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Abstract The senile plaque is a pathologic hallmark of
Alzheimer's disease (AD). Amyloid-β peptide (Aβ), the main
constituent of senile plaques, is neurotoxic especially in its
oligomeric form. Aβ is derived from the sequential cleavage
of amyloid precursor protein (APP) by β- and γ-secretases in
the amyloidogenic pathway. Alternatively, APP can be
cleaved by α-secretases within the Aβ domain to produce
neurotrophic and neuroprotective α-secretase-cleaved soluble
APP (sAPPα) in the nonamyloidogenic pathway. Since APP
and α-, β-, and γ-secretases are membrane proteins, APP
processing should be highly dependent on the membrane
composition and the biophysical properties of cellular mem-
brane. In this review, we discuss the role of the biophysical
properties of cellular membrane in APP processing, especially
the effects of phospholipases A2 (PLA2s), fatty acids, choles-
terol, and Aβ on membrane fluidity in relation to their effects
on APP processing.
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Introduction

In Alzheimer's disease (AD) brains, there is an increased
deposition of amyloid plaques which are mainly composed
of neurotoxic amyloid-β peptide (Aβ). Recent research indi-
cates that the soluble oligomeric form of Aβ significantly
contributes to the pathogenesis of the disease [1]. In the
amyloidogenic pathway, Aβ is derived from a proteolytic
process of amyloid precursor protein (APP), in which APP
is cleaved sequentially by β- and γ-secretases [2, 3]. Alterna-
tively, APP can be cleaved by α-secretases between amino
acids 16 and 17 within the Aβ domain and produce neuro-
trophic and neuroprotective soluble APP (α-secretase-cleaved
soluble APP, sAPPα) in the nonamyloidogenic pathway [4].
These two pathways compete with each other, and enhancing
APP processing by α-secretases has been suggested as a
potential therapeutic strategy for AD [5]. Since APP and α-,
β-, and γ-secretases are membrane proteins, APP processing
should be affected by the local membrane environment. For
example, γ-secretase activity can be modulated by membrane
thickness in a cell-free system [6]. The cleavage of APP by β-
secretase, the primary step to produce Aβ [7, 8], occurs
preferentially in lipid rafts, which are highly ordered mem-
brane microdomains rich in cholesterol, sphingolipids, and
saturated phospholipids [9–14]. On the other hand, the activity
of α-secretases is favorable in nonraft domains [15].

Phospholipases A2 (PLA2s) are responsible for the main-
tenance of phospholipid homeostasis in cellular membranes
and implicated in AD and APP processing [16–18]. Fatty
acids, the hydrolyzed products of PLA2s, alter membrane
properties [19–21] which influence cellular functions. More-
over, Aβ in different forms directly bind to membrane and
change its biophysical properties [22]; Aβ indirectly affects
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membrane properties by binding to membrane receptors and
triggering downstream signaling pathways [23–26]. In this
review, we discuss the evidence about the effects of PLA2s,
fatty acids, cholesterol, and Aβ on membrane properties in
relation to their effects on APP processing. Understanding the
mechanisms leading to changes of membranes biophysics and
how they result in changes in APP processing should provide
insights into new therapeutic strategies for the prevention and
treatment of AD.

Phospholipases A2 on Membrane Properties and APP
Processing

PLA2s are ubiquitous enzymes in mammalian cells that cata-
lyze the hydrolysis of fatty acids from sn-2 position of phos-
pholipids. PLA2s are classified into three major families:
calcium-dependent cytosolic PLA2 (cPLA2), calcium-
independent PLA2 (iPLA2), and secretory PLA2 (sPLA2).
These enzymes are responsible for the maintenance of phos-
pholipid homeostasis in cellular membranes [27]. They are
also important in the production of lipid mediators, such as
arachidonic acid (AA), a precursor for the synthesis of eicos-
anoids [28]. Activation of PLA2s has been implicated in
diverse cellular responses such as mitogenesis, differentiation,
inflammation, and cytotoxicity, and changes in activities of
PLA2s occur in many neurodegenerative diseases including
AD [29–36]. For a comprehensive understanding of PLA2,
see the review by Dennis et al. [27].

