight reduces their suitabil-
ity as a therapeutic drug [76].

Fig. 8 Proposed mechanisms for explaining the disintegration of
preformed amyloid beta fibril by polyphenols. a Amyloid fibrils are
stabilized through hydrophobic effects established among Aβ peptides.
b Polyphenols inside the amyloid fibril groove might establish aromatic

and hydrogen bond interactions with amino acids residues located within
this molecular region, inducing fibril disaggregation. c Polyphenol com-
pounds may disrupt preformed amyloid fibril structure by reducing the
hydrophobic effect
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The possible mechanisms used by polyphenols to destabi-
lize preformed fibrils remain unclear [143]. When polyphe-
nols get inside the hydrophobic groove of Aβ fibril, their
aromatic rings disrupt the organization of the fibril due to
attraction and repulsion between the polyphenol and the Aβ
peptide [144, 145]. We suggest that these interactions may
lead to conformational changes that might favor widening of
the amyloid fibril groove through reduction of the hydropho-
bic effect (a major driving force that stabilizes the fibril
structure), leading to a disaggregation of amyloid fibril
(Fig. 8) [124].

Conclusion

The understanding of polyphenol bioavailability and health
benefits is still not so clear. However, population studies on
polyphenols and memory have shown that polyphenols con-
tribute to a healthy brain. There have been studies showing
that some polyphenols can cross the blood–brain barrier and
confer neuroprotection. A lot of information is available on
the influence of polyphenols on the differential expressions of
genes involved in inflammation, apoptosis, and tumor necro-
sis. The current challenge in polyphenol research is related to
their bioavailability at pharmacological concentrations. Some
polyphenols appear to have pharmacological capabilities
against cancers, metabolic disorders, and memory, but we still
need to understand the delivery mechanisms of these com-
pounds. The major challenge is to bring blood polyphenol
concentrations up to the levels required for pharmacological
action [146].

It is a challenge to cover all of the possible molecular
mechanisms utilized by any drug in the treatment of AD, as
this disease has multiple pathological events. Polyphenols
have attracted research interest recently due to their multiple
effects such as inhibition of Aβ, metal chelation, and preven-
tion of mitochondrial dysfunction and apoptosis, as well as
their antioxidant and anti-inflammatory properties. Although
there are no clear mechanisms described so far that fully
explain the role of polyphenols in the treatment of AD, we
have presented some well-founded hypotheses that associate
the physicochemical properties of polyphenols with their pos-
sible role in α-secretase activation, β- and γ-secretase inhibi-
tion, disaggregation of Aβ fibrils, and anti-Aβ aggregation.
To the best of our knowledge, this review thus provides some
novel avenues for future research.
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