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Abstract Glia are key players in a number of nervous sys-
tem disorders. Besides releasing glial and neuronal signaling
molecules directed to cellular homeostasis, glia respond also
to pro-inflammatory signals released from immune-related
cells, with the mast cell being of particular interest. A pro-
posed mast cell–glia communication may open new perspec-
tives for designing therapies to target neuroinflammation by
differentially modulating activation of non-neuronal cells
normally controlling neuronal sensitization—both peripher-
ally and centrally. Mast cells and glia possess endogenous
homeostatic mechanisms/molecules that can be upregulated
as a result of tissue damage or stimulation of inflammatory
responses. Such molecules include the N-acylethanolamines,
whose principal family members are the endocannabinoid
N-arachidonoylethanolamine (anandamide), and its conge-
ners N-stearoylethanolamine, N-oleoylethanolamine, and
N-palmitoylethanolamine (PEA). A key role of PEA may
be to maintain cellular homeostasis when faced with external
stressors provoking, for example, inflammation: PEA is pro-
duced and hydrolyzed by microglia, it downmodulates mast
cell activation, it increases in glutamate-treated neocortical
neurons ex vivo and in injured cortex, and PEA levels
increase in the spinal cord of mice with chronic relapsing
experimental allergic encephalomyelitis. Applied exoge-
nously, PEA has proven efficacious in mast cell-mediated
experimental models of acute and neurogenic inflammation.
This fatty acid amide possesses also neuroprotective effects,
for example, in a model of spinal cord trauma, in a delayed
post-glutamate paradigm of excitotoxic death, and against
amyloid β-peptide-induced learning and memory impair-
ment in mice. These actions may be mediated by PEA acting
through “receptor pleiotropism,” i.e., both direct and indirect

interactions of PEA with different receptor targets, e.g.,
cannabinoid CB2 and peroxisome proliferator-activated
receptor-alpha.
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Introduction

Inflammation is fundamentally a protective cellular response
aimed at removing injurious stimuli and initiating the healing
process. Yet, prolonged inflammation, known as chronic in-
flammation, goes beyond physiological control, and eventu-
ally destructive effects override the beneficial effects.We have
now come to appreciate persistent inflammation as an under-
lying contributor to virtually every chronic disease, including
neuropathic pain. Recent studies highlight the view that
chronic inflammation in the central nervous system (CNS) is
also a hallmark of various neurodegenerative disorders in
which progressive loss of structure and function of neurons
and neuronal cell death are observed [1–5]. For example, the
concentration of nitrite, a metabolite of nitric oxide, increases
in the cerebrospinal fluid of patients with Parkinson's disease
(PD) and Alzheimer's disease (AD) in comparison with age-
matched controls [6]. Consistently, the ablation of inducible
nitric oxide synthase (iNOS) in mutant mice significantly
protects dopaminergic neurons from 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity, indicating
that iNOS is essential in MPTP-induced substantia nigra pars
compacta dopaminergic neurodegeneration [7]. A variety of
pro-inflammatory cytokines, including tumor necrosis
factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, eicosanoids,
and other immune neurotoxins, are found in either cerebro-
spinal fluid or affected brain regions of patients with neuro-
degenerative disorders [8]. Further, nuclear factor-κB
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(NF-κB), a transcription factor required for the transcription of
most pro-inflammatory molecules, is activated in the
substantia nigra pars compacta of PD patients and MPTP-
intoxicated mice and monkeys, and selective inhibition of
NF-κB in mice and monkeys by NF-κB essential modifier-
binding domain peptides protects dopaminergic neurons from
MPTP toxicity [9, 10]. Therefore, inflammation is an impor-
tant target for neuronal protection in neurodegenerative disor-
ders and neuropathic pain, the latter which typically develops
when peripheral nerves are damaged due to surgery, bone
compression in cancer, diabetes, or infection. Intriguingly,
neuroinflammation may also raise the brain's sensitivity to
stress [11–13].