Immunoreactivity of cPLA2 is upregulated in reactive as-
trocytes in AD patient brains [37, 38]. Increases of sPLA2-IIA
and cPLA2-IVA expression were also found in the hippocam-
pus of AD patients [29, 39, 40]. In addition, Aβ has been
shown to activate cPLA2 in primary rat and mouse brain
endothelial cells, astrocytes, cortical neurons, and PC12 cells
[41–45]. However, PLA2 activity was significantly decreased
in the parietal and, to a lesser degree, in the frontal cortex of
AD brains [46]. Lower PLA2 activity correlates significantly
with an earlier onset of the disease, higher counts of neurofi-
brillary tangles and senile plaques, and an earlier age of death,
indicating a relationship between abnormally low PLA2 ac-
tivity and a more severe form of the illness [47].

PLA2s play key roles in the modulation of membrane
properties under pathological and physiological conditions.
PLA2 activation affects membrane fluidity, which character-
izes an average lateral motion of phospholipid molecules
within the lipid bilayer, and APP processing [17, 18]. In AD
brains, there is evidence for reduced membrane fluidity
coupled with decreased PLA2 activity [47, 48]. Similarly,
inhibition of PLA2 activity in rat hippocampus has been
shown to reduce membrane fluidity and impair the formation
of short- and long-term memory [18, 49]. In addition, nonspe-
cific PLA2 inhibitor partially suppressed muscarinic receptor-

stimulated increases in sAPPα secretion in human neuroblas-
toma cells (SH-SY5Y) [50]. Our study showed that sPLA2-III
increased membrane fluidity and sAPPα secretion and de-
creased levels of Aβ in SH-SY5Y cells and primary neurons
[51]. Moreover, AA increased fluidity of membranes in cul-
tured cerebral endothelial cells [52, 53], SH-SY5Y cells [51],
and hippocampal neurons in vivo [54]. Another hydrolyzed
product of PLA2, docosahexaenoic acid (DHA), has also been
demonstrated to increase membrane fluidity and sAPPα se-
cretion in human embryonic kidney (HEK) 293 cells and
overexpressing APP cells [55]. Therefore, the effects of
PLA2 onmembrane fluidity and APP processingmay partially
attribute to its hydrolyzed products, fatty acids, which will be
reviewed in the following section. Interestingly, compounds
capable of altering membrane fluidity also modulate sAPPα
production. Benzyl alcohol (C6H5OH) increases, whereas
pluronic F68 (PF68) decreases, membrane fluidity and sAPPα
secretion [22]. In turn, Aβ itself accelerates the amyloidogenic
processing of APP by reducing membrane fluidity [22]. The
study by Kojro et al. [56] showed that treatment with
methyl-β-cyclodextrin (MβCD) to reduce cellular cholesterol
increased membrane fluidity, APP accumulation at the cell
surface, and sAPPα secretion. Our study also showed that
sPLA2-III and AA treatment increased the accumulation of
APP at cell surface [51]. These results are consistent with the
notion that Aβ production mainly occurs in endosomes
[57–62]. Increased membrane fluidity partially impairs the
endocytosis of APP and subsequently increases sAPPα pro-
duction. Since PLA2 increases membrane fluidity and
nonamyloidogenic cleavage of APP, PLA2 activity modula-
tion can be considered as a potential target for AD treatment.

Fatty Acids onMembrane Properties and APP Processing

Fatty acids are important ingredients in various dietary
sources. They are essential components of cellular membrane
and play a pivotal role in the normal development and func-
tion of the brain [63, 64]. Long-chain ω-3 and ω-6 polyun-
saturated fatty acids (PUFAs), the major polyunsaturated fatty
acids in the central nervous system [65], are essential for
prenatal brain development and normal brain functions [64,
66, 67]. Diets rich in long-chainω-3 PUFAs (e.g., DHA) have
been shown to modulate gene expression for brain function,
improve synaptic and neurotransmitter functions of neurons,
enhance learning and memory performances, and display
neuroprotective properties [67–71]. Animals with diets defi-
cient in ω-3 fatty acids have reduced visual acuity and im-
paired learning ability [16, 67]. AA, another abundant fatty
acid in the brain, is a second messenger [72] and a precursor
for the synthesis of eicosanoids [28]. The presence of PUFAs
in neuronal cells influences cellular function both directly
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through their effects onmembrane properties and indirectly by
acting as precursors for lipid-derived messengers [19, 20].

Disturbed metabolism of fatty acids is associated with AD
[73–76]. For example, lower levels of DHAwere reported in
serum samples taken from an AD patient [77], while greater
consumption of DHA significantly reduced the likelihood of
developing AD [78]. DHA and curcumin have been shown to
suppress Aβ-induced phosphorylation of tau tangles and the
inactivation of insulin receptors in primary rat neurons [79].
Recently, reduced expression of the neuronal sortilin-related
receptor SorLA/LR11, a sorting protein that regulates APP
trafficking toβ- and γ-secretases, was identified as a probable
genetic risk factor for late-onset AD [80]. DHA, in turn, has
been found to increase LR11 expression in primary rat neu-
rons, human neuronal line, and aged nontransgenic and DHA-
depleted APPsw AD transgenic mice [44]. In 15-month-old
APP/presenilin-1 mice, DHA supplementation improved spa-
tial memory, decreased Aβ deposition, and slightly increased
relative cerebral blood volume, indicating that a DHA-
enriched diet can diminish AD-like pathology [81]. One plau-
sible explanation is thatω-3 PUFAs enhance phagocytosis of
Aβ by microglia and decrease inflammation [82]. In addition,
dietary ω-3 PUFA depletion has been shown to activate
caspases and decrease NMDA receptors in the brain of a
transgenic mouse model of AD [83].

PUFAs in neuronal cells influence cellular functions
through their ability to integrate into cell membrane and
change their physical properties [19, 20]. Not only can PUFAs
be incorporated into membrane phospholipids but also are
they able to associate with cellular membrane as free fatty
acids. The ability of fatty acids to modulate membrane prop-
erties and functions [18, 70, 84–88] depends on both the
saturation degree of the fatty acids and the trans/cis ratio of
the unsaturated fatty acids [21, 89, 90]. For example, diets rich
in PUFAs, including DHA and AA, have been shown to
increase membrane fluidity of neurons and other cells [54,
69, 91, 92]. DHA is capable of counteracting a cholesterol-
induced decrease in platelet membrane fluidity and modulat-
ing platelet hyperaggregation [91]. In contrast, membrane
incorporation of saturated fatty acids led to decreased mem-
brane fluidity [87, 90, 93, 94]. However, the fatty acids with
short chain length (e.g., length=10) increase α-secretase ac-
tivity [95]. Trans fatty acids accumulate in the cellular mem-
brane and increase Aβ production and oligomerization [96].
Many other membrane properties including molecular order,
compressibility, and permeability are also affected by PUFA
[97].

It has been reported that an increase in membrane fluidity
leads to an increase in nonamyloidogenic cleavage by α-
secretase to produce sAPPα [22, 56]. Consistently, enrich-
ment of cell membranes with PUFAs increases membrane
fluidity and, subsequently, promotes nonamyloidogenic pro-
cessing of APP [21]. A typical Western diet (with 40 %

