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Abstract Statins have proven their effectiveness in the
treatment of cardiovascular disease. This class of drugs has
also attracted attention as a potential treatment for dissimilar
diseases such as certain types of cancers and neurodegener-
ative diseases.What appears to be a contradiction is that, in the
case of cancer, it has been suggested that statins increase
apoptosis and alter levels of Bcl-2 family members (e.g.,
reduce Bcl-2 and increase Bax), whereas studies mainly using
noncancerous cells report opposite effects. This review
examined studies reporting on the effects of statins on Bcl-2
family members, apoptosis, cell death, and cell protection.
Much, but not all, of the evidence supporting the pro-apoptotic
effects of statins is based on data in cancer cell lines and the use
of relatively high drug concentrations. Studies indicating an
anti-apoptotic effect of statins are fewer in number and
generally used much lower drug concentrations and normal
cells. Those conclusions are not definitive, and certainly, there
is a need for additional research to determine if statin
repositioning is justified for noncardiovascular diseases.
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Statins are well-recognized for their efficacy in the
prevention/treatment of cardiovascular disease, a topic which
has been extensively reviewed [1]. Statins reduce cholesterol
synthesis and increase the uptake of low-density lipoproteins
(LDL). Within the mevalonate pathway, these drugs also have

cholesterol-independent effects, namely, the reduction of the
two isoprenoids farnesyl pyrophosphate (FPP) and
geranylgeranyl pyrophosphate (GGPP). Reducing FPP and
GGPP decreases the prenylation of small GTPases, and it is
thought that such a mechanismmay contribute to the reduction
in morbidity and mortality occurring in cardiovascular
disease [2, 3]. In addition to the use of statins in the
prevention/treatment of cardiovascular disease, it has been
suggested, albeit with some controversy, that these drugs may
have efficacy in treating diseases such as various cancers,
ischemic stroke, inflammatory diseases, and certain neurode-
generative diseases [4–8]. One of the proposedmechanisms for
the effects of statins in noncardiovascular diseases involves
changes in expression levels of the pro-apoptotic and anti-
apoptotic Bcl-2 family of proteins. Several reports found that
statins reduced the levels of the anti-apoptotic proteinBcl-2 and
increased apoptosis and cell death. Some of those studies are
summarized in Table 1. In contrast, there is evidence that statins
increase Bcl-2 abundance which would favor and, in some
instances, reduce apoptosis and cell death, and these are listed
in Table 2. The purpose of this mini-review will be to focus on
studies within the context of what appears to be contradictory
findings regarding the effects of statins on Bcl-2 expression
levels, apoptosis, cell death, and cell protection.

Statins, Bcl-2 Family Members, and Cell Death

One of the earliest studies associating statins with apoptosis
and cell death reported on the effects of lovastatin (0.1 μM)
on growth in two cell lines, dexamethasone-resistant and
dexamethasone-sensitive lines derived from human acute T
cell leukemia patients [9]. Cell death was induced by both
lovastatin and dexamethasone, and the observation was made
that the cells had “characteristics of apoptosis” but markers of
apoptosis were not reported. Since that study, there have been
additional [10–14] reports on statin-induced apoptosis and cell
death (Table 1). Statin-induced apoptosis and/or cell death
occurs in cancer cell lines (e.g., human acute leukemia lines,
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human promyelocytic HL-60 cells, malignant glioma cells,
Barrett’s esophageal adenocarcinoma cells) and noncancer
cells (e.g., mouse fibroblasts, rat brain neuroblasts). There is

some evidence suggesting that different types of cancer are
more susceptible to statins as compared with others [4]. A
common feature of many of those studies is that high statin

Table 1 In vitro and in vivo studies on statins, cell death, apoptosis, and Bcl-2 family members

Treatment Tissue Effects Ref.

