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Abstract Imbalance in excitatory/inhibitory signal in the
brain has been proposed as one of the main pathological
features in autism spectrum disorders, although the underlying
cellular and molecular mechanism is unclear yet. Because
excitatory/inhibitory imbalance can be induced by aberration
in glutamatergic/GABAergic neuronal differentiation, we in-
vestigated the mechanism of dysregulated neuronal differen-
tiation between excitatory and inhibitory neurons in the em-
bryonic and postnatal brain of prenatally valproic acid-
exposed rat offspring, which is often used as an animal model
of autism spectrum disorders. Transcription factor Pax6,

implicated in glutamatergic neuronal differentiation, was tran-
siently increased in embryonic cortex by valproate exposure,
which resulted in the increased expression of glutamatergic
proteins in postnatal brain of offspring. Chromatin immuno-
precipitation showed increased acetylated histone binding on
Pax6 promoter region, which may underlie the transcriptional
up-regulation of Pax6. Other histone deacetylase (HDAC)
inhibitors including TSA and SB but not valpromide,
which is devoid of HDAC inhibitor activity, induced
Pax6 up-regulation. Silencing Pax6 expression in cul-
tured rat primary neural progenitor cells demonstrated that
up-regulation of Pax6 plays an essential role in valproate-
induced glutamatergic differentiation. Blocking glutamatergic
transmission with MK-801 or memantine treatment, and to a
lesser extent with MPEP treatment, reversed the impaired
social behaviors and seizure susceptibility of prenatally
valproate-exposed offspring. Together, environmental factors
may contribute to the imbalance in excitatory/inhibitory neu-
ronal activity in autistic brain by altering expression of tran-
scription factors governing glutamatergic/GABAergic differ-
entiation during fetal neural development, in conjunction with
the genetic preload.
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Introduction

Autism spectrum disorder (ASD) is a prototypic pervasive
developmental disorder, which results from abnormal process
of brain development. ASD is a clinically heterogeneous
group of disorders diagnosed before 3 years of age and
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characterized by three behavioral symptoms: social deficits,
impaired language and communication, and stereotyped and
repetitive behaviors [1, 2]. The brain of ASD patients shows
specific anatomical and functional features including in-
creased prevalence of macrocephaly [3, 4], reduced
GABAergic signaling system [5], increased glutamatergic
signaling system [6], aberrant minicolumnar organization
[7], and excessive synapse formation in the cortex [8].
Although there is no unifying theory explaining all the ASD
cases, imbalanced signal between excitation and inhibition in
the autistic brain has been recently proposed as one of the
main endophenotypes of ASD [9, 10]. Decreased expression
of GABAA receptor subunit [11, 12], glutamic acid decarbox-
ylase [13], and disrupted inhibitory architecture [14] was
reported in autistic brains. In spite of ample anatomical or
functional evidence that supports glutamatergic hyper-
functionality in autistic brains, the relevant mechanistic stud-
ies in the ASD brain is relatively sparse.

Exposure to valproic acid (VPA) in and around the first
trimester of pregnancy causes damage to the fetal brain [15]
and induces cognitive impairment, similar to symptoms of
ASD [16]. Accordingly, VPA exposure was firstly used to
induce an animal model of autism [17], which used as alter-
native to thalidomide. And many researchers established the
animal model of ASD using VPA during pregnancy. Similar to
human autistic symptoms, prenatally VPA-exposed rats
showed defects in social behaviors [18] and abnormalities in
GABAergic neurotransmission and enhanced long-term po-
tentiation in the cortex [19]. Recently, we reported that prena-
tal VPA exposure-induced macrocephalic phenotype in the rat
offspring by inducing excessive neuronal differentiation [20].
These observations prompted us to investigate whether these
animals show increased glutamatergic differentiation during
early developmental periods along with the mechanism
governing the processes.

As a molecular link to explain VPA-mediated hyper-
glutamaterigic differentiation, we focused on the role of
Pax6 during cortical development. Pax6, a member of the
paired box gene family, encodes a transcriptional factor that
assigns glutamatergic identity among cortical progenitors
[21]. Expression of Pax6 is elevated in neuronal precursor
cells at pre-differentiation state [22, 23], which may contribute
to the down-regulation of Pax6 by negative auto-feedback
mechanism at later stage of development. Subsequently,
Tbr2, NeuroD1 and Tbr1 are sequentially expressed during
neurogenesis of pyramidal neurons [24], poising Pax6 as an
important and foremost transcription factor governing
glutamatergic neuronal differentiation as well as stemness of
neural stem cells. In a recent study, we also reported that
gestational exposure to an environmental factor such as etha-
nol increases expression of Pax6, Ngn2, and NeuroD1 that
induced glutamatergic neuronal differentiation in rodent
brains [25].

In this study, we investigated the imbalance between excit-
atory and inhibitory neuronal differentiation in prenatally
VPA-exposed rat brain, focusing on regulation of Pax6.
Using siRNA knock-down of Pax6 in neural progenitor cells
(NPCs), we demonstrated that transient up-regulation of Pax6
is essential for VPA-induced glutamatergic neuronal differen-
tiation. Finally, we used NMDA receptor antagonists MK-801
and memantine [26, 27] and mGluR5 antagonist MPEP
[28–30], which has been investigated in some forms of animal
model of ASD, as therapeutic strategies to treat autism-like
behaviors of prenatally VPA-exposed rat offspring.

Materials and Methods

Materials

Dulbecco’s modified Eagle’s medium/F12 (DMEM/F12), fetal
bovine serum (FBS), penicillin/streptomycin, and 0.25 % tryp-
sin–EDTA were purchased from GibcoBRL (Grand Island,
NY). Agarose, PIPES, potassium hydroxide, Tween® 20, 2-
mercaptoethanol, trypsin, and VPAwere purchased from Sigma
(St. Louis, MO). ECLTM Western blotting detection reagents
were obtained from Amersham Life Science (Arlington
Heights, IL). SuperScriptTM II Reverse Transcriptase, Trizol®
reagent, Pax6 siRNA was from Invitrogen (Carlsbad, CA).
DNase Ι was purchased from Roche (Mannheim, Germany).
Protein G agarose was obtained from Millipore Corporation
(Billerica, MA). Taq polymerase and dNTP were form Takara
(Shiga, Japan). Protease inhibitor cocktail was from
Calbiochem (La Jolla, CA).