saturated fatty acids and 1 % of cholesterol) fed to transgenic
APP/PS1 mice increases Aβ, while diets supplemented with
DHA decrease Aβ levels [98]. Similarly, DHA decreases the
amount of vascular Aβ deposition [99] and reduces cortical
Aβ burden [100] in the aged mouse model of AD. In this
model, DHA modulates APP processing by decreasing both
α- and β-APP C-terminal fragment products and full-length
APP [100]. DHA stimulates nonamyloidogenic APP process-
ing resulting in reduced Aβ levels in cellular models of AD
[101].Meanwhile, our study of the effects of fatty acids on cell
membrane fluidity and sAPPα secretion in relation to degrees
of unsaturation has suggested that not all unsaturated fatty
acids but only those with four or more double bonds, such as
AA (20:4), eicosapentaenoic acid (EPA, 20:5), and DHA
(22:6), increased membrane fluidity and led to an increase in
sAPPα secretion, while stearic acid (SA, 18:0), oleic acid
(OA, 18:1), linoleic acid (LA, 18:2), and α-linolenic acid
(ALA, 18:3) did not [21]. Moreover, another study indicated
that treatment of PSwt-1 CHO cells with oleic acid and
linoleic acid increased γ-secretase activity and Aβ production
[102]. These studies suggest that modulation of PUFAs con-
tent in cellular membrane is essential in enhancing sAPPα
production partially due to their effects on membrane fluidity.

Cholesterol onMembrane Properties and APP Processing

Cholesterol is an essential component of cellular membrane
and plays a vital role in the regulation of membrane functions.
Distribution of cholesterol within plasma membrane is not
even: cholesterol is mostly condensed in lipid rafts, which
are more tightly packed than nonlipid raft domains due to
intermolecular hydrogen bonding involving sphingolipid and
cholesterol [103, 104]. Cholesterol distribution correlates with
altered APP processing in mice treated with statins (3-
hydroxy-3-methylglutaryl coenzyme A reductase (HMG-
CoA) inhibitors) [105]. Levels of membrane cholesterol can
bemodulated by specific inhibitors of the cellular biosynthesis
such as statins, or it can be selectively extracted from plasma
membrane by MβCD [56, 106]. Chronic simvastatin treat-
ment decreases cholesterol levels in mouse brains and affects
cholesterol distribution within synaptosomal membranes
[107]. Simvastatin also significantly increases the levels of
insoluble Aβ but reduces levels of soluble Aβ in the brain
[107]. The content of cholesterol in phospholipid bilayers
affects many biophysical parameters of lipid bilayers, such
as thickness, thermomechanical properties, molecular pack-
ing, conformational freedom of phospholipid acyl chains and
water, molecular oxygen permeability, membrane hydropho-
bicity, membrane excitability in neurons, internal dipolar po-
tential, and membrane fluidity [104, 108–114].

Intracellular cholesterol homeostasis regulates APP pro-
cessing [115]. In membrane compartmentalization model,
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APP presents in two cellular pools, one is associated with the
cholesterol-enriched lipid rafts, where Aβ is generated, and
the other is outside of rafts (i.e., nonlipid raft domains), where
α-cleavage occurs [10, 116]. It was reported that membrane
cholesterol depletion decreased the content of APP in choles-
terol and sphingolipid-rich membrane microdomains and sub-
sequently inhibited the amyloidogenic pathway to produce
Aβ [56, 117]. DHA decreases cholesterol de novo synthesis,
shifts its distribution from raft to nonraft domains, and de-
creases β- and γ-secretase activity [118]. In contrast, choles-
terol accumulation in Niemann-Pick type C (NPC) model
cells has been shown to shift APP localization to lipid rafts
[119]. Consistent with the membrane compartmentalization
model, cellular cholesterol depletion leads to increased mem-
brane fluidity [56, 120–122]. An increase in membrane fluid-
ity shifts APP processing to nonamyloidogenic cleavage byα-
secretase [119–121, 123, 124]. The removal of cholesterol
with MβCD or treatment with lovastatin increased membrane
fluidity, which resulted in higher expression of the α-secretase
and impaired internalization of APP [56]. The increased mem-
brane fluidity also correlates with a redistribution of choles-
terol, sphingomyelin, and proteins involved in APP process-
ing between raft and nonraft domains and enhances sAPPα
production [125]. Local cholesterol increase triggers APP-
BACE1 (β-secretase) clustering in lipid rafts and rapid endo-
cytosis [126]. Actually, APP has a flexible transmembrane
domain and binds to cholesterol [127]. Titration of C99 frag-
ment of APP reveals a binding site for cholesterol, providing a
mechanistic insight into how cholesterol promotes APP accu-
mulation in lipid raft and amyloidogenesis [127].

Meanwhile, cholesterol enrichment has been shown to
reduce membrane fluidity [91, 128]. Exposure of cholesterol
to astrocytes, primary neurons, and glial cultures inhibited the
secretion of sAPPα and reduced cell viability [123, 124, 129].
Furthermore, some studies showed that cholesterol levels in
the membranes were positively correlated with β-secretase
activity [130], while lovastatin enhanced α-secretase activity
[124]. Cholesterol enrichment that impeded membrane fluid-
ity may lower sAPPα production by hindering the interaction
of the substrate with its proteases [131]. Interestingly, substi-
tution of cholesterol by the steroid 4-cholesten-3-one induces
a minor change in membrane fluidity and reduces sAPPα
secretion, whereas substitution of cholesterol by lanosterol
increases membrane fluidity and sAPPα secretion [56]. These
results suggest reversible effects of cholesterol on the α-
secretase activity depending on membrane fluidity.

Many studies support the notion that Aβ production occurs
in endosomes [58–62]. APP internalization from plasma
membrane is regulated by key regulators of endocytosis, such
as Rab5, and this process enhances APP cleavage by β-
secretase to increase Aβ levels [132]. In contrast, APP, lack-
ing its cytoplasmic internalization motif, accumulates at the
plasma membrane and undergoes cleavage by α-secretase

[7, 8]. Cholesterol increases clathrin-dependent APP endocy-
tosis in a dose-dependent and linear manner [133]. Moreover,
alterations in cholesterol transport from late endocytotic or-
ganelles to the endoplasmic reticulum had important conse-
quences for both APP processing and the localization of γ-
secretase-associated presenilins [134]. It has been suggested
that cholesterol increase in AD could be responsible for the
enhanced internalization of clathrin-dependent endocytosis of
APP and the overproduction of Aβ [133]. Alternatively, APP
internalization could be reduced by lowering cholesterol,
which leads to an increase in membrane fluidity, APP accu-
mulation on the cell surface, and increased sAPPα secretion
[56].

Aβ on Membrane Properties and APP Processing

Many studies showed direct interactions of Aβ with compo-
nents of the plasma membrane, which disrupts the membrane
properties consequentially [135–144]. Several types of Aβ-
membrane interactions were suggested. Aβ peptide can be
retained in a membrane upon APP cleavage and thus be
prevented against release and aggregation [145]. Aβ can also
be released as soluble monomers into the extracellular envi-
ronment and then be removed [145, 146]. After releasing, on
the other hand, Aβ can reinsert into a membrane and form ion-
conducting pores or undergo accelerated aggregation on a
membrane surface and form nonspecific structures, which
causes thinning and deformation to the membrane [145,
147–151]. A simulation study showed that a highly asymmet-
ric cholesterol distribution which is depleted on the exofacial
leaflet but enhanced on the cytofacial leaflet of the model lipid
membrane thermodynamically favors membrane retention of
a fully embedded Aβ peptide [152]. However, in the case of
cholesterol redistribution that increases concentration of cho-
lesterol on the exofacial layer, typical of aging or AD, the free
energy favors peptide extrusion of the highly reactive N-
terminus into the extracellular space that may be vulnerable
to aggregation, oligomerization, or deleterious oxidative reac-
tivity [152]. The insertion of the peptide into the artificial
membrane bilayers alters membrane lipid packing and induces
molecular disorder (more water molecules were partitioned
into the membrane core), as shown by the fluorescence mi-
croscopy of the environmentally sensitive probe laurdan
[153–155]. The membranes of immortalized rat astrocytes
become more molecularly ordered upon incubation with Aβ
in a time-dependent manner, which is due to the signaling
pathway involving NADPH oxidase and cPLA2 triggered by
Aβ [153]. The incorporation of Aβ into the membranes and
formation of cation-selective channels lead to the alteration of
membrane permeability and electrical conductance [138, 151,
156–164]. It has been suggested that Aβ-induced membrane
depolarization and increased ion influx in neurons were not
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just due to forming of cation-selective pores but rather resulted
from downstream pathways involved with metabotropic glu-
tamate receptor and G-proteins [164].