In vitro, L, 0.1 μM, Dexamethasone resistant and sensitive human
acute T cell leukemia

↑AP 9

In vitro, L, 0.1 μM, 72 h Human glioma cell lines ↑AP 11

In vitro, L, 10 μM, 12+h Human promyelocytic HL-60 leukemia cells ↑AP, but 2 μM no effect 10

In vitro, L, 50 μM, 48 h NIH/3T3 fibroblasts overexpressing oncogene
HA-ras

↑AP in HA-ras cells but not low
expressing cells; Bcl-2 rescued effects

12

In vivo, F, 92 μM, 6 days Serum form human subjects incubated with
human smooth muscle cells

↑AP, ↓Bcl-2 21

In vitro, L, 50–200 mM, 24 h Myeloid leukemia cell lines ↑AP, ↓Bcl-2 60

In vitro, L, 1–10 μM, 24 h Immortalized rat brain neuroblasts ↑AP, ↓Bcl-2, Bcl-xL 24

In vitro, A, S, 10–100 μM, 48 h Rat thoracic vascular smooth muscle cells ↑AP, ↓Bcl-2, Bax (ne) 30

In vitro, L, 10 and 30 μM, 4 days Myeloma cell lines, not all lines responsive to L ↑AP, ↓Bcl-2, Bax (ne) 31

In vitro, C, 1 and 3 μM, 20 h Rat aortic vascular smooth muscle cells ↑AP, ↓Bcl-2 61

In vitro, S, 0.1–1 μM, 18–24 h Mouse tubular cells w/wo expressing Bcl-xL ↑AP, ↓Bcl-xL, Bax (ne), Bid (ne),
overexpression reduced effects of S

25

In vitro, L, 5 μM, 24–48 h Human glioblastoma cells lines ↑AP, ↓Bim, no effects Bcl-2, Bcl-xL,
Bak, Bid, Bax

32

In vitro, A, F, L, S, 10 and 20 μM Human vascular endothelial cells ↑AP, ↓Bcl-2 62

In vitro, M, 0.003–0.006 μM/ml,
24 and 48 h

U266 human myeloma cells ↑AP, ↓Bcl-2 mRNA, protein 23

In vitro, A, C, F, L, S, 30 μM, 24 h Human adult hepatocytes ↑AP, ↓Bcl-2 mRNA, protein, Bax (ne) 63

In vitro, A, F, 50 μM, 4 days Human breast cancer cells ↑AP, ↓Bcl-2 64

In vitro, F, 10 μM, 24 h Human CD4+ T cells ↑AP, ↓Bcl-2, Bax (ne) 33

In vitro, A, 10 μM, 24 h Human osteosarcoma cells ↑AP, ↓Bcl-2 protein, mRNA, Bax (ne) 34

In vitro, P, S, 0.1, 1.25, 5 μM, 48 h Human cardiac myocytes ↑AP, ↓Mcl-1, Bax (ne), ↑Mcl-1 by P;
↓Mcl-1 mRNA by S, 5 μM

35

In vitro, S, 1 and 10 μM, 24 h Barret’s adenocarcinoma cells ↑AP, ↓Bcl-2 mRNA and protein, Bax
(ne) protein, ↑mRNA at 10 μM

65

In vitro, L, 1, 10, 20 μM, 3–24 h Rat brain neuroblasts ↑AP, ↑BimEL 13

In vitro, L, 20 μM, 24 or 48 h Human colon cancer cells ↑AP, no effects on Bcl-2, Bcl-xL 66

In vitro, S, 5 μM, 48 h Human breast cancer cells ↑AP↓Bcl-2 mRNA, no effects on Bcl-xL
and Bax

36

In vitro, L, P, S, 20 μM, 24 h Barret’s adenocarcinoma cell lines ↑AP, ↑Bad, Bax mRNA and protein levels,
no effects on Bcl-2, Bcl-xL

14

In vitro, S, 10 μM, 48 h Human colon cancer cells ↑AP, ↓Bcl-2 and Bcl-xL mRNA and
protein levels

27

In vitro, L, M, P, S, 1–20 μM, 72 h Normal and abnormal human embryonic stem
cells; breast adenocarcinoma cells

Inconsistent results on mRNA levels of
Bcl-2 and Bax when incubated with S

67

In vitro, S, 1–20 μM, 12–24 h MethA fibrosarcoma cells ↑AP, ↑Bax translocation to mitochondria 68

In vitro, F, 5–20 μM, 24 h Human hepatocellular carcinoma cell lines ↑AP, ↓Bcl-2 69

In vivo, R, 20 μM, orally once daily
for 6 weeks

CD4(+)C28(null) T of patients with acute
coronary syndromes

↑AP, ↓Bcl-2 22

In vitro, S, 0.6–10 μM 72 h ARH77multiple myeloma cell line ↑AP, ↓Bcl-2, Bax (ne) 37

In vitro, S, 25 μM, 16 h Human prostate cancer cell lines ↑AP, BimL/BimS, ↓Bcl-2, Bcl-xL, pBad 28

In vitro, S, 20 μM, 24–72 h MCF7 human breast cancer cells, SAEC human
normal small airway epithelial cells, HepG2
human hepatocellular carcinoma cells, NCI-N87
human gastric cancer (NCI gastric cells), and
NCiH12299 human non-small cell lung
carcinoma (NCH lung) cells

Effects seen in cancer cells but not normal
cells: ↑AP, ↑Bax mRNA, ↓Bcl-2 mRNA

52

AP apoptosis, A atorvastatin, C cerivastatin, F fluvastatin, L lovastatin, M mevastatin, ne no effects, P pravastatin, S simvastatin
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concentrations (frommicromolar to millimolar amounts) were
required to cause apoptosis and cell death, although there are
exceptions [9], including a study showing that lovastatin
beginning at 0.1 μM induced DNA degradation in human
glioma cells [11]. Although in that study, the effects of
lovastatin on DNA degradation in another cell line, anaplastic
astrocytoma, was not apparent until a drug concentration of
1 μM.

The pivotal roles that Bcl-2 family members play in
apoptosis and cell death are well-recognized, and that large
body of work has been extensively reviewed [15–20]. There
have been several studies showing that statins alter the
expression levels of Bcl-2 family members. This section will
examine reports indicating that statins alter levels of proteins
such as Bcl-2, Bcl-xL, and Bax. Reductions in Bcl-2 and
Bcl-xL and an increase in Bax favor a pro-apoptotic cell
environment. An early study reported that serum from normal
human subjects receiving fluvastatin (92 μM/day for 6 days)
added to human smooth muscle cells in vitro reduced Bcl-2
protein levels and increased apoptosis [21]. Similar findings
were seen in Tcells of patients with acute coronary syndromes
who received rosuvastatin (20 μM/day for 6 weeks) [22].
There have been several in vitro studies using different statins
(lovastatin, atorvastatin, simvastatin, pravastatin, and
cerivastatin) and different noncancer and cancer cell lines
demonstrating that, generally, statins at high concentrations
reduced Bcl-2 protein levels (Table 1). A notable exception to
the observation that high statin concentrations are needed to
act on Bcl-2 was a study that found that Bcl-2 protein and

mRNA levels were reduced by lovastatin at concentrations of
2.4 and 6.2 nM/ml [23], although in that study, a Western blot
showed that the lower lovastatin concentration had a larger
reducing effect on Bcl-2 as compared with the higher
concentration. The data did not appear to be semi-quantified
(scanned); only a single experiment was shown, and so, it is
not clear if differences were significant. Protein levels of
another anti-apoptotic member of the Bcl-2 family, Bcl-xL
were also reduced by statins (lovastatin and simvastatin) in
different cell types (rat brain neuroblasts, mouse tubular cells,
human myeloid KBM-5 cells, human colon cancer cells, and
human prostate cancer cells PC3) [24–28].While most studies
using relatively high concentrations of statins have found that
Bcl-2 levels were reduced, a recent study found opposite
results [29]. Simvastatin (5 μM) significantly increased Bcl-2
protein levels in primary human skeletal myotubes, which was
associated with decreased cell viability and enhanced
oxidative stress [29]. A conclusion reached in that study was
that the simvastatin-induced increase in Bcl-2 protein
expression might have been a protective response to drug-
induced cell death. In the same study, levels of the pro-
apoptotic protein Bax were also significantly increased.
Several studies have reported that statins did not alter Bax
levels [25, 30–37].

Generally, at high statin concentrations, apoptosis is
increased and Bcl-2 expression levels and cell viability are
reduced. The mechanisms for the statin-induced reduction of
Bcl-2 protein levels have not been forthcoming. Statins reduce
cholesterol, FPP, GGPP, and protein prenylation, but how

Table 2 In vivo and in vitro studies on statins, cell protection, apoptosis, and Bcl-2 family members

Treatment Tissue Effects Ref.

In vivo, S, 120 μM/kg, orally, 21 days Mouse, brain, microarray analysis, statin
levels determined

↑Bcl-2 mRNA, protein levels 40

In vivo, S, 120 μM/kg, orally, 21 days Guinea pig, brain and dissociated brain cells ↓AP,↑Bcl-2, ↓Bax↑P 41

In vivo, S, 2.4 μM/kg, i.p., 2 weeks Rat quinolinic acid model of Huntington’s
disease, brain striatum

↑Bcl-2, ↓Bax, ↑P 42

In vivo, A, 41 μM/kg, orally, 3 weeks Spontaneously hypertensive rats No effects on AP, Bcl-2, or Bax 46

In vivo, Pita, 0.363 and 0.726 μM/kg,
orally, 14 days

Rat ischemia model, heart tissue ↑Bcl-2, ↓Bax, CP 43

In vivo, S, 24 μM/kg, orally, 5 days Rat ischemia model, ventricle tissue ↑Bcl-2, ↓Bax only in tissue from
ischemic rats, CP

44

In vivo, S, 60 μM/kg, orally, 8 weeks apoE null mice fed high-fat diet, aortic tissue ↑Bcl-2, ↑Bcl-xlL, Bax (ne), CP 45

In vitro, S, 0.1 μM, 6 days Mouse primary neurons, SH-SY5Y cells ↓AP, ↑Bcl-2 mRNA, protein, CP 47

In vitro, F, 0.1 μM, 24 h Human umbilical vein endothelial cells
incubated with H2O2

↑Bcl-2 mRNA, protein, CP 48

In vitro, A, 1.0 μM, 6 h Pig mesenchymal stem cells, hypoxic and
serum-free conditions

↑Bcl-2, ↓Bax, CP 49

In vitro, S, 0.001–0.1 μM, Human osteosarcoma cells treated with H2O2 ↑Bcl-2, ↓AP, CP 50

In vitro, P, 50 μM, 5 min before and
during 15 and 60 min reoxygenation

Human atrial trabeculae incubated under
hypoxic and reoxygenation

↑Bcl-2 only during reoxygenation 51

In vitro, S, 5 μM, 48 h Primary human skeletal muscle cells ↑Bcl-2, Bax, AP 29

AP apoptosis, A atorvastatin, CP cell protection, F fluvastatin, ne no effects, Pita pitavastatin, P pravastatin, S simvastatin
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those reductions trigger an attenuation of the anti-apoptotic
protein Bcl-2 and increase the abundance of pro-apoptotic
proteins such as Bax and Bim is not understood. There is
evidence that statins can act outside of the mevalonate
pathway. Statins, for example, bind to the lymphocyte
function-associated antigen-1, which is a heterodimeric
glycoprotein and is a member of the β2 integrin family
[38, 39]. Directly related to the issue of statins and Bcl-2 is
work discussed later in this review on Bcl-2 and cell
protection showing that statins stimulate Bcl-2 gene expres-
sion and protein levels, which do not involve the mevalonate
pathway.

Statins, Bcl-2 Family Members, and Cell Protection

In the previous section, studies that found that statins reduced
Bcl-2 protein levels were reviewed. This section will
examine in vivo and in vitro studies which found that statins
increase Bcl-2 levels, and some of those studies are listed in
Table 2. In 2005, our laboratory was the first to report that a
statin, simvastatin, significantly increased Bcl-2 gene
expression in brain tissue of mice receiving the drug orally
(120 μmol/kg for 21 days) [40]. Separate groups of mice
treated with lovastatin and pravastatin also showed increased
Bcl-2 gene expression, but those differences were not
significant. Simvastatin induction of Bcl-2 gene expression
was detected using the Affymetrix DNA array and confirmed
using RT-PCR. Bcl-2 protein levels were also significantly
increased in simvastatin-treated mice. There were several
other genes whose expression levels were also altered by
statins (e.g., Igfbp3, Hk1, c-fos, c-myc, Npy1r,MCT2, Sdc4).
In a subsequent study in collaborationwithWalterMuller and
Gunter Eckert, we replicated our findings on simvastatin
induction of brain Bcl-2 protein levels but this time in the
guinea pig, demonstrating that the drug increased Bcl-2
protein levels in another species [41]. In the same study, Bax
protein levels were significantly reduced. Dissociated brain
cells from the guinea pigs administered simvastatin in vivo
exhibited neuroprotection when challenged ex vitro with
sodium nitroprusside and the Bcl-2 protein inhibitor HA14-1.
In an in vivo rat quinolinic acid model of Huntington’s disease,
simvastatin (2.4 μmol/kg i.p./day, 2 or 8 weeks) was
neuroprotective [42]. Bcl-2 protein levels were increased,
whereas levels of the pro-apoptotic protein Bax were reduced,
results which are similar to what we observed in the brain
tissue of simvastatin-treated guinea pigs [41]. Other in vivo
studies [43–45] reported that statins increased Bcl-2 abun-
dance and reduced apoptosis, and they are summarized in
Table 2. An exception to those findings is a study showing that
the administration of atorvastatin (41μmol/kg for 3weeks) did
not significantly alter levels of Bcl-2 and Bax in aortic smooth
muscle cells from spontaneously hypertensive rats [46].

Markers of apoptosis were not affected by atorvastatin
treatment in those animals.

There is a body of data from in vitro studies showing that
statins increase Bcl-2 and reduce apoptosis (Table 2), which
is in agreement with the majority of in vivo studies discussed
in this section. We reported that simvastatin (0.1 μM)
significantly increased Bcl-2 mRNA and protein levels and
provided neuroprotection in mouse primary neurons when
challengedwith oligomeric amyloidβ-protein(42) [47].When
Bcl-2 expression was inhibited by the antisense oligonucle-
otide G3139, simvastatin neuroprotection was abolished in
cells. The finding that inhibition of Bcl-2 eliminates the
protective effects of simvastatin was replicated using another
statin, fluvastatin (0.01–0.1 μM), and a different cell type,
human vascular endothelial cells, which were challenged with
H2O2 [48]. In that study, it was also observed that fluvastatin
increased Bcl-2mRNAexpression and protein levels, which is
consistent with the earlier study using simvastatin and mouse
primary neurons [47]. Treatment of different cell types
(mesenchymal stem cells, human osteosarcoma cells, and
human atrial trabeculae) with statins (atorvastatin, simvastatin,
and pravastatin) increased Bcl-2 protein levels and reduced
markers of apoptosis [49–51], and those studies are summa-
rized in Table 2.

Biphasic Effects of Statins on Bcl-2 Family Members

Statins reduce Bcl-2 mRNA and protein levels and increase
apoptosis and cell death (Table 1). In stark contrast, Table 2
lists the studies reporting that statins increase Bcl-2 mRNA
and protein levels, reduce apoptosis, and are protective.
Many of the in vitro studies supporting a detrimental effect of
statins used cancer cell lines, suggesting that cancer cells may
respond differently to statins as compared to normal cells. It
was recently reported that simvastatin (20μM) reduced Bcl-2
mRNA and increased apoptosis in different cancer cell lines
(MCF7 human breast cancer cells, HepG2 human hepato-
cellular carcinoma cells, NCI-N87 human gastric cancer NCI
gastric cells, and NCiH12299 human non-small cell lung
carcinoma NCH lung cells), but normal cells (SAEC human
normal small airway epithelial cells) were unaffected [52].
However, in view of the fact that a high concentration of
simvastatin was employed, the absence of an effect in the
epithelial cells may be a unique property of those cells. The
majority of studies showing that statins increase Bcl-2
mRNA and proteins levels and reduce apoptosis have used
normal cells (Table 2). Exceptions have been studies using
human neuroblastoma cells (SH-SY5Y cells) [47] and
human osteosarcoma cells (MG63 cells) [50].

The two studies using cancer cell lines cited previously
[47, 50] used low statin concentrations to stimulate Bcl-2
expression. The study with SH-SY5Y cells used a

Mol Neurobiol (2013) 48:308–314 311



simvastatin concentration of 0.1 μM and the study with
osteosarcoma cells used simvastatin at concentrations
ranging from 0.001 to 0.1 μM. The question is raised if
statin concentration is a determining factor in whether Bcl-2
levels are increased or reduced. Figure 1 plots in vitro studies
showing statins reducing or increasing Bcl-2 mRNA and
protein levels as a function of statin concentration. There are
more studies showing that Bcl-2 levels are reduced by statins
as compared with those studies showing an increase. The
majority of studies showing that statins reduce Bcl-2 levels
used statin concentrations of 5 μMor greater. Studies showing
that statins increase Bcl-2 levels used concentrations of 1 μM
or less. Certainly, there were exceptions, but a guarded
conclusion is that, whether statins increase or decrease Bcl-2,
such effects are dependent on statin concentrations.

Mechanisms of Statin-Induced Changes in Bcl-2

Statins reduce cholesterol by reducing the production of
mevalonate and upregulate the LDL receptor, producing an
increase in the removal of LDL from the blood. Mevalonate
is not only the precursor of cholesterol but it is the precursor
of the two isoprenoids, FPP and GGPP. FPP is a midpoint
precursor of cholesterol and the direct precursor of GGPP.
Both FPP and GGPP prenylate small GTPases such as the
Rho, Ras, and Rab family of proteins whose coordinated
activity is critical for cell structure/function. Simvastatin
reduces FPP and GGPP levels [53] and it has been proposed
that the beneficial effects of statins may be due to a reduction
in prenylation of specific proteins [3, 8, 54–56]. How such
changes in the mevalonate pathway would cause changes in
Bcl-2 levels is unclear. Bcl-2 gene expression has been found

to be activated by the transcription factor NF-κB [57].
Simvastatin at a high concentration (50 μM) inhibited
TNF-α-induced NF-κB activation which was associated
with a reduction in Bcl-2 protein levels in human myeloid
KBM-5 cells [26]. In the same study, however, it was noted
that simvastatin alone had no effect on NF-κB activation.

There is evidence that endothelin-1 (ET-1) can increase
Bcl-2 abundance via the transcription factor nuclear factor of
activated thymocytes (NFATc) [58]. We found that simva-
statin increased ET-1 gene expression whose product is the
precursor of the ET-1 protein [40]. The hypothesis that
simvastatin stimulation of Bcl-2 involves the upregulation of
ET-1 and binding of NFATc to Bcl-2 promoter sites in SH-
SY5Y human neuroblastoma cells was tested [59]. Simva-
statin increased both intracellular and secreted ET-1 protein
levels. Exogenous ET-1 increased Bcl-2 protein abundance,
which was inhibited by ET-1 receptor antagonists. Simva-
statin increased the translocation of NFATc3 to the nucleus
while reducing nuclear NFATc1 and having no effect on
NFATc4. The Bcl-2 promoter has multiple NFAT binding
sites [58], and we found that treatment of cells with
simvastatin stimulated the binding of NFATc3 to the Bcl-2
promoter. This study was the first to directly identify a
transcriptional mechanism for the regulation of statin-
induced changes in Bcl-2 protein levels. These results do
not preclude other mechanisms, and the role of protein
prenylation in Bcl-2 regulation remains unknown. Also,
further study is needed on how statins alter levels of other
Bcl-2 family members.

Summary

There is evidence that statins may be efficacious in treating
certain types of cancers by acting on Bcl-2 family members
and increasing apoptosis and cell death. Equally compelling
are studies showing that statins reduce apoptosis and increase
Bcl-2. Much, but not all, of the evidence supporting a pro-
apoptotic effect of statins is based on data in cancer cell lines
and the use of relatively high drug concentrations. Studies
indicating an anti-apoptotic effect of statins are fewer in
number and generally used low drug concentrations and
normal cells. Several questions remain unanswered regarding
statin effects on apoptosis, cell death/protection, and Bcl-2
family members. There has not been a comprehensive
examination of differences in cell types, malignant versus
nonmalignant in response to statins, or for that matter,
comparisons across different normal cells types (e.g.,
neurons, astrocytes, endothelial cells, etc.). The clinical use
of statins for the treatment of cardiovascular disease began in
the 1970s. Much more work is needed to determine if statins
have efficacy in noncardiovascular diseases such as different
cancers and neurodegenerative diseases.

Fig. 1 Effects of statin concentration on Bcl-2 mRNA and protein
levels in vitro. Studies reporting a reduction in Bcl-2 levels: 23–25, 28,
30, 31, 33, 34, 36, 37, 52, 60–66. Studies reporting an increase in Bcl-2
levels: 29, 40, 48–51. Red lines represent the means of each group
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