Antibodies were purchased from the following companies:
anti-β-actin from Sigma (St. Louis, MO), α-CaMKII, Mash1,
NeuroD1, PSD-95, reelin, synaptophysin, Tbr2, and vGluT1
antibody from Abcam (Cambrigeshire, England). Nestin,
Pax6, Ngn2, GAD, and GFAP antibody were from Millipore
(Billerica, MA). Histone H3, acetyl-histone H3, GSK-3β,
phospho-GSK-3β, and phospho-histone H3 antibody were
from Cell Signaling (Boston, MA). Tuj-1 antibody was from
Covance (Princeton, NJ).

Animals

Timed-pregnant Sprague–Dawley rats were purchased from
DaeHan BioLink (Daejeon, Korea). Animals were maintained
on a 12:12-h circadian cycle with lights on at 0600 hours, at a
constant temperature (22±2 °C) and humidity (55±5 %).
Animal treatment and maintenance were carried out in accor-
dance with the Principle of Laboratory Animal Care (NIH
publication no. 85-23, revised 1985) and were approved by
the Animal Care and Use Committee of Konkuk University,
Korea (KU12115). All efforts were made to minimize the
number of animals as well as their suffering. Behavioral
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experiments were performed between 1000 and 1600 hours in
dedicated test room. The number of animals used in each
experiment was provided in supplementary information
(Table S1).

Subcutaneous Injection of VPA to Pregnant Rat

The sodium salt of VPA (Sigma, St. Louis, MO) was dissolved
in 0.9 % saline for a concentration of 100 mg/ml, pH 7.3. The
dosage was adjusted according to the body weight of the
pregnant rat on the day of injection. Pregnant rats were received
a single subcutaneous injection of 400 mg/kg VPA on gesta-
tional day 12 [20, 31]. Control rats were treated with saline.

Culture of Rat Primary Neural Progenitor Cells

The preparation of cortical progenitors from embryonic day
14 (E14) rat embryos was based on a method previously
reported [32, 33] with minor modifications. NPC culture
was prepared from E14 embryos of Sprague–Dawley rats.
Cortices were dissociated into single cells by mechanical
trituration, and the cells were incubated with DMEM/F12
supplemented with B27 and 20 ng/ml epidermal growth factor
(EGF) in a 5 % CO2 incubator. The culture medium was
changed every 2 days, and the cells grew into floating
neurospheres. The primary neurosphere was dissociated into
single cells with trypsin–EDTA (Invitrogen, Carlsbad, CA,
USA), and the cells were re-grown into neurospheres in EGF-
containing media. This procedure was repeated, and
neurosphere colonies were again dissociated into single cells
(1×106 cells per a single well of 6-well plate) and plated on
poly-L -ornithine-coated plates with DMEM/F12 media
supplemented with B27.

Transient Transfection

Transient transfection to NPCs was carried out using
Lipofectamine 2000 (Invitrogen), according to the manufac-
turer’s instructions with minor modifications. Briefly, Pax6
siRNA (Invitrogen, Pax6-RSS352201) and Lipofectamine
were mixed in serum- and antibiotics-free OPTI-MEMmedia.
Twenty picomoles of siRNA was transfected on 1×106 cells
on 6-well plate. The siRNA-lipofectamine complex was
added to the 60–70 % confluent NPCs 3 h after NPC subcul-
ture. After 3 h-incubation, the medium was changed and
further incubated for 24 h at 37 °C to rescue cells. Control
siRNA with similar GC contents was purchased from
Invitrogen and was used as a control.

Western Blot Analysis

Cells were washed twice with phosphate-buffered saline
(PBS) and lysed with 2× sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) sample buff-
er (120 mM Tris–HCl (pH 6.8), 20 % glycerol, 4 % SDS,
28.8 mM 2-mercaptoethanol, 0.01 % bromophenol blue).
Brain tissues were homogenized using RIPA buffer
(150 mM sodium chloride, 1 % Triton X-100, 0.5 % sodium
deoxycholate, 0.1 % SDS, 50 mM Tris, pH 8.0), and the
resulting lysates were diluted with 2× SDS-PAGE sample
buffer. Same amounts of protein (50 μg) determined by
BCA protein assay was separated by 10 % SDS-PAGE and
transferred to nitrocellulosemembranes. Themembranes were
blocked with 1 % polyvinylalcohol in PBS containing 0.2 %
Tween 20 for 1 h. The membranes were incubated with
primary antibody overnight at 4 °C and then with
peroxidase-conjugated secondary antibody (Santa Cruz, CA)
for 2 h at room temperature. Dilution factor and catalog
number of each primary antibodies were described in supple-
mentary information (Table S2). Specific bands were detected
using the ECL system (Amersham, Buckinghamshire, UK)
and exposed to Bio-Rad electrophoresis image analyzer (Bio-
Rad, Hemel Hempstead, UK). β-Actin was used as loading
control, and Western blot band intensity was normalized with
β-actin immunoreactivity.

RT-PCR

Total RNA was isolated from NPCs or cortical tissues using
Trizol reagent (Invitrogen, Carlsbad, CA), and 1 μg of total
RNA was converted to cDNA using Superscript II reverse
transcriptase (Invitrogen), according to the manufacturer’s
instructions. Specific DNA bands were amplified by PCR.
The amplified DNA products were resolved by 1.0 % agarose
gel electrophoresis and visualized by staining with ethidium
bromide and exposed to Bio-Rad electrophoresis image ana-
lyzer (Bio-Rad). All primers were purchased from Invitrogen.
The primers used in this analysis are for Pax6 , Ngn2 ,Mash1 ,
NeuroD1 , GAPDH , PSD-95 , and GAD1 .

