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Abstract Various types of lipids and their metabolic products
associated with the biological membrane play a crucial role in
signal transduction, modulation, and activation of receptors
and as precursors of bioactive lipid mediators. Dysfunction in
the lipid homeostasis in the brain could be a risk factor for the
many types of neurodegenerative disorders, including
Alzheimer’s disease, Huntington’s disease, Parkinson’s dis-
ease, and amyotrophic lateral sclerosis. These neurodegener-
ative disorders are marked by extensive neuronal apoptosis,
gliosis, and alteration in the differentiation, proliferation, and
development of neurons. Sphingomyelin, a constituent of
plasma membrane, as well as its primary metabolite ceramide
acts as a potential lipid second messenger molecule linked
with the modulation of various cellular signaling pathways.
Excessive production of reactive oxygen species associated
with enhanced oxidative stress has been implicated with these
molecules and involved in the regulation of a variety of
different neurodegenerative and neuroinflammatory disorders.
Studies have shown that alterations in the levels of plasma
lipid/cholesterol concentration may result to neurodegenera-
tive diseases. Alteration in the levels of inflammatory cyto-
kines and mediators in the brain has also been found to be
implicated in the pathophysiology of neurodegenerative dis-
eases. Although several mechanisms involved in neuronal
apoptosis have been described, the molecular mechanisms
underlying the correlation between lipid metabolism and the

neurological deficits are not clearly understood. In the present
review, an attempt has been made to provide detailed infor-
mation about the association of lipids in neurodegeneration
especially in Alzheimer’s disease.
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Introduction

Lipids are considered as a group of naturally occurring hydro-
phobic or amphiphilic small molecules including fats, waxes,
sterols, monoglycerides, diglycerides, triglycerides, phospho-
lipids, and others [1]. Biosynthesis of lipid started with the
conversion of carbohydrate into triglycerides through the pro-
cess of lipogenesis in the endoplasmic reticulum. These syn-
thesis processes further give rise to steroids including choles-
terol and ergosterol [2, 3]. Fatty acids are considered as
important components of biological lipids which are linked
with the function of making building blocks of more structur-
ally complex lipids. They also participate in the maintenance
of the structure and function of cell membranes. Lipids are
involved in a number of biological functions including energy
storage, signaling, and acting as structural components of cell
membranes [4, 5]. They can be divided into several categories
depending on their origin from biological molecules like fatty
acids, glycerolipids, glycerophospholipids, sphingolipids, ste-
rol lipids, and prenol lipids [4]. Glycerolipids comprise the
bulk of storage fat in animal tissues and function as energy
storage. These lipids are mainly composed of mono-, di-, and
tri-substituted glycerols, the most well known being the fatty
acid triesters of glycerol, called triglycerides [6]. The initial
steps involved in the metabolization of fats are the hydrolysis
of the ester bonds of triglycerides and the release of glycerol
and fatty acids from adipose tissue. A phospholipid is
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composed of two fatty acids, a glycerol unit, a phosphate
group, and a polar molecule. It constitutes a major component
of cell membranes and forms a semipermeable lipid bilayer
that allows only certain molecules to diffuse across the mem-
brane to enter or exit the cell [7].

The glycerophospholipids are usually referred as phospho-
lipids and constitute the main structural component of biolog-
ical membranes, like the plasma membrane, intracellular
membranes of organelles, and neural cell membranes [8]. As
glycerophospholipids are involved in the generation of second
messengers including arachidonic acid, eicosanoids, platelet-
activating factor, and diacylglycerol, they are considered as a
reservoir for second messengers. They are also involved in
metabolism, cell signaling, signal transduction, apoptosis, and
modulation of activities of transporters and membrane-bound
enzymes [8, 9]. Past studies reported that a slight alteration in
the composition of glycerophospholipids in the brain may lead
to various functional neurological disorders [8]. Likewise,
glycerophospholipids, sphingomyelins, and sterol lipids in-
cluding cholesterol and its derivatives are also an important
component of membrane lipids that imparts various biological
roles including hormone secretion and signal transduction
[10].