A fundamental advance in neuroscience research has been
the understanding that an extensive communication exists
between the immune system and the CNS. Pro-inflammatory
cytokines occupy a key role in this communication, as they
regulate host responses to infection, inflammation, and re-
actions to stress or trauma. Activation of glial cells (microg-
lia and astroglia) has been implicated in the pathogenesis of a
variety of neurodegenerative diseases, including AD, PD,
Creutzfeldt–Jacob disease, HIV-associated dementia, stroke,
multiple sclerosis [2, 9, 14–16], and amyotrophic lateral
sclerosis [17]—and may even contribute to schizophrenia,
depression, and other psychiatric disorders [18, 19].
Microglia-mediated neuroinflammatory processes are
thought to be implicated in brain aging as well [20]. Glia
provide a link between neuroinflammation and neuropathic
pain [21]. Activated microglia and astroglia accumulate at
sites of injury or plaques in neurodegenerative CNS diseases
[14, 22]. While the former scavenges dead cells from the
CNS and secretes neurotrophic factors to promote neuronal
cell survival, and the latter may have important beneficial
effects in the recovery of injured CNS by actively monitoring
and controlling the extracellular water, pH, and ion homeo-
stasis. Inappropriate and prolonged activation of these glia
cause various autoimmune responses leading to brain injury
and neuronal cell death [2, 14, 22]. During activation, mi-
croglia and astroglia express various genes related to inflam-
mation, such as pro-inflammatory cytokines, enzymes, and
adhesion molecules. Clearly, characterization of signaling
pathways required for the activation of glial cells is an active
area of investigation because compounds capable of antago-
nizing such signaling steps may have therapeutic benefit in
neurodegenerative disorders and neuropathic pain.

Glia can respond to pro-inflammatory signals released
from cells of immune origin, which includes mast cells.
These effector cells of the innate immune system derive from
a distinct precursor in the bone marrow [23]. Mast cells are
commonly found at sites in close contact with the external
environment such as the gastrointestinal tract and airways,
and are distributed in virtually all organs and vascularized
tissues [24]. Like macrophages, they reside in the brains of

many species, where they enter during development via
penetrating blood vessels with which they remain associated
[25]. Mast cells can move through normal blood–brain bar-
rier [26], but may also cross the blood–spinal cord and
blood–brain barriers when the barrier is compromised as a
result of CNS pathology. Mast cells participate in innate host
defense reactions, and are found in peripheral tissues inner-
vated by small caliber sensory nerve fibers and within the
endoneurial compartment, where they orchestrate inflamma-
tory processes. This last point is important, as systemic
inflammation can give rise to signals that communicate with
the brain and lead to changes in metabolism and behavior,
including the expression of a pro-inflammatory phenotype by
microglia [27, 28].

Mast cells produce a wide spectrum of mediators, includ-
ing (but not limited to) biogenic amines such as histamine
and serotonin, cytokines (IL-1β and TNF-α in particular),
enzymes, lipid metabolites, ATP, neuropeptides, nerve
growth factor (NGF), and heparin [29]. In addition to rapid
mediator release via degranulation, longer-term activation
results in the release of de novo formed mediators [30]. In
terms of their immune regulatory role, mast cells release
chemoattractants that recruit eosinophils [31] and monocytes
[32]. Nervous system mast cells may play a role in the
pathogenesis of the experimental autoimmune demyelinat-
ing diseases, experimental allergic neuritis, and experimental
allergic encephalomyelitis [33]; are degranulated in the brain
of rats with experimental allergic encephalomyelitis [34];
and are associated with multiple sclerosis lesions [35]. Mast
cell tryptase is elevated in the cerebrospinal fluid of patients
with multiple sclerosis [36]. Mast cells can be activated by
myelin [37] and myelin basic protein [38], and activated
mast cells cause demyelination [39]. Brain mast cells may
also furnish a bridge between the immune system and
anxiety-like behavior [40].

Glia, Mast Cells, and Neuropathology

Central neuropathic pain is found in spinal cord injury,
multiple sclerosis, and some strokes. Aside from diabetes
and other metabolic conditions, the common causes of pain-
ful peripheral neuropathies are herpes zoster infection, HIV-
related neuropathies, nutritional deficiencies, toxins, remote
manifestations of malignancies, immune-mediated disor-
ders, and physical trauma to a nerve trunk. Neuropathic pain
is common in cancer as a direct result of cancer on peripheral
nerves (e.g., compression by a tumor), or as a side effect of
chemotherapy, radiation injury, or surgery. Besides neuronal
pathways, glia (Schwann cells, spinal microglia, and astro-
cytes) and elements of the peripheral immune system partic-
ipate in triggering and maintaining neuropathic pain states
[41, 42]. Inflammation or nerve injury can result, e.g., in the
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synthesis and release of IL-1β that modulates neuronal cell
activity [43]. Microglia express purinergic receptors which
act in pain signaling in the spinal cord under pathological
conditions [44, 45]. In such settings, dorsal horn microglia
become activated and show upregulated expression of
purinergic receptors [46, 47]. After nerve injury, mitogen-
activated protein kinases are differentially activated in spinal
microglia and astrocytes, leading to the synthesis of pro-
inflammatory/pro-nociceptive mediators to enhance and pro-
long pain. Their inhibition can attenuate neuropathic and
inflammatory pain in different animal models [48].