Pax6 , 5 ′ AAGCAAAATAGCCCAGTATAAACG
(forward)

5′ TAATGGGTCCTCTCAAACTCTTTC (reverse)
Ngn2 , 5 ′ AAGAGGTAGGAGAGCTACTTGTGC

(forward)
5′ CAGTGTTTTCAGAATGATGAGAGG (reverse)
Mash1 , 5 ′ GTTTCTCCCCTCTTCTTTTTCTTC

(forward)
5′ CACCTTGCTCATCTTCTTGTTG (reverse)
NeuroD1 , 5′ TTAATGCCATCTTTCACGATTAGA

(forward)
5′ ATTCGTGGTACACATTTTCCTTTT (reverse)
GAPDH , 5′ TCCCTCAAGATTGTCAGCAA (forward)
5′ AGATCCACAACGGATACATT (reverse)
PSD-95 , 5′ TATGTAACGAAGATCATCGAAGGA

(forward)
5′ GAGAATACGAGGTTGTGATGTCTG (reverse)

514 Mol Neurobiol (2014) 49:512–528



GAD1 , 5 ′ TTCTTACTGGAGGTGGTTGACATA
(forward)

5′ TGATCTCTCGCATCTTCTTAAGTG (reverse)

Isolation of Post-synaptic Density Fraction

Isolation of post-synaptic density (PSD) fraction was
performed according to the previous report [34] with several
modifications. Briefly, brain tissues of Sprague–Dawley rat
were homogenized in ice-cold sucrose/HEPES (ISH) buffer.
Lysates were centrifuged, and the supernatants were
sedimented to isolate crude synaptosomal fraction. After cen-
trifugation, pellet (crude synaptosomal fraction) was re-
suspended in 2 ml of ISH buffer. The suspension was added
to 2 ml of 40 %, 2 ml of 35 %, 2 ml of 30 %, and 2 ml of 25 %
sucrose gradient and was centrifuged with SW 41 Ti swinging
bucket rotor (Beckman Instruments, Palo Alto, CA) at
25,000 rpm for 2 h in Beckman Optima XL-100K preparative
ultracentrifuge. Purified synaptosomal fraction was enriched
in the border between 35 and 40 % sucrose solution. Isolated
fraction was re-suspended in 0.5 % Triton X-100 and was
incubated for 15 min. The suspension was added to 2 ml of
65 %, 2 ml of 55 %, 2 ml of 45 %, and 2 ml of 35 % sucrose
gradient and was centrifuged at 40,000 rpm for 2 h. PSD
fraction was enriched in the border between 55 and 65 %
sucrose solution. Isolated PSD fraction was re-suspended in
0.5 % Triton X-100 and was centrifuged at 40,000 rpm for
20 min. Pellets were used for Western blot experiment.

Chromatin Immunoprecipitation

Chromatin immunoprecipitation was performed according to
the reported method [35] with minor modifications. Briefly,
43 μl of 37 % formaldehyde was added to 1.6 ml of overlay-
ing medium of NPC culture, and incubated for 15 min at room
temperature. After incubation, 225 μl of 1 M glycine was
added and incubated for 5 min. Cells was scraped and collect-
ed by centrifugation (2,000 g for 5 min at 4 °C), then washed
twice with cold PBS. Collected cells were lysed with IP buffer
(150 mM sodium chloride, 50 mM Tris–HCl pH 7.5, 5 mM
EDTA, 0.5 % IGEPAL CA-630, 1.0 % Triton X-100) on ice.
Pellet was resuspended with IP buffer by pipetting andwashed
by centrifugation (12,000 g for 1 min at 4 °C). To shear the
chromatin, 1 mL of the washed and resuspended pellet was
sonicated on ice. After centrifugation (12,000 g for 10 min at
4 °C), supernatants were used for immunoprecipitation.
Primary antibody (1 μg) was added to 1 ml of supernatant,
and the samples were incubated for 12 hrs at 4 °C on a rotating
platform. IgG was used as a control antibody. After incuba-
tion, mixture of 20 μl of IP buffer and 20 μl of Protein G
Agarose (Millipore) was added to the sample, and incubated
for 45 min at 4 °C on a rotating platform. After incubation,
samples were washed five times by centrifugation (2,000 g for

3 min at 4 °C), and the supernatants were removed. 100 μl of
10 % Chelex 100 was added to the washed beads for DNA
isolation, and the samples were boiled for 10 min at 90 °C.
After centrifugation (12,000 g for 1 min at 4 °C), 80 μl of
supernatant was transferred to new tube, and 120 μl of DDW
was added to beads. After centrifugation (12,000 g for 1 min
at 4 °C), 120 μl of supernatant was collected and added to the
previous supernatant. Isolated DNA was used for PCR reac-
tion. The primers used in this analysis are:

Pax6 , 5 ′ AGGACCTCGTAGAGATGATGAAAC
(forward)

5′ AAAAGAGTTGCTCGTGAGAGTTTT (reverse)
NeuroD1 , 5′ GGTCTCTCTGAAAGGACAGTCAAT

(forward)
5′ ATAGGGACAACTGACTCCATGAAT (reverse)
Mash1 , 5′ TTTTCCAAGTTCTCAAGAGACTCC

(forward)
5′ GGTTTTAAAAGAGGAAAGGGAAAA (reverse)

Immunocytochemistry

Cultured rat primary NPCs on cover glass (Fisher Scientific,
PA) were washed and fixed with 4 % paraformaldehyde at
4 °C for 2 h. The cells were treated with 0.3 % Triton X-100
for 15 min at room temperature and blocked for 30 min with
blocking buffer (1 % BSA, 5 % FBS in PBS) at room tem-
perature. The cells were incubated overnight at 4 °C with
primary antibodies and washed with washing buffer (0.1 %
BSA, 0.5 % FBS in PBS). Secondary antibodies conjugated
with TMRE (anti-mouse) or FITC (anti-rabbit) were diluted in
blocking buffer and incubated for 2 h at room temperature.
After washed three times with washing buffer, the cover glass
were mounted in Vectashield (Vector Laboratories,
Burlingame, CA) and viewed with a confocal microscope
(TCS-SP, Leica, Heidelberg, Germany). Where appropriate,
specific antibody-labeled cells were counted and quantified by
a researcher blind to the experiments. For nuclear proteins
including Pax6, AcH3, Ngn2, and NeuroD1, labeled cells
with DAPI counter-staining were counted and quantified.
For synaptic proteins including PSD-95 and synaptophysin,
labeled puncta with Tuj-1 staining were analyzed using Image
J (National Institutes of Health) with a colocalization plug-in
downloaded from the program’s website (http://rsb.info.nih.
gov/ij/plugins/colocalization.html). Following thresholding,
points of colocalization were defined as regions greater than
4 pixels in size where the intensity ratio of the two channels
was greater than 50 % [36].

Immunohistochemistry

Brains of embryos and postnatal pups were fixed with PBS
containing 4% paraformaldehyde and sectioned with a cryostat
(CM 3050, Leica Instruments). For embryonic experiments,
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each of single E14 embryo was randomly selected from four
control and VPA-exposed pregnant mother rats, respectively
(n =4). For postnatal experiments, each of single P28 rat off-
spring was randomly selected from four control and VPA-
exposed litters, respectively (n =4). Selected rats were
sacrificed and perfused with ice-cold 4 % PFA in PBS
(pH 7.4) for 20 min. For each animals, at least five sections
were immunostained for examination. Sections (12 μm thick-
ness) were treated with 0.1 % Triton X-100 for 30 min at room
temperature and blocked for 60 min with blocking buffer (1 %
BSA) at room temperature. Then sections were incubated
overnight at 4 °C with primary antibodies and washed with
PBS plus 0.2 % Tween 20 (PBST). Secondary antibodies were
diluted in PBST and incubated for 2 h at room temperature.
After rigorous washing with PBST, the sections were mounted
in Vectashield (Vector laboratories, Burlingame, CA) and ex-
amined using epifluorescence microscope equipped with ap-
propriate filters. Images were captured with digital acquisition
systems (Nikon DS-U1 or DEI-750, Optronics, Goletta, GA).
For quantification, labeled cells were counted and quantified by
a researcher blind to experiments.

Open-Field Locomotor Activity

The observation apparatus consisted for five plastic boxes (42×
42 cm) with a field bordered by 42 cm high sidewalls. Rats
were moved into test boxes 5 min before recording for habitu-
ation. The total distance moved and the duration of movement
were monitored for 10min [37, 38] using CCD camera-assisted
motion tracking apparatus and software (EthoVision 3.1,
Noldus information Technology, the Netherlands).

Social Interaction Test

The social interaction was adapted from Crawley [39] and
performed with several modifications using 4-week-old rats as
we reported previously [31]. The test took place in an envi-
ronment unknown to the rat being tested in the form of a cage
with three communicating compartments. At the beginning of
sociability test, test rat was placed in the empty central com-
partment. In the left compartment (stranger 1 side), a conspe-
cific stranger rat unexposed to rats being tested was placed
under small wire cage. In the right compartment (empty side),
only a wire cage was placed. After 5 min habituation period,
sociability test was performed for 10min by placing test rats in
the central compartment. Moving on social preference test,
another stranger rat (stranger 2) was added in the right com-
partment inside wire cage. The test rat was again placed in the
empty central compartment, and social preference test was
conducted for 10 min directly after the termination of the
sociability test. Sociability index and social preference index
was calculated as described [31]. The trace of rat movements
during experiments was automatically recorded using

Ethovision software. The stranger rats were selected from con-
trol rats of same gender as test rats, and rats used as a stranger 1
or stranger 2 were not applied in social interaction tests.

Measurement of Electroshock Seizure Threshold

Electroshock seizure threshold was measured with minor
modifications with 4 weeks old rats, as we reported previously
[38]. Briefly, seizure was evoked by a constant current stim-
ulator through ear clip for 1 s in 2-mA interval individually
depending on whether the previous animal exhibits seizure or
not. The seizure was defined as overt hind limb extension. To
determine the electroshock seizure threshold, convulsive cur-
rent 50 (CC50), which elicits convulsion in 50 % of animals,
was determined by a “staircase” procedure [40], which was
designed to minimize the number of animals required for the
CC50 determination, and calculated by the Litchfield–
Wilcoxon II method [41].

Statistical Analysis

Data were expressed as mean±standard error of mean (SEM)
and analyzed for statistical significance using one-way analy-
sis of variance (ANOVA) followed by Newman–Keuls test as
a post-hoc test. Two-way ANOVA was used to identify the
effect of VPA exposure or Pax6 siRNA transfection, or inter-
action between the two factors. In the behavioral analysis,
two-way ANOVA was used to identify the effect of VPA
exposure or drug treatment, or interaction between the two
factors. If significant effects were found in any one of the
factors, post-hoc comparisons were conducted using
Bonferroni’s post-tests. Differences were considered statisti-
cally significant when the P value was less than 0.05 (p <
0.05). All statistical analyses were conducted using PASW
Statistics (18.0; SPSS Inc, Chicago, IL, USA).

Results

VPA Exposure Leads to Sequential Expression
of Transcription Factors Pax6, Ngn2, and NeuroD1

Pregnant rats were injected with VPA at embryonic day 12
(E12) as we reported previously [20, 31], which did not
produce gross health problem such as weight loss in mother
rats. Expression of Pax6 protein in frontal cortex was tran-
siently increased at E14 and decreased below control level at
E18 by prenatal VPA exposure in vivo (Fig. 1a). At E16 and
E18, protein expression of Ngn2 and Tbr2 was elevated as
compared with control. Subsequently, NeuroD1 expression
was also increased in postnatal days in the cortex of VPA-
exposed offspring. Mash1, a transcription factor which leads
to GABAergic neuronal differentiation, was not significantly
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changed by VPA. The expression patterns of mRNAs were
similar with those of protein expression in vivo (Fig. 1a).
Immunohistochemical images also showed that VPA in-
creased intensity of Pax6 immunostaining in the ventricular
and subventricular zone of E14 brain (Fig. 1c). Sequential
increased expression of Pax6, Ngn2, and NeuroD1 was also
observed in cultured NPCs, treated with 0.5 mMVPA in vitro.
Treatment of VPA in differentiating NPCs increased Pax6
expression as compared with control at DIV 1 and 3 followed
by Ngn2 and NeuroD1 expression (Fig. 1b). In the immuno-
cytochemical studies, in vitro VPA exposure induced Pax6
expression on DIV 1 (Fig. 1d) and also increased the expres-
sion of Ngn2 and NeuroD1 thereafter (Fig. 1g).

Role of HDAC Inhibition on VPA-Induced Pax6 Expression

Using VPA, a histone deacetylase inhibitor (HDACi), we
examined whether the interaction between HDAC1 protein
and Pax6 gene is changed in cultured NPCs (Fig. 1e). Protein
binding to Pax6 promoter region was assessed by chromatin
immunoprecipitation. In VPA-treated groups, dissociation of
bound HDAC1 as well as the increased acetylation of histone
H3 in the Pax6 gene promoter region was observed (Fig. 1e).
In cultured NPCs, cells with increased Pax6 expression by
VPA was co-localized with increased acetylated histone H3
(Fig. 1d). These results suggested that VPA enhanced the
transcription of Pax6 gene by driving histone acetylation.
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NeuroD1 in cultured rat primary NPCs. Quantitative graphs were
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Other HDAC inhibitors such as trichostatin A (TSA) or sodi-
um butyrate (SB) but not valpromide, a structural analog of
VPA devoid of HDACi activity, similarly increased Pax6
expression in cultured NPCs (Fig. 2). Because VPA also
possesses GSK-3β inhibitory effect, we also tested GSK-3β
inhibitors LiCl and TDZD, which slightly decreased the ex-
pression level of Pax6 in our experimental conditions (Fig. 2).