Aβ has been shown to reduce membrane fluidity and
accelerate the amyloidogenic processing of APP [22, 140,
165–169]. Aβ stimulates the amyloidogenic processing of
APP by reducing membrane fluidity and complexing with
GM-1 ganglioside [22]. This dynamic action of Aβ may start
a vicious circle, where endogenous Aβ stimulates its own
production [22]. Interestingly, DHA has protective effect
against impaired learning in Aβ-infused rats, which is associ-
ated with increased synaptosomal membrane fluidity [170]. It
was shown that, in vivo, Aβ administration caused a decrease
in membrane fluidity of synaptosomes isolated from frontal
and hypothalamic neurons of 3-month-old mice [168]. In a
model system of liposomes, decreased fluidity reduced mem-
brane permeabilization [171]. By using in situ atomic force
microscopy and fluorescence spectroscopy, randomly struc-
tured Aβ has been reported to decrease membrane fluidity of
planar bilayers composed of total brain lipids, and this effect is
cholesterol-content dependent: the most dramatic effect has
been seen for cholesterol-rich samples [166]. DPH (1,6-
diphenyl-1,3,5-hexatriene) fluorescence study has shown a
similar effect of Aβ on membrane fluidity of unilamellar

liposomes with a strong correlation to Aβ aggregation
state and pH [167]. Unaggregated peptides at pH 7 do
not affect membrane fluidity, while aggregated Aβ at
pH 6 or 7 decreased membrane fluidity in a time- and
dose-dependent manner [167]. Studies of SH-SY5Y hu-
man neuroblastoma cells have shown some contradicto-
ry results. In this study, Aβ monomers increased fluid-
ity of cell membranes, and Aβ-aluminum complex pro-
moted even a greater effect [172]. Another study
showed Aβ significantly increased annular and bulk
fluidity in synaptic plasma membranes (SPM) of rat
cerebral cortex and hippocampus, while Aβ had no
effect on fluidity of SPM of cerebellum [173]. The
differences in the effects of Aβ on fluidity could result
from the tissue source and preparation, the amounts of
cholesterol and phospholipid, whether Aβ is soluble or
aggregated, and the age of the organism. The differ-
ences could also be due to the different locations of
fluorescent probes in the membrane environment and
the lifetime of the fluorescent probes.

Aβ also alters composition of cellular membrane lipids
[174], causes oxidative lipid damage [175], increases mem-
brane fusion [176], impairs membrane redox system [177],
stimulates trafficking of cholesterol from plasmamembrane to

Table 1 Summary of the effects of PLA2, fatty acids, cholesterol, and Aβ on membrane fluidity, accumulation of APP at cell surface, and secretion of
and sAPPα and Aβ

Treatment Membrane fluidity APP at cell surface Secretion of sAPPα Aβ

PLA2
a ↑ [17, 18, 51] ↑ [51] ↑ [50, 51] ↓ [47, 51]

sPLA2-III ↑ [51] ↑ [51] ↑ [51] ↓ [51]

DHA ↑ [21] NA ↑ [21] ↓ [81, 99–101], NC [21]

EPA ↑ [21] NA ↑ [21] NC [21]

AA ↑ [21, 51] ↑ [51] ↑ [21, 51] NC [21, 51]

ALA NC [21] NA NC [21] NA

LA NC [21] NA NC [21] ↑ [102]

OA NC [21] NA NC [21] ↑ [102]

SA NC [21] NA NC [21] NA

PA NC [51] NC [51] NC [51] NC [51]

LPC NC [51] NC [51] NC [51] NC [51]

MβCD ↑ [56] ↑ [56] ↑[56] ↑ [56]