Resident peripheral nerve mast cells are the first cells
activated at the site of nerve damage, release algogenic medi-
ators upon degranulation [49], and contribute to the recruit-
ment of neutrophils and macrophages [50]. Mast cell degran-
ulation activates trigemino-cervical and lumbosacral pain
pathways and elicits widespread tactile pain hypersensitivity
[51]. The key mast cell mediator histamine has sensitizing
effects on nociceptors [52]. Mast cell degranulation is a prin-
cipal source of rapidly released NGF, and mast cells respond
in a paracrine/autocrine fashion to NGF [53, 54]. This NGF
can sensitize nociceptors directly via their trkA receptors, and
indirectly via other peripheral cell types [52]. These events
promote recruitment of T-cells, which reinforce and maintain
inflammatory reactions. Such mediators/factors may either
induce activity in axons or are transported retrogradely to cell
bodies in the dorsal root ganglia neurons to alter gene expres-
sion. Mast cells may also contribute indirectly by enhancing
the recruitment of other key immune cell types which, in turn,
release pro-nociceptive mediators, e.g., IL-1β and IL-6 [55,
56]. Recent data show that systemic glucocorticoid therapy
reduces pain and the number of TNF-α-positive mast cells in
rats with chronic constrictive injury [57].

Stroke and trauma result in a prolonged inflammatory
response involving microglial activation and infiltration of
macrophages and neutrophils, which can ultimately lead to
secondary injury [58]. Attenuation of microglial activation
has protective value, and there are examples making the case
for damage-limiting action [59]. While concerted efforts
have been directed to inhibiting the inflammatory cascade
of blood-borne neutrophil and phagocyte infiltration in is-
chemia, very few studies have focused on resident brain cell
types able to mount an immediate host response in the brain
and meninges—the mast cell. The latter are normally resi-
dent in the CNS [60], in close association with cerebral blood
vessels during development and adulthood [61]. As with
peripheral nerve damage, and in contrast to long-standing
belief [62], mast cell activation is the “first responder” in this
injury—not microglia [63]. Granted that TNF-α is produced
by many cells in response to stimuli, mast cells arrive “armed
and ready” to initiate acute inflammation with stores of
preformed TNF-α [64]. CNS microglia/macrophages [65]
and endothelial cells [66] produce TNF-α as well; however,

the presence and release of TNF-α from mast cells preceded
its detection in other cells. Inhibition of immediate mast cell
activation limits hypoxic-ischemic brain damage [63,
67–70]. Mast cells perform as early responders in the regu-
lation of acute blood–brain barrier changes after cerebral
ischemia and hemorrhage [71], through their complement
of vasoactive and matrix-degrading components like his-
tamine, and proteases capable of activating matrix metallo-
proteinases. Cerebral mast cells can regulate acute microvas-
cular gelatinase (matrix metalloproteinases-2 and −9) activa-
tion and consequent blood–brain barrier disruption following
transient cerebral ischemia [72].

In spite of the capability of activated microglia to damage
neurons, oligodendrocytes, or extracellular matrix mole-
cules, there is another side to the coin. For example, deple-
tion or blockade of microglia prevents disease progression in
demyelinating disorders [73], yet microglial paralysis in-
hibits the development/maintenance of inflammatory CNS
lesions in toxin-induced models of de- and re-myelination
[74]. Microglia may support myelin regeneration by phago-
cytic removal of obstructive myelin debris [75] or through
activation and recruitment of endogenous oligodendrocyte
precursor cells to the lesion site [76]. Furthermore, geneti-
cally modified mice which lack mast cells are resistant to
myelin oligodendrocyte glycoprotein-induced experimental
autoimmune encephalomyelitis (EAE) [77]; reconstitution
of these animals with normal bone marrow-derived mast
cells restores susceptibility to EAE induction [78]. Using
mast cell transplantation and genetic mutations, Bennett
et al. [79] showed that while bone marrow-derived mast cells
are actively recruited to the CNS during EAE, the disease
developed unabated in the complete absence of mast cells or
bone marrow-derived mast cell reconstitution.