VPA Exposure Induces Glutamatergic Neuronal
Differentiation from NPCs

Next, we investigated the differentiation of glutamatergic and
GABAergic neuron in the cortex of prenatally VPA-exposed
rats. Glutamatergic neuronal proteins including PSD-95, α-
CaMKII, and vGluT1 were increased in VPA-exposed group
during all the postnatal days examined (Fig. 3a), consistent
with our previous report showing increased glutamatergic
synaptic proteins in the cortex of 4-week-old rats prenatally
exposed to VPA [42]. However, GAD, which is a marker
protein of GABAergic neuron, was reduced by VPA expo-
sure. Reelin, released from GABAergic neuron, was also
decreased in VPA-exposed group. The expression of
mRNAs encoding PSD-95 and GAD showed similar tenden-
cy (Fig. 3a). Treatment with VPA in cultured NPCs in vitro
also increased expression of PSD-95 and α-CaMKII whereas
decreased the expression of GAD (Fig. 3b). Excessive
glutamatergic neuronal differentiation by VPAwas also dem-
onstrated using immunohistochemistry (Fig. 3c) and immu-
nocytochemistry (Fig. 3d). In prefrontal cortical region of
VPA-exposed rat offspring, expression of PSD-95 and
vGluT1 was increased, whereas expression of GAD was
decreased as compared with saline-treated rat offspring
(Fig. 3c). Immunochemical staining showed increased

synaptic localization of PSD-95 and synaptophysin in neurons
differentiated from NPCs exposed to VPA in vitro (Fig. 3d).
To determine whether the increased glutamatergic proteins
localized at functional synapse, we biochemically isolated
PSD fraction from cortical lysates obtained at postnatal day
28 and performed Western blot. We found that the level of
PSD-95 and α-CaMKII in the PSD fraction was significantly
increased by VPA exposure (Fig. 3e). In addition,
synaptophysin, which exists in pre-synaptic area, was
enriched in the synaptosomal fraction by VPA exposure.
These results suggest that VPA-induces functional localization
of PSD-95 and α-CaMKII in postsynaptic density.

siRNA Knock-down of Pax6 Leads to Reduced
Glutamatergic Neuronal Differentiation

To examine whether Pax6 plays an essential role in VPA-
induced glutamatergic neuronal differentiation, we performed
transient Pax6 siRNA transfection on NPCs. siRNA contain-
ing similar GC contents was used as a control (Invitrogen).
Two-way ANOVAwas used to identify the effect of VPA or
Pax6 siRNA (Supplementary Table. S3). Consistent with our
previous reports [20], nestin expression was increased by
VPA, which is blocked by Pax6 siRNA (Fig. 4a). These
results are consistent with the role of Pax6 in NPCs prolifer-
ation as well as neuronal subtype differentiation. Under Pax6
knock-down, protein expression of Ngn2 and NeuroD1 was
decreased (Fig. 4a). Knock-down of Pax6 expression
inhibited VPA-induced increased expression of glutamatergic
neuronal markers including PSD-95, α-CaMKII, and vGluT1
in differentiated NPCs, whereas it induced expression of
GAD, which is reduced by VPA (Fig. 4b). In contrast to the
changes in neuronal differentiation, glial differentiation was
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affected neither by VPA [20] nor Pax6 siRNA, determined by
GFAP protein levels in Western blot.

In the immunocytochemical experiments, VPA-induced
Pax6 expression was inhibited by knock-down of Pax6
(Fig. 4c). Consistent with the decreased nestin expression by
Pax6 siRNA transfection, diminished proliferation of NPCs
was also observed under the same conditions. pH3-positive
NPCs were increased by VPA, which was blocked by Pax6
siRNA transfection (Fig. 4d). VPA-induced glutamatergic
neuronal differentiation was also prevented by knock-down
of Pax6 that is evidenced by decreased synaptic puncta of
PSD-95 (Fig. 4e) and synaptophysin (Fig. 4f).

In this study, the transient increase in Pax6 expression repro-
grams NPCs toward hyper-glutamatergic differentiation so that
NPCs isolated and cultured from E14 brain of fetus previously
injected with VPA to their dam at E12 (ex vivo experiments)
showed increased transcription factors and glutamatergic

markers expression similar to in vivo and in vitro situation
(Fig. 5). These results suggest that VPA exposure in critical
period, in this case, E12 in rats [31], renders the NPCs into a
state opt to dysregulated neuronal differentiation.

NMDA Receptor Antagonist MK-801 Reverses ASD-Like
Behavioral Symptoms Induced by VPA

Excessive glutamatergic neuronal differentiation in medial
prefrontal cortex by prenatal VPA along with up-regulation
of NR2A and NR2B expression by VPA [19] may increase
glutamatergic neurotransmission. We also reported the up-
regulation of PSD-95 and α-CAMKII, which compose
NMDA receptor cluster by VPA [42]. In this study, we treated
MK-801, an NMDA receptor antagonist, to the prenatally
VPA-exposed rat offspring at 4 weeks of age and investigated
ASD-related behavioral parameters. MK-801 (0.3 mg/kg,
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dissolved in saline as 0.03 mg/ml) was intraperitoneally
injected 30 min before the tests. Vehicle (saline) was injected
as a control. Two-way ANOVAwas used to identify the effect
of VPA or MK-801 (Table S4).

VPA-exposed rats showed increased locomotor activity as
reported previously [42], which was restored by MK-801
treatment. Both moved distance and moved duration in the
open-field were increased by VPA exposure and decreased by
MK-801 (Fig. 6a). VPA-exposed rats at 4 weeks of age
exhibited impaired social interactions [31], andMK-801 treat-
ment restored social impairments (Fig. 6b). In the sociability
test, stay duration in a side chamber with a conspecific rat
(stranger 1) was decreased by VPA exposure and restored by
MK-801. Duration in central compartment was increased by

VPA exposure and decreased by MK-801. Duration in empty
wire cage side was not changed both by VPA exposure and
MK-801. Sociability index (SI) was defined as the ratio be-
tween duration in stranger 1 side and duration in empty side
[31]. SI was significantly decreased by VPA exposure and
restored by MK-801. In the social preference test, stay dura-
tion in familiar side (stranger 1 side) was increased by VPA
exposure and decreased byMK-801. Duration in central com-
partment was increased by VPA exposure and decreased by
MK-801. Duration in novel side (stranger 2 side) was de-
creased by VPA exposure and restored by MK-801. Social
preference index (SPI) was defined as the ratio between duration
in novel side and duration in familiar side [31]. SPI was de-
creased by VPA exposure and restored by MK-801. We next
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glutamatergic neuronal differentiation. Knock-down of Pax6 expression
using siRNA transfection in NPCs was described in methods. a On day 1
after transfection, expression of Pax6 and Nestin was decreased. On day 7,
expression of Ngn2 and NeuroD1 was decreased. b On culture day 12,
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examined the effects of MK-801 treatment on the electroshock
seizure threshold (Fig. 6c). Electroshock seizure thresholds of
the VPA-exposed group were significantly lower than those of
the control group, suggesting increased excitability of the pre-
natally VPA-exposed animals ([42], p<0.001), and treatment of
MK-801 restored sensitivity to electroshock (VPA andMK-801-
treated group vs. VPA-exposed group, p<0.001). Memantine,
an NMDA receptor antagonist, which was intraperitoneally
injected 30 min before the tests as 30 mg/kg, also rescued
autism-like behaviors of prenatally VPA-exposed rat offspring
(Fig. 7). Memantine also restored hyperactivity in open-field test
(Fig. 7a), impaired social interactions (Fig. 7b, Table S5), and
sensitivity to electroshock (Fig. 7c) of VPA-exposed rat off-
spring. In addition, MPEP (30 mg/kg), an mGluR5 antagonist,
showed a similar restorative effect on autism-like behaviors
which is consistent with previous report [30], although MPEP
did not rescue a defect in sociability (Fig. 8b, Table S6).

Discussion

Excitatory/inhibitory Imbalance in ASD

One of the key pathological features of the human autistic
brain and animal models of ASD is the imbalance between
excitatory/inhibitory neurotransmission in the brain [9, 43].
Inhibitory architecture disruption [44] and even insufficiency
of GABAergic proteins [12, 13] were reported in the autistic
patients.

Prenatal VPA exposure model has been widely used for the
study of structural and functional alterations in the autistic
brain [18, 45, 46]. Although contradictory results exist in
terms of the exact nature of aberrant neuronal differentiation

induced by VPA, hyperactive glutamatergic activity and mi-
crocircuit connectivity may render the brain highly plastic,
more autonomous, and difficult to control once activated [19,
46], which may be consistent with the reduced seizure thresh-
old and increased hyperactivity in VPA animal model of ASD
[31]. Similarly, one-third of human ASD patients showed
increased seizure susceptibility [47].

Here, we provided epigenetic and cellular mechanisms that
transient up-regulation of Pax6 induced by VPA exposure at
mid-gestation stage is critical for enhanced glutamatergic
differentiation. Perturbed social interaction in VPA-
exposed offspring was normalized with MK-801 or
memantine that blocks glutamatergic neurotransmission,
suggesting the possible neurochemical and neurophar-
macological regulation of autism-like behaviors. Our
study suggests that environmental (epigenetic) factors
implicated in ASD may have profound effects on dif-
ferentiation of specific subsets of neurons (for example,
glutamatergic neurons or GABAergic neurons). The altered
functional and mechanistic balance of the different subtypes
of neurons by epigenetic regulation may determine the man-
ifestation of autistic symptoms in conjunction with the contri-
bution from the genetic predisposition.

Roles of Pax6 in the Developmental Process of Embryonic
Brain

Pax6 is a paired box familymember and plays an essential role
in the brain development. It prevents precocious neuronal
differentiation and a depletion of NPCs [48]. Pax6 also in-
structs glutamatergic neuronal identity among basal progeni-
tor cells/NPCs by inducing Tbr2 and Ngn2 [49–51].
Subsequently, Pax6 becomes down-regulated by negative

P
ro

te
in

 le
ve

l
(%

 in
cr

ea
se

)

0

100

200

300

DIV1 DIV3 DIV7 DIV12

**
******

Pax6
Ngn2
NeuroD1***

***
***

m
R

N
A

 le
ve

l
(%

 in
cr

ea
se

)
0

100

200

300

400

DIV1 DIV3 DIV7 DIV12

***

*

***

Pax6
Ngn2
NeuroD1

***

*
**

**

A

DIV1

Con

NeuroD1

ex vivo
(PCR)

Pax6

Ngn2

VPA Con VPA 

DIV3

GAPDH

DIV7

Con VPA Con VPA 

DIV12

m
R

N
A

 le
ve

l
(%

 in
cr

ea
se

)

-100

0

100

200

300

400
PSD-95
GAD

DIV1 DIV3 DIV7 DIV12

**

***

*

***

B

GAPDH

ex vivo
(PCR)

PSD-95

GAD

DIV1

Con VPA Con VPA 

DIV3 DIV7

Con VPA Con VPA 

DIV12

P
ro

te
in

 le
ve

l
(%

 in
cr

ea
se

)

-100
-50

0
50

100
150
200
250

DIV12DIV1 DIV3 DIV7

***
***

***

***

***
***

** **** *

**

***

**

PSD-95
-CaMKII

vGluT1
Synaptophyshin
GAD

DIV1

Con

NeuroD1

ex vivo
(WB)

Pax6

Ngn2

VPA Con VPA 

DIV3

β-actin

DIV7

Con VPA Con VPA 

DIV12

46 kDa
48 kDa

28 kDa

25 kDa

43 kDa Synaptophysin

vGluT1

ex vivo
(WB)

PSD-95

-CaMKII

DIV1

Con VPA Con VPA 

DIV3 DIV7

Con VPA Con VPA 

DIV12

GAD

-actin

50 kDa

95 kDa

52 kDa

38 kDa

67 kDa

43 kDa

65 kDa

Fig. 5 Prenatal VPA exposure increases glutamatergic neuronal differ-
entiation ex vivo. NPCs were isolated from VPA-exposed embryonic
cortices and differentiated in vitro (ex vivo experiments). a Sequential
expression of transcription factors initiated from Pax6 was increased by
VPA exposure ex vivo. Subsequently, expression of Ngn2 and NeuroD1
was increased. b Glutamatergic neuronal differentiation was determined
by Western blot and RT-PCR. Glutamatergic neuronal proteins including
PSD-95, α-CaMKII, and vGluT1 were increased by VPA exposure

ex vivo. GABAergic protein GAD was decreased. Pre-synaptic marker
protein synaptophysin was also increased by VPA. Quantitative graphs
were expressed as percentage increment of VPA-exposed groups com-
pared with each control groups. Ex vivo culture NPCs were derived from
ten embryos randomly selected from each litters, and four pregnant
mother rats was used for each experimental groups. All data are expressed
as mean±SEM (n =4). *p< 0.05, ** p< 0.01, ***p< 0.001 vs. control
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feedback and NeuroD1 and Tbr1 are induced instead, which
leads to glutamatergic neuronal differentiation [23, 52]. Thus,
among transcriptional cascade with a sequence of Pax6→
Ngn2→Tbr2→NeuroD1→Tbr1 [24], Pax6 is the major fac-
tor that initiates and triggers glutamaterigic neuronal differen-
tiation as well as maintains a pool of NPCs. In this study,
VPA-exposed embryonic brains or NPCs triggered transient
up-regulation of Pax6, which coincides with dissociation of
HDAC1 protein and increased association of acetylated his-
tone atPax6 promoter. Other HDAC inhibitors alsomimicked
the effect of VPA [53, 54], indicating that the transient up-
regulation of Pax6 is mediated by HDACi activity.

The protein level of Pax6 is critical for the balance between
the maintenance of stem cells and neuronal differentiation

[55]. Thus, the final outcome of neural differentiation could
vary depending on the level and duration of Pax6 expression
during embryonic brain development. For instance, when
Pax6 expression is down-regulated, neurogenesis could be
enhanced at early period, but later became inhibited with
reduced cortical thickness and smaller number of neurons
[55]. Similarly, pax77 TG mice, which over-express Pax6,
showed an increased cell cycle length among apical progeni-
tors, which facilitates neurogenesis [48]. Upon VPA exposure,
Pax6 was transiently increased in E14 brain, but later further
down-regulated below the control level at E18. Interestingly,
VPA injection only at E12 but not in other embryonic stages
induced autism-like behaviors in rat offspring [31]. Therefore,
the transient up-regulation of Pax6 by a brief exposure to VPA
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Fig. 6 MK-801 rescues impaired social interactions and sensitivity to
electroshock seizure induced by prenatal VPA exposure. Rat offspring
were pre-treated with MK-801 30 min before each behavioral analysis as
described. Vehicle-treated group was used as a control. a Open-field
locomotor activity test was performed as described in materials and
methods. b Sociability and social preference test were performed as
described in materials and methods. All data are expressed as
mean±SEM (n =8). *p< 0.05, ** p< 0.01, ***p< 0.001 vs. saline-treat-
ed group; #p< 0.05, ##p< 0.01, ###p< 0.001 vs. VPA-treated group;

βp< 0.05, β′p< 0.01 vs. saline and MK-801-treated group, as revealed
by post-hoc Bonferroni’s comparisons following two-way ANOVA. c
Measurement of electroshock seizure threshold was performed as de-
scribed in “Materials and Methods.” CC50 of VPA-exposed rats was
significantly lower than that of control rats (p< 0.001), which was
prevented by MK-801 treatment (p< 0.001). For each experimental
group, 16 rat offspring from 8 litters were used for the determination of
CC50. Table showed actual value of CC50 with upper and lower confi-
dence limits
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at mid-gestation period appears to be an ideal time window to
efficiently increase NPCs. It is of interest that over-expression
of Pax6 also induced increased layer 5 pyramidal neurons at
E12.5 mice brain [55], consistent with the increased
glutamatergic differentiation observed in this study.
Together, we propose that level of Pax6 is critical in the
regulation of neuronal differentiation and subtype specifica-
tion in VPA animal model of ASD.

Effect of VPA on Pax6 Expression

In this study, we observed the induction of Pax6 from differ-
entiating NPCs by VPA exposure both in vivo and in vitro.
Few studies investigated the effects of VPA on Pax6

expression in differentiating NPCs. In Xenopus laevis , high
concentration of VPA (5 and 10mM) induced lethality, somite
abnormalities, and eye malformations and decreased expres-
sion of Pax6 in eye [56]. In chicken embryo studies, 5∼20mg/
ml (34.7∼138.7 mM) of VPAwas used [57], and application
of 15 mg/ml of VPA produced gross abnormalities, multiple
eye abnormalities with decreased Pax6 expression. In our
experimental conditions, prenatally VPA (400 mg/kg)-ex-
posed rat offspring did not show abnormalities including birth
rate, body weight [31], and rota-rod function [42]. We also
used 1 mM concentration of VPA in vitro, which did not
produce immediate cellular toxicity in cultured NPCs. These
results suggested that high doses of VPA may produce de-
creased Pax6 expression during early embryonic
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development, which might be related to the teratogenic activ-
ity of VPA, and the final outcome of in utero exposure of VPA
might be differentially modulated by the dosage of VPA
exposure as well as critical time windows of exposure [31].

Recently, Balmer and his colleagues reported the effect of
VPA on human-derived embryonic stem cell line (hESC) [58].
Balmer reported that VPA (0.25∼1.0 mM) increased mRNA
expression ofOCT4 andNANOG , which are used as stem cell
markers, whereas VPA decreased mRNA expression ofPAX6 ,
which is a marker for neuroepithelial precursor (NEP) cells.
These results suggested that VPA delayed normal differentia-
tion from hESC into NEP, and these altered differentiation
may underlie abnormal neurodevelopment such as neural tube
defect [58], which again supports the idea that the effects of

prenatal exposure to VPA on neural differentiation including
the regulation of Pax6 expression might be modulated differ-
entially in different development periods.

Relationship Between ASD and Pax6

Pax6 is a pivotal gene in the WAGR (Wilms’ tumor, aniridia,
genitourinary and mental retardation) syndrome, caused by
deletions of the 11p14-p12 chromosome region including
Pax6 and WT1 gene. Recently, deletion of Pax6 gene has
been implicated in ASD [59, 60]. Pax6 heterozygous mutant
rats (rSey2/+ rats) showed impaired prepulse inhibition [61]
and aggressive social behaviors [62] as a part of ASD pheno-
types. Seemingly contradictory to our observation that
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transient up-regulation of Pax6 increased glutamatergic neu-
ronal differentiation, it is notable that many of critical genes
relevant to psychiatric disorders such as schizophrenia and
ASD often yields a similar behavioral phenotype in gain or
loss of function studies. Due to synaptic imbalance, “too
much” or “too little” synaptic activity may lead to the same
dysfunctional output [63]. Zoghbi and Bear recently proposed
that optimal synaptic function occurs within a limited dynamic
range, and the pathophysiology at both ends of this range can
cause autistic behavior [63]. Therefore, the results obtained
from genetic backgrounds (human and Pax6 TG mice) and
epigenetic backgrounds (current study) suggest that perturbed
Pax6 signal during embryonic development may explain ab-
normal synaptic development and behavioral characteristics in
ASD. Next question would be what is the nature of the genetic
and epigenetic interactions in regard to the role of Pax6 in
neuronal subtype differentiation and synaptic maturation.

Therapeutic Effects of Glutamate Receptor Antagonists
on ASD Animal Models

In this study, blocking glutamatergic neurotransmission with
MK-801 or memantine reversed the perturbed social behav-
iors in VPA-exposed rat offspring at week 4 (Figs. 6b and 7b).
In prenatally poly(I:C) exposure model of ASD [64, 65], MK-
801 treatment restored aberrant locomotor activity [66].
Moreover, recent studies reported memantine as a possible
adjunctive therapy either alone [26] or with risperidone in
ASD children [27]. On structural level, memantine restored
dendritic synapse formation of cultured cerebellar granule
cells from Fmr1 KOmice [67]. Considering MPEP produced
weaker behavioral reversal compared with MK801, NMDA
pathway may play most prominent role in the regulation of
ASD-like behaviors in VPA ASD model, although the contri-
bution of AMPA signaling pathway should be investigated
further in the future.

Although we described the therapeutic effects of glutamate
receptor antagonists on behavioral phenotypes of VPA animal
model of ASD, early exposure to NMDA antagonist itself
may produce detrimental developmental effects such as
neuro-degeneration and schizophrenia-like symptoms [68,
69], which mandate the careful investigation of the optimal
therapeutic time windows and dosage in developing subjects.
In addition, systemic administration of MK-801 has been
frequently used to make a hypo-functional state of NMDA
system, which is believed to underlie schizophrenia-spectrum
disorders including psychosis [70, 71]. Modeling schizophre-
nia, MK-801 induced deficits in hippocampal LTP and syn-
aptic plasticity [72] and decreased neurite outgrowth [73],
which were opposite to VPA animal model of ASD, which
showed hyper-plasticity [46] and increased synaptic connec-
tions [42, 46]. These results may suggest that at least some
symptoms of schizophrenia-spectrum disorder and ASD lie on

the opposite end of a neurobehavioral spectrum and use of
NMDA antagonists may shift the behavioral phenotypes on
the continuum depending on the several factors, which may
include dosage, timing of administration, treatment period and
the systemic milieu where NMDA antagonists are adminis-
tered, etc. Therefore, care should be given to select the optimal
condition of MK-801 treatment to control ASD phenotypes.

In the prenatally VPA-exposed rat models, Rinaldi et al.
reported the increase of CaMKII, NR2A and NR2B in the
somatosensory cortex at week 2 [19] as well as hyper-
plasticity in the medial prefrontal cortex at week 2 [46]. We
also found the increased expression of glutamate receptor
subtypes including NMDA receptors (NR1 and NR2B),
AMPA receptors (GluR1 and GluR2), and mGluR5
(mGluR5, Homer1, Homer1a and Shank1-3) at week 4 (man-
uscript in preparation). Considering previous reports and re-
cent results together, glutamate receptor antagonists may pro-
vide therapeutic effect through modulation of glutamatergic
nervous system in prenatally VPA-exposed rat offspring.

In this study, we only used an acute administration (intra-
peritoneal injection 30 min before the tests) of NMDA recep-
tor antagonists and an mGluR5 antagonist. Chronic treatment
with low dose of drug is an important approach to rescue
autism-like behavioral symptoms, which may alleviate the
possible side effects of drug treatment. Further studies might
be required to determine an optimal condition for chronic
administrations such as starting time point to treat, drug dos-
age, and administration route.

Altogether, these results suggested that VPA induces overt
expression of Pax6 during brain developmental process,
which induces glutamatergic neuronal differentiation from
NPCs. The dysregulated neuronal differentiation was mediat-
ed by sequential expression of transcription factors such as
Pax6, Ngn2, and NeuroD1. Pax6 expression plays essential
roles in this process as evidenced by blockade of VPA-
induced dysregulation of glutamatergic neuronal expression
when Pax6 is down-regulated. Finally and most importantly,
the blockade of the overt glutamatergic transmission in VPA
group using MK801 or memantine restored the altered social
behaviors and seizure susceptibility suggesting the essential
role of glutamatergic transmission in autism-like behaviors of
prenatally VPA-exposed rat model of ASD.

Until now, there is no cure for core symptoms of ASD, such
as impairments in social interaction and communication, al-
though many studies suggest beneficial effects of risperidone
on repetitive behavior of ASD patients. Extensive investiga-
tion is focused on several pharmacological targets such as
mGluR5 antagonist MPEP [28–30] and CTEP [74], GABAB

agonist arbaclofen [75], ERK inhibitor lovastatin [76], mToR
inhibitor rapamycin [77], D2 receptor antagonist risperidone
[78], and endocannabinoid receptor antagonists [79] (for a
review, see [80]) However, most of these therapeutic strategies
only restored non-core symptoms such as anxiety, seizure, and
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hyperactivity, which requires extensive efforts in this field.
Defining the pathophysiological mechanisms of subsets of
ASD such as presented here may provide rational approach
to develop the therapeutic options against ASD. Obviously,
investigating the general applicability of glutamate antago-
nists in other models of ASD, at least showing increased
excitatory/inhibitory balance, would be one of the first direc-
tions to further develop a plausible therapeutic option using
these groups of molecules.
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