Cholesterol ↓ [120–122, 128] ↓ [126, 133] ↓ [123, 124] ↑b [133]

C6H5OH ↑ [22] NA ↑ [22] ↓ [22]

PF68 ↓ [22] NA ↓ [22] ↑ [22]

Aβ ↓b [22, 165, 166, 168, 169] NA NC [22] ↑ [22]

↑ increase, ↓ decrease, NC no change, NA data not available, sPLA2-III secretory phospholipase A2 type III, DHA docosahexaenoic acid (22:6), EPA
eicosapentaenoic acid (20:5), AA arachidonic acid (20:4), ALA α-linolenic acid (18:3), LA linoleic acid (18:2), OA oleic acid (18:1), SA stearic acid
(18:0), PA palmitic acid (16:0), LPC lysophosphatidylcholine, MβCD methyl-β-cyclodextrin, C6H5OH benzyl alcohol, PF68 pluronic F68, Aβ
amyloid-β
a Results partially come from studies with nonspecific inhibitor of PLA2

b There are some contradictory results [172, 173, 187]. The discrepancy between different studies may be due to tissue and cell source and preparation,
cholesterol content, whether Aβ is soluble or aggregated, locations, and lifetime of fluorescent probes
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the Golgi complex in mouse primary astrocytes [178], reduces
the cell membrane roughness [179], and disrupts membrane
trafficking of α-amino-3-hydroxy-5-methylisoxazole-4-
propionic acid receptor contributing to early synapse dysfunc-
tion [180]. These perturbing effects may contribute to
amyloidogenic processing of APP. Metal ions, pH, fatty acids,
and cholesterol affect interactions of Aβ with membrane lipid
and membrane insertion of Aβ and potentially inhibit fibril
formation and the membrane perturbing effects of Aβ [170,
181–183]. Aβ polymers have a higher affinity for cholesterol
than phosphatidylcholine or saturated fatty acids [184]. Ag-
gregated Aβ may affect lipid transport between cells or re-
move specific lipids from membranes, and such effects could
contribute to neuronal dysfunction. Actually, in C99/APP,
membrane-buried GXXXG motifs (G, Gly; X, any amino
acid) play a key role in cholesterol binding [127]. Association
of C99/APP with cholesterol may favor partitioning of the
protein into membrane domains rich in the proteases of the
amyloidogenic pathway [127]. The linear fragment 22-35 of
Aβ is a functional cholesterol-binding domain that could
promote the insertion of β-amyloid peptides or amyloid pore
formation in cholesterol-rich membrane domains [185].
Molecular dynamic simulations suggest that cholesterol
induces a tilted α-helical topology of Aβ22-35. This
facilitates the establishment of an interpeptide hydrogen
bond network involving Asn-27 and Lys-28, a key step
in the octamerization of Aβ22-35 which proceeds gradu-
ally until the formation of a perfect annular channel in a
phosphatidylcholine membrane [186].

Conclusion

An increasing amount of evidence demonstrates that a lot of
cellular processes in AD are intimately associated with phys-
ical properties and organization of membranes. The primary
step in Aβ accumulation, the amyloidogenic cleavage of APP,
is affected by the membrane properties such as membrane
fluidity and can be modulated by removal of cholesterol and
manipulation of membrane lipid composition. PLA2s and
their hydrolyzed products, such as AA and DHA and other
fatty acids, play important roles in the modulation of mem-
brane properties in relation to their effects on APP processing.
Aβ-membrane interactions, in turn, affect biophysical mem-
brane properties and accelerate the amyloidogenic processing
of APP. We review the role of the biophysical properties of
cellular membrane in APP processing, especially the effects of
PLA2s, fatty acids, cholesterol, and Aβ on membrane fluidity
in relation to their effects on APP endocytosis and processing,
which are summarized in Table 1. Understanding how mem-
brane properties and organization are related to cellular path-
ways including APP processing in AD should provide insights
into the mechanisms of AD pathogenesis.
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