Sphingolipids are the complicated family of compounds
that derived from the alipathic amino alcohol sphingosine.
The sphingosine backbone is O-linked to amino acid serine
and a long-chain fatty acyl CoA and then converted into
ceramides, phosphosphingolipids, glycosphingolipids, and
other compounds [11]. In the central nervous system, the
composition of sphingolipids is quite high and involved in
the structural maintenance. Additionally, their metabolites
function as second messengers to modulate a wide variety of
signaling cascade [11, 12]. Ceramides, a precursor to
sphingomyelin, are the simplest sphingolipids that engaged
in the formation of lipid rafts essential in the regulation of
sphingomyelin pathway of signal transduction, proliferation,
differentiation, programmed cell death, and senescence. They
also act as the regulator of synaptic function and have been
implicated in synapse formation, transmitter release, and plas-
ticity [11, 13, 14]. The occurrence of signaling cascade at
cellular level has been found to be linked with lipid signaling
[15, 16]. It could occur with the activation of G protein-
coupled or nuclear receptors, and also some specific lipids
act as signalingmolecules and cellular messengers [17]. These
signaling molecules include sphingosine-1-phosphate, which
is involved in the regulation of signal transmission, cellular
growth, and apoptosis [18, 19]. Besides, other signaling mol-
ecules including diacylglycerol and the phosphatidylinositol
phosphates are involved in the calcium-mediated activation of
protein kinase C, and prostaglandins are involved in inflam-
mation and immunity [20, 21].

There are growing evidences that cholesterol is of particu-
lar importance in the development and progression of the

disease. Studies have reported that elevated cholesterol levels
increase Aβ in cellular and animal models which further
associated with the increased risk of Alzheimer’s disease
[12, 22]. Neurodegenerative disorders and other CNS diseases
have immense clinical importance, and in the present scenario,
there is no effective cure for these diseases and disorders,
resulting in an increase economic burden on the society and
negative impact on the quality of life. The crucial role of lipids
in tissue physiology and cell signaling is demonstrated in
many neurological disorders that are associated with
deregulated lipid metabolism [13, 23] (Fig. 1). The role of
lipids in neurodegenerative diseases and disorders including
Alzheimer’s disease, Huntington’s disease, Parkinson’s dis-
ease, amyotrophic lateral sclerosis, multiple sclerosis, and
other CNS injuries has been suggested by a number of inves-
tigators, but the exact molecular mechanism involved behind
this is still unclear. In the present review, we focused on how
lipid metabolism is involved in amyloid processing, β-
amyloid segregation, and impairment of synaptic transmis-
sion, leading to the pathophysiology of Alzheimer’s disease.

Lipid Rafts and Neurodegeneration

Lipid rafts are plasma membrane microdomains loaded with
cholesterol, sphingolipids, sphingomyelin, gangliosides, and
glycosylphosphatidylinositol-anchored proteins, which pro-
vide a particularly ordered lipid environment and make them
resistant to non-ionic detergent extraction using Triton X-100
[12, 24, 25]. It contains around 50 % elevated sphingomyelin
and decreased phosphatidylcholine levels as compared to the
plasma membrane [26]. In these rafts, cholesterol acts as a
dynamic glue that cleaves the raft together and serves as a
molecular spacer [27]. Lipids rafts include receptors, chan-
nels, recognition molecules, coupling factors, and enzymes
which are involved in signal transduction and intracellular
trafficking of proteins, lipids, secretory and endocytic path-
ways, and inflammation and in cell surface proteolysis [28,
29]. In neurons, lipid rafts act as platforms for the signal
transduction initiated by several classes of neurotrophic fac-
tors and hence are implicated in various physiological and
pathological processes [30–32]. Studies also reported that
lipid rafts are essential for neuronal cell adhesion, axonal
guidance, and synapse communication [33]. Thus, in brain
lipid, rafts play a very crucial role as these are structurally
unique components of plasma membranes which are involved
in the neural development and function and certain neurode-
generative diseases [34–36].

In case of neurological injury such as ischemia and early
reperfusion, ceramide has been found to be overexpressed as a
result of sphingomyelin metabolism. The overexpression of
ceramide leads to the activation of mitochondria-dependent
pathways including inhibition of anti-apoptotic proteins and
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electron transport chain, increase generation of reactive oxy-
gen species (ROS), release of cytochrome c, and activation of
caspase-3 and caspase-9, bax, SAPK, and cJNK that are
associated with neuronal apoptosis (Fig. 2). In clinical and

experimental studies, increased levels of ceramide have also
been reported in Alzheimer’s disease [11, 12, 37]. Tau
overphosphorylation and β-amyloid peptide accumulation
have been found to be associated with the increased levels

Fig. 1 Structure of some common lipids (fatty acids, cholesterol, triglyceride, phospholipids) and their components (sphingomyelin, ceramide,
sphingosine, sphingosine-1-phosphate) commonly involved in the normal cell physiology and pathophysiology of neurodegeneration
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of ceramide in the brain. Further, its high concentration in the
blood may also be associated with the biochemical changes in
the brain in the preclinical stage [38].

The deregulation of lipid metabolism affects the tissue
physiology and cell signaling which leads to the various
neurological disorders, including bipolar disorders,

Fig. 2 Lipid raft-mediated signaling of sphingomyelin and ceramide
allied with normal functions and apoptosis. Sphingomyelin and its sec-
ondary messengers are implicated in the regulation of cell survival and
neural apoptosis. Amyloid fibril aggregation alters the ceramide concen-
tration, resulting in the mitochondrial dysfunctions, enhanced generation
of reactive oxygen species (ROS), and activation of cytochrome c.
Increased level of ceramide as a result of sphingomyelin hydrolysis is
also associated with the activation of proapoptotic factors and generation

of ROS that further activate SAPK kinase, Jun N-terminal kinases
(JNKs 1/2), and caspase cascade, including the activation of caspase-3
and caspase-9. The outflow signaling through the JNKs and caspases
ultimately triggers the onset of neuronal apoptosis, while the ceramide-
induced activation of CAPK also activates MAPK kinase and extracel-
lular signal-regulated kinases (ERKs 1/2). MAPK cascade strongly stim-
ulates ERK but weakly inhibits JNK and therefore is involved in cell
growth, differentiation, and the protective mechanism [49, 51]
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schizophrenia, and neurodegenerative diseases like
Alzheimer’s, Parkinson’s, and Huntington’s diseases [39].

Lipid Integration in Alzheimer’s Disease

Alzheimer’s disease is a progressive neurodegenerative disor-
der associated with loss of neurons. It is characterized by the
presence of excessive amounts of neuritic plaques containing
amyloid β protein and abnormal tau protein filaments in the
form of neurofibrillary tangles [40–42]. Amyloid β protein
has been associated to induce oxidative stress as a result of
increased levels of lipid peroxidation products including
hydroxynonenal (HNE), which can react further with various
amino acids of associated proteins and alter their structure and
function in the brain. The disease rapidly progresses to com-
plete loss of mental powers, particularly loss of memory and
normal emotional behavior. Dementia is a characteristic fea-
ture of Alzheimer’s disease associated with loss of intellectual
ability, leading to disruption of multiple higher cortical func-
tions including memory, reasoning, orientation, learning ca-
pacity, and emotional stability [43, 44]. Degeneration of cho-
linergic neurons, particularly in the basal forebrain, has been
found to be associated with loss of the neurotransmitter ace-
tylcholine [45, 46]. Depletion of acetylcholine level in
Alzheimer’s disease patients appears to be a critical element
in producing dementia [47]. In addition, direct association of
lipid with Alzheimer’s disease and the role of inflammatory
mediators in the production and accumulation of β-amyloid
protein, ROS, and lipid peroxide have also been reported [48,
49]. A lot of evidence on roles of lipids in Alzheimer’s disease
suggest that the alterations in the composition of brain lipid
profile including phospholipid, sphingomyelin, ceramide, and
ganglioside could be a causative factor in neuropathological or
neurological disorders [11, 12, 50]. Lipids are involved in a
variety of signaling events and functions; alterations in the
levels of their composition in brain cells could modulate the
signaling cascade and ultimately affect the neural function
which further leads to Alzheimer’s disease [23, 50, 51]. Lukiw
and Bazan [52] reported the role of docosahexaenoic acid
(DHA), a dietary essential polyunsaturated fatty acid
(PUFA) enriched in fish oil, in maintaining the cell structure
and function in the nervous system. They further suggested
that the decline in the level of DHA leads to the oxidative
stress, apoptosis, and cognitive and neuronal dysfunctions in
Alzheimer’s disease. Studies also reported that neuroprotec-
tion D1 (NPD1), the first identified DHA-derived mediator,
significantly allied with cell survival and repair through the
activation of anti-apoptotic and anti-inflammatory signaling
[53].

The first reports of alterations in glycolipids including
levels of gangliosides, cerebrosides, and cerebroside sulfatide
in Alzheimer’s disease came out in the late 1960s [50, 54].

Further, in the 1990s, brain phospholipid content was also
reported to be decreased in Alzheimer’s disease [55]. De-
creased phospholipid species in specific brain regions includ-
ing the hippocampus and parahippocampal gyrus of
Alzheimer’s disease brains were suggested due to increases
in phospholipid turnover as evidenced by increase in the
phospholipid catabolite glycerophosphocholine [55]. Bassett
and Montine [56] reported that apolipoprotein E present in the
central nervous system is principally involved in the regula-
tion of lipid transport and its metabolism through known
receptor-mediated processes; hence, it is more vulnerable to
oxidation than other lipoproteins which may contribute to
neurodegeneration in the Alzheimer’s disease brain. A
number of other studies consistently reported the decreased
levels of sphingomyelins and increased levels of ceramides
in Alzheimer’s disease brains as a result of sphingomyelin
hydrolysis [37, 57, 58].

Oxidative Stress Markers and Alzheimer’s Disease

Oxidative stress refers to the impairment in the antioxidant
defense mechanisms as a result of excessive production of free
radicals including superoxide radical, hydrogen peroxide, hy-
droxyl radical, nitric oxide, and peroxynitrite [59]. These are
associated with the increased levels of lipid peroxidation, DNA,
and protein oxidation products in brains and lead to neurode-
generative diseases including Alzheimer’s disease [60–62]. The
presence of a high content of PUFA in the brain makes it a
highly oxidative organ consuming 20 % oxygen of the body
instead of only 2 % of the total body weight; therefore, lipid
peroxidation is thought to be amajor cause of oxidative damage
in Alzheimer’s disease [23, 55, 63]. Brain cells are more
vulnerable toward oxidative damage than any other cells due
to their low activity of antioxidant enzymes and high number of
mitochondria. Mitochondrial dysfunction and oxidative metab-
olism play an important role in the pathogenesis of Alzheimer’s
disease and other neurodegenerative diseases. Transition metals
have been found to be accumulated in the brain and hence
increase the susceptibility to free radical generations through
the process of Fenton’s reaction. PUFA is involved in the
modulation of iron transporters that facilitate iron uptake and
thus induce neuronal apoptosis [64, 65]. The increased levels of
ROS cause oxidative damage to nucleic acids, proteins, carbo-
hydrates, and lipids and are linked with the accumulation of
oxidized products. These oxidized products such as lipid per-
oxides give rise to reactive α- and β-unsaturated aldehydes
such as malondialdehyde, 4-HNE, and acrolein [60, 66]. High
levels of HNE, an oxidative product formed as a result of
enhanced lipid peroxidation, have been found in the
Alzheimer’s brain tissue [67–69]. DHA, another primary lipid
peroxidation target in oxidative damage, has been found to
oxidize non-enzymatically into various neuroprostanes and
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may be involved in the generation of ROS and enhanced
oxidative stress linked with cognitive decline and neuronal
dysfunction [52]. The presence of acrolein, an α- and β-
unsaturated aldehydic product of lipid peroxidation in neurofi-
brillary tangles in the Alzheimer’s disease brain, has also been
reported [60]. Increased levels of reactive oxygen and nitrogen
species as a result of oxidative events in Alzheimer’s brain may
initiate the apoptotic cascade that significantly leads to cellular
dysfunction and ultimately death [70, 71]. Autopsied brain
from Alzheimer’s disease patients indicated an increase in the
level of protein oxidation, lipid peroxidation, and its toxic
metabolite HNE and a decrease in the levels of PUFA. The
levels of antioxidant enzymes including glutamine synthetase,
creatinine kinase, and glutathione peroxidase were also found
to be decreased in the brain in Alzheimer’s disease [61]. The
role of Aβ in the production of free radicals and in the patho-
physiology of Alzheimer’s disease has also been demonstrated
by various investigators [41, 45].

Immunohistochemical and histopathological studies
showed that the presence of oxidative stress products in neu-
rofibrillary tangles and senile plaques as a result of oxidative
stress is the important hallmark of Alzheimer’s disease
[71–73]. In addition to this, neuroinflammation was also
found to be implicated in the pathogenesis of Alzheimer’s
disease. These inflammatory cytokines are activated as a result
of enhanced oxidative stress and linked with neurodegenera-
tion in Alzheimer’s diseases [39, 74]. Recently, Bazan et al.
[75] showed the protective role of DHA and its mediator
NPD1 in the neuroinflammation and stroke-mediated brain
damage through the discerning regulation of apoptotic and
anti-apoptotic proteins. They further reported the protective
role of NPD1 in Alzheimer’s disease via the downregulation
of amyloidogenic processing of the amyloid-β precursor pro-
tein and expression of pro-inflammatory genes.

Environmental factors including exposure to heavy metals
and pesticides have also been found to be linkedwith enhanced
vulnerability to the incidences of Alzheimer’s disease in
humans [76–79]. Studies demonstrated that exposure to arse-
nic activates the JNK3 and p38 MAPK associated with the
formation of neurotic plaques and neurofibrillary tangles [80,
81], which may cause apoptosis in cortical neurons and con-
tribute to Alzheimer’s disease [82, 83]. We have also reported
that arsenic accumulates in the brain regions and enhanced the
levels of oxidative stress products and inhibition of antioxidant
defense system in rats. Further, this enhanced oxidative stress
leads to the death of neuronal cells in the hippocampal area and
caused cholinergic dysfunctions [84]. In an another study,
enhanced oxidative stress as a measure of lipid peroxidation
following exposure to lambda-cyhalothrin, a type II synthetic
pyrethroid, and monocrotophos, an organophosphate pesticide
in rats, and its association with cholinergic dysfunctions have
also been reported [85, 86]. Besides toxicants, exposure to high
levels of man-made electromagnetic radiations and their

adverse health effects has become a matter of concern for the
health scientists. Some effects linked to electromagnetic pol-
lution are decreased testosterone levels in men, miscarriages in
pregnant women, birth defects in babies, Alzheimer’s disease,
cataracts, depression and suicides, chronic fatigue, and others
[87]. In spite of that, a few studies have suggested that radiation
emitted by a cell phone may interact with brain activity and
behavior [88–90], gene expression and DNA, cell growth,
proliferation and tumors [91, 92], hormones, proteins, and
enzymes [93–95]. Recently, Kesari et al. [96] reported that
exposure to electromagnetic radiation could be a risk factor
childhood leukemia, brain tumors, genotoxic effects, immune
system deregulation, allergic and inflammatory responses, in-
fertility, cardiovascular and neurological effects, and neurode-
generative diseases. They further suggested that these delete-
rious health effects are associated with increased ROS, which
may enhance the effect of microwave radiations and cause
neurodegeneration.

Conclusion

The lack of neuronal repair in the central nervous system is the
main basis of the severity of injury, functional deficits, and
associated neurodegenerative disorders. The alterations in
lipid metabolism and lipid rafts due to the enhanced oxidative
stress and impaired enzymatic cascade are also associated
with these diseases. These alterations result in the transforma-
tion of membrane flexibility and permeability which allow the
accumulation of lipid peroxides and compromised energy
metabolism that linked with the neurodegeneration. Deposi-
tion of amyloid plaques as a result of altered lipid rafts and
generation of ROS to cause lipid peroxidation and damage to
the biological membrane is found in Alzheimer’s disease. The
modulation in lipid raft synthesis and inhibitors against myelin
inhibitory protein could be the constructive tool for neuronal
loss therapy and may open new avenues for the treatment of
neurological disorders and diseases. The present review has
mainly focused on the involvement of lipids, their metabolites,
and oxidative stress in the pathogenesis of neurodegeneration
especially on Alzheimer’s disease. As the production of am-
yloid precursor protein mainly regulated by the lipid rafts and
its interaction with other molecules affects the signaling cas-
cade, the review examined the mechanism underlying them.
Further studies are required on lipid rafts to open new vistas in
the regulation of signaling pathways and myelin inhibitory
protein for the treatment of neurodegenerative diseases.
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