A microglia role in cerebral amyloidosis/AD pathogenesis
remains a matter of discussion [80]. Although microglia can
be found alongside amyloid deposits [81] and their suppres-
sion is reported to be beneficial in mouse model of AD [82], a
marked reduction or a virtually complete ablation of resident
microglia (including bone marrow-derived microglia) failed
to alter amyloid plaque load in two distinct transgenic AD
mouse models [83]. The case for brain ischemia is also com-
plex, as microglia produce cytotoxic molecules, as well as
growth and repair factors [59]. In mice in which microglia
have been ablated, a transient ischemic insult produces a
larger infarct compared to normal mice [84], while injection
of microglia into the bloodstream of Mongolian gerbils
(which home to an ischemic hippocampal lesion) resulted in
greater neuron survival [85]. Microglia may also protect hip-
pocampal neurons from excitotoxicity [86]. Microglia have
been suggested to play a critical role in developmental synap-
tic pruning, either promoting synapse development and plas-
ticity during the early postnatal period [87] or triggering long-
lasting impairment of adult neurogenesis [88].
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Glia and Mast Cells: A Common Ground?

A growing body of evidence points to the potential for
contact between microglia and mast cells. These include
the Toll-like receptors (TLRs), especially TLR-2 and TLR-
4 (upregulation of cytokine/chemokine release and recruit-
ment of immune cells to site of injury); purinergic (ATP) P2
receptors (e.g., IL-33 from microglia binds to its receptor on
mast cells and induces secretion of IL-6, IL-13, and mono-
cyte chemoattractant protein 1 which in turn can modulate
microglia activity); proteinase-activated receptor 2 (PAR2;
mast cell tryptase cleaves/activates PAR2 on microglia,
resulting in P2X4 receptor upregulation and brain-derived
neurotrophic factor release, while IL-6 and TNF-α from
microglia upregulate mast cell expression of PAR2, resulting
in mast cell activation and TNF-α release); C5a receptor
(C5aR; microglial C5aR is upregulated upon activation,
C5a peptide is released in neuroinflammation, and there is
crosstalk between C5a and TLR4; mast cell C5aR is
upregulated upon activation, and C5aR is a strong mast cell
chemoattractant signal towards C5a peptide; there is also
crosstalk between C5a and TLR4). These points are
discussed in greater detail elsewhere [89]. Interestingly, mast
cells and astrocytes may also interact. For example, astro-
cytes have receptors for histamine [90], and astrocyte-
derived cytokines/chemokines trigger mast cell degranula-
tion [91]. Co-culturing mouse bone marrow mast cells with
cortical astrocytes leads to autocrine/paracrine actions, with
release of histamine and leukotrienes [92]; mast cells and
astrocytes display enhanced surface expression of CD40L
and CD40, respectively, whose cross-talk results in produc-
tion of inflammatory cytokines [93].

N-Palmitoylethanolamine: A Broad-Acting
Anti-inflammatory and Neuroprotective Lipid Mediator

Pharmacological attenuation of microglial and mast cell
activation is emerging as promising avenue for neuropathic
pain [94]. Chemical genetics of neuroinflammation has been
used to identify natural and synthetic compounds as
microglial inhibitors in vivo [95], while the established mast
cell degranulation stabilizer sodium cromoglycate sup-
presses hyperalgesia induced by nerve injury and postoper-
ative pain [49, 50, 96]. Apart from neuropathic pain, detri-
mental effects of neuroinflammation have been noted in
association with psychiatric and neurodegenerative diseases.
Within this context, much attention has been directed to
therapeutic strategies aimed at inhibiting neurotoxic glial
cell activation [97].

We now know of the existence of molecules involved in
endogenous protective mechanisms activated in the body as
a result of different types of tissue damage or stimulation of

inflammatory responses and nociceptive fibers. In this con-
text, consider the N-acylethanolamines, a class of naturally
occurring lipidic mediators composed of a fatty acid
and ethanolamine, namely the fatty acid ethanolamines
(FAEs). The main FAE family members comprise the
endocannabinoid N-arachidonoylethanolamine (anandamide
or 5Z,8Z,11Z,14Z)-N-(2-hydroxyethyl)icosa-5,8,11,14-
tetraenamide), and its congeners N-stearoylethanolamine
(N-(2-hydroxyethyl)stearamide), N-oleoylethanolamine
(N-2-hydroxyethyl-9(Z)-octadecenamide), and N-
palmitoylethanolamine (PEA or palmitoylethanolamide)
(N-(2-hydroxyethyl)hexadecanamide) [98]. PEA (Fig. 1) is
abundant in the mammalian brain, and PEA, as well as other
FAEs, occurs also in marine species such as bivalve molluscs
[99] and sea urchin ovaries [100]. Moreover, PEA has been
detected in the CNS of the leech Hirudo medicinalis [101].
PEA is produced within the lipid bilayer via on-demand
synthesis, where N-phosphatidylethanolamine-specific
phospholipase D (NAPE-PLD) releases it from its membrane
precursor, N-palmitoylphosphatidylethanolamine [102].

The first hint that FAEs could have beneficial actions
came about when Coburn and Moore in 1943 [103] reported
dried chicken egg yolk to have antipyretic properties in
children with rheumatic fever. Some 10 years passed before
this group identified the lipid fraction from egg yolk as the
bioactive fraction [104], and PEA as the active molecule
[105]. The therapeutic applications of PEA remained largely
overlooked, however, until the realization of its anti-
inflammatory [106], analgesic [107], and anticonvulsant
[108] properties began to take hold. These past 15 years or
so have seen a remarkable rise in the number of studies
published on PEA anti-inflammatory actions [109, 110].

PEA is produced and hydrolyzed by microglia [111], it
inhibits mast cell activation [112, 113], and its content in-
creases in glutamate-treated neocortical neurons ex vivo
[114] and in cortex after CNS injury [115–117], as well as
in muscle dialysate of women with chronic neck/shoulder
pain [118]. PEA levels are elevated in spinal cord of spastic
mice with chronic relapsing experimental allergic encepha-
lomyelitis (an animal model of multiple sclerosis, induced by
repeated administration to mice of syngeneic spinal cord
homogenate emulsified in Freund's complete adjuvant)
[119]. Taken together, these findings propose that a PEA
key role may be to maintain cellular homeostasis in the face
of external stressors provoking, for example, inflammation.
At the same time, there could well be pathological scenarios
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Fig. 1 Chemical structure of N-palmitoylethanolamine
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where PEA endogenous production is inadequate to control
the ensuing inflammatory cascade.

Taking the above premise to the next level, orally admin-
istered PEA was reported to be efficacious in mast cell-
mediated experimental models of immunogenic (passive
cutaneous anaphylaxis-induced extravasation of leucocytes)
and neurogenic (subcutaneous injection of substance P) in-
flammation, as well as carrageenan or dextran- and formalin-
induced hindpaw edema in rats [106, 120]. PEA reduced
pain elicited by subcutaneous formalin injection [107, 121,
122], and was effective even when administered after induc-
tion of the acute inflammation event [123]. This formalin
model is characterized by a marked microglia and astroglia
activation, which is normalized by PEA, together with in-
creased glial expression of the anti-inflammatory cytokine
IL-10 in the PEA-treated animals [124]. In the carrageenan-
induced paw model of hyperalgesia, intracerebroventricular
administration of PEA 30 min before carrageenan injection
markedly reduced mechanical hyperalgesia up to 24 h fol-
lowing the inflammatory insult [125]. In a rat model of
chronic granulomatous inflammation, locally administered
PEA reduced mas t ce l l degranu l a t ion and the
expression/release of NGF, prevented nerve fiber formation
and sprouting, reduced mechanical allodynia, and inhibited
sensory ganglia activation [126]. Of note, PEA has anti-
inflammatory activity and elicits pain relief in rodent neuro-
pathic pain models, as well [127, 128].

Spinal cord injury in rats is accompanied by alterations in
the endocannabinoid system. For example, one finds lesion-
induced, early stage increases of anandamide and PEA
content together with an upregulation of NAPE-PLD and a
downregulation of the degradative enzyme fatty acid
amide hydrolase (FAAH), while in delayed stages, 2-
arachidonoylglycerol increases [129]. In this injury paradigm,
PEA displays also neuroprotective effects. In one study using
a mouse compression model of spinal cord trauma (in which
an aneurysm clip is applied to the spinal cord to mimic the
persistence of cord compression seen in human injury), the
systemic administration of PEA 6 and 12 h post-injury induc-
tion produced a clear reduction in the severity of spinal cord
trauma by limiting mast cell infiltration and activation [130].
Further, PEA reduced the activation of microglia and astro-
cytes expressing cannabinoid CB2 receptors, and its protec-
tive effect appeared to involve changes in neurotrophic factor
expression and in spinal cord dopaminergic function. In an
earlier study using this experimental model of spinal cord
injury, the authors showed that intraperitoneal administra-
tion of PEA reduced spinal cord inflammation and tissue
injury, neutrophil infiltration, nitrotyrosine formation, pro-
inflammatory cytokine expression, NF-κB activation, iNOS
expression and apoptosis, and ameliorated recovery of motor
limb function [131]. Utilizing a model of mixed neuron-glia
cultures from hippocampus, Skaper et al. [38] showed that the

introduction of stimulated mast cells precipitated a loss of
neurons as a consequence of mast cells releasing TNF-α,
thereby triggering astrocyte production of nitric oxide. In this
setting, PEA decreased neuron loss resulting from mast cell
stimulation in the mixed cultures (Fig. 2), but not that caused
by direct cytokine induction of astrocytic nitric oxide synthase
[38].

In another ex vivo model, these authors showed that PEA
was neuroprotective in a delayed post-glutamate paradigm of
excitotoxic death [132]. Several very recent reports describe
the neuroprotective action of PEA against amyloid β-
peptide(25–35)-induced learning and memory impairment
in mice [133], or organotypic hippocampal slices challenged
with amyloid β-peptide(1–42) [134].

The biochemical and cellular changes that occur following
treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine
(MPTP) are remarkably similar to those of idiopathic PD.
This chronic neurodegenerative disorder is characterized by
the loss of dopaminergic nigrostriatal neurons, which leads to
disabling motor disturbances. Activation of glial cells and the
consequent neuroinflammatory response is increasingly rec-
ognized as a prominent neuropathological feature of PD.
However, there is currently no evidence for the use of non-
steroidal anti-inflammatory drugs in the secondary prevention
of PD. Non-aspirin non-steroidal anti-inflammatory drugs,
particularly ibuprofen, may reduce the risk (albeit non-
significantly) of developing PD. However, little is known of
the effects of other individual drugs, and at present, no rec-
ommendations can be made regarding their use in primary
prevention [135, 136]. Esposito et al. [137] now report that
chronic systemic PEA treatment protects against MPTP-
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Fig. 2 N-Palmitoylethanolamine (PEA) reduces hippocampal neuron
death caused by antigen- or myelin basic protein (MBP)-treated mast
cells. Mixed neuron–glia cultures were incubated for 12 h with
transwell membrane inserts containing 5×104 mast cells treated with
either anti-dinitrophenol lgE/dinitrophenol-human serum albumin (“an-
tigen”) or 20 μMMBP, alone or together with 30 μM PEA. Hippocam-
pal cell cultures were fixed 60 h after insert removal, and neurofilament-
immunopositive (NF+) neurons quantified. Values are means ± SD (four
to five experiments). *p<0.01 or **p<0.001 compared with the same
condition but without PEA. [Modified from Fig. 3 of reference [38],
copyright (1996) with permission from Wiley]
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induced neurotoxicity, microglial and astrocyte activation, and
the ensuing functional deficits evenwhen given after the insult
has been initiated. At 8 days after the MPTP injection, wild-
type mice exhibited a significant motor dysfunction as indi-
cated by a decrease in the time period on rotarod and by an
increased numbers of falls (Fig. 3a, b). Genetic ablation of
peroxisome proliferator activated receptor (PPAR)-α alone
did not impair performance on the rotarod tests, but its ab-
sence did significantly increase the motor dysfunction induced
by MPTP. Treatment with PEA in wild-type mice but not in

PPAR-α knockout mice reduced the MPTP-induced motor
dysfunction (Table 1).

Stroke is the third leading cause of death and the prime
cause of long-term disability in adults. Current therapeutic
strategies for stroke, including thrombolytic drugs such as
tissue plasminogen activator, are limited in their treatment
scope. In a newly published study by Ahmad et al. [138],
PEA was administered to mice undergoing middle cerebral
artery occlusion. This fatty acid amide reduced edema and
lesion size, blocked infiltration of astrocytes, and restored

Table 1 Preclinical and clinical studies showing anti-neuroinflammatory and/or neuroprotective effects of PEA

Model and action Ref.

Model Biological action of PEA

Acute inflammation Reduces mast cell activation [106, 107,
120–125, 141]Formalin or dextran injection in rat hindpaw Reduces glial/microglial activation

Reduces tissue edema

Reduces inflammatory hyperalgesia

Subcutaneous injection of substance P in rats Inhibition of nitric oxide and cyclooxygenase systems

Carrageenan-induced rat paw hyperalgesia Intracerebroventricular administration of PEA 30 minutes before
carrageenan injection markedly reduces mechanical hyperalgesia

Chronic inflammation Reduces mast cell degranulation and expression/release of
NGF, prevents nerve fiber formation and sprouting, reduces
mechanical allodynia and inhibits sensory ganglia activation

[126–128]
Chronic granulomatous inflammation

Chronic constriction injury of sciatic nerve
Anti-allodynic and anti-hyperalgesic effects

Compression model of spinal
cord trauma in mice

Systemic PEA reduces spinal cord inflammation/tissue injury,
neutrophil infiltration, nitrotyrosine formation, pro-
inflammatory cytokine expression, NF-κB activation, iNOS expression
and apoptosis, ameliorates recovery of motor limb function

[130, 131]

Reduces severity of spinal cord trauma by limiting mast cell
infiltration and activation; reduces activation of microglia and
astrocytes expressing cannabinoid CB2 receptors, and its
protective effect appeared to involve changes in neurotrophic
factor expression and in spinal cord dopaminergic function

MPTP mouse model of Parkinson's disease Chronic systemic PEA treatment protects against MPTP-induced
neurotoxicity, microglial and astrocyte activation, and the ensuing
functional deficits even when given after the insult has been initiated

[135]

Stroke (middle cerebral artery occlusion in rats) Reduces edema and lesion size [136]
Blocks infiltration of astrocytes

Restores the ischemia-mediated reduced expression of neurotrophic factors

PEA-treated injured animals display improved neurobehavioral
functions as evaluated by motor deficits

Traumatic brain injury
(controlled cortical impact in adult mice)

Reduces edema and brain infarction size [137]
Blocks astrocyte infiltration

PEA-treated injured animals show improved neurobehavioral functions

β-amyloid peptide injection in rat brain Counteracts reactive gliosis [140]

Chemotherapy-induced painful neuropathy in man Improves myelinated-fiber function in patients [158]

Multiple sclerosis (case report) Reduces neuropathic pain [159]

Case series describing treatment of various
syndromes associated with chronic pain

Demonstrate potential efficacy and safety of micronized
and ultra-micronized PEA in the pain reduction

[160]

Sporadic amyotrophic lateral sclerosis (case report) Treatment with ultramicronized PEA led to an improved clinical
picture by electromyographic analysis and pulmonary function

[162]

PEA palmitoylethanolamide

Mol Neurobiol (2013) 48:340–352 345



the ischemia-mediated reduced expression of neurotrophic
factors such as brain-derived neurotrophic factor and glial
cell line-derived neurotrophic factor. Moreover, PEA-treated
injured animals displayed improved neurobehavioral func-
tions as evaluated by motor deficits.

Traumatic brain injury (TBI) is a major cause of prevent-
able death and morbidity in young adults, and is characterized
blood–brain barrier leakage, cerebral ischemia, inflammation,
and redox imbalances in the traumatic penumbra of the injured
brain. Using a controlled cortical impact in adult mice as a
model of TBI (this produces full thickness lesions of the
forelimb region of the sensorimotor cortex), PEA treatment
was able to reduce edema and brain infarction size [139]. PEA
treatment also blocked astrocyte infiltration and inhibited
TBI-mediated decreases in expression of activated c-Jun N-
terminal kinase and the key pro-inflammatory transcription
factor NF-κB. Importantly, PEA-treated injured animals
showed improved neurobehavioral functions (Table 1).

Evidence continues to mount pointing to PEA as an
endogenous ligand for PPARα, one of a group of nuclear

receptor proteins that function as transcription factors regu-
lating the expression of genes. PPARα- and γ-isoforms in
particular are associated with pro-inflammatory events. Lo
Verme et al. [140] were the first to show, in 2005, that
PPARα mediates the anti-inflammatory effects of PEA and
suggested that this fatty acid ethanolamine may serve—like
its analog oleoylethanolamine—as an endogenous ligand of
PPARα. As discussed above, PEA failed to rescue memory
deficits induced by amyloid β-peptide(25–35) injection in
PPAR-α null mice, while a synthetic PPAR-α agonist mim-
icked the effect of PEA [133]; the neuroprotective action of
PEA in organotypic hippocampal slices challenged with
amyloid β-peptide(1–42) was blocked by selective PPARα,
but not PPARγ, antagonists [134]; and PEA neuroprotection
against the dopaminergic neurotoxin MPTP was in part
dependent on PPARα. PEA induced allopregnanolone syn-
thesis in astrocytes in a PPARα-dependent fashion [141],
and PPAR-α antagonists reduced the PEA ability to
counteract amyloid β-peptide(1–42)-induced reactive gliosis
[142]—effects which were absent in PPARα null mice. Other
studies have demonstrated that acute intracerebroventricular
administration of PEA is able to modulate carrageenan-
induced paw edema in mice in a PPARα-dependent fashion
[143]. Microinjection of PEA in the ventrolateral
periaqueductal grey of male rats reduced the ongoing activity
of ON and OFF cells in the rostral ventromedial medulla and
produced an increase in the latency of the nociceptive reaction
(the periaqueductal grey—rostral ventromedial medulla path-
way is a key circuitry in pain processing), effects that were
prevented by a selective PPARα antagonist [144].

An “entourage effect hypothesis” has also been put for-
ward to account for the pharmacological actions of PEA.
This hypothesis posits that PEA may enhance the anti-
inflammatory and anti-nociceptive activity of other endoge-
nous compounds by potentiating their affinity for a receptor
or by inhibiting their metabolic degradation [145]. Ananda-
mide is a candidate molecule in this respect, as it possesses
anti-inflammatory and anti-nociceptive effects. A possible
“contact” point between anandamide and its congeners like
PEA is the transient receptor potential vanilloid type 1
(TRPV1) receptor. The TRPV1 receptor, a non-selective
cation channel expressed in small diameter sensory neurons,
is activated by noxious heat, low pH, and capsaicin. Anan-
damide is also an agonist for TRPV1 receptors, and PEA
enhances anandamide stimulation of the human TRPV1
receptor [146]. The cannabinoid CB2 receptor antagonist
SR144528 inhibits some of the analgesic responses to PEA
in vivo (although PEA lacks affinity for either CB1 or CB2
receptors) which, conceivably, reflects PEA acting indirectly
by potentiating anandamide actions [107]. Mast cells [147]
and cortical [148] and spinal cord [149] microglia have all
been reported to express TRPV1 receptors. Given the close
association of mast cells and microglia in nervous tissue,

Fig. 3 Effect of palmitoylethanolamide (PEA) treatment on motor
function assessed by rotarod. At 8 days after the MPTP injection,
PPARα wild-type (WT) and PPARα knockout (KO) mice exhibited a
significant motor dysfunction as indicated by a decrease in the time
period on rotarod and by an increased numbers of falls (a, b). The
absence of PPARα gene significantly increased motor dysfunction
induced by MPTP. PEA treatment limited motor dysfunction in PPARα
WT mice but not in PPARα KO mice. *p<0.05; **p<0.01 vs. sham;
#p<0.05; ##p<0.01 vs. MPTP mice (one-way ANOVA followed by a
Bonferroni post-hoc test for multiple comparisons). [Modified from
Fig. 2 of reference [137]; this is an open-access article distributed under
the terms of the Creative Commons Attribution License]
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these findings further strengthen the view that a line of
communication exists between these two immune cell types.

The intracellular integral membrane protein FAAH be-
longs to the amidase family of enzymes, which catalyze the
hydrolysis of FAEs into the corresponding fatty acid and
ethanolamine [150]. In 2001, Ueda et al. cloned another
enzyme that preferentially hydrolyzes PEA [151]. Nominat-
ed N-acylethanolamine-hydrolyzing acid amidase (NAAA)
is not related to FAAH but bears structural homology to
ceramidase and belongs to the family of choloylglycine
hydrolases. NAAA is lysosomal in location. Inhibition of
PEA degradation thus represents a potential complementary
therapeutic approach to treat inflammation, and today is an
area of active investigation. A number of selective NAAA
inhibitors have been published [152–154], which dampen
responses induced by inflammatory stimuli in vivo and
in vitro, while at the same time elevating PEA levels
in vitro [152]. The most recently identified compound,
1-(2-biphenyl-4-yl)ethyl-carbonyl pyrrolidine, is a reversible
and competitive NAAA inhibitor which reduces mRNA
expression levels of iNOS and IL-6, while it increases
intracellular PEA levels in mouse macrophages with
lipopolysaccharide-induced inflammation [155].

Conclusions and Outlook

Inflammatory molecules can profoundly affect a broad range
of CNS functions. These effectors derive both from the
innate and adaptive immune systems, as well as CNS glia.
Microglia, in particular, act as sensors for disturbed brain
tissue homeostasis and accumulate locally in response to
neuronal injury or entry of foreign material in the brain
[156]. In contrast, scarce attention has been directed to
resident brain cell types able to mount immediate host re-
sponses, namely the mast cell. In addition to their “first
responder” action in injury (as opposed to microglia), the
longer-lasting activation of mast cells leads to the release of
de novo formed mediators. Another key feature of mast cells
is their ability to survive and deliver repetitive hits [157].

In human chronic pain, we still lack unequivocal demon-
stration that glial and mast cell activation occurs in
hypersensitized patients. Systematic studies are needed to
demonstrate a correlation between the magnitude of glial
and/or mast cell markers in the cerebrospinal fluid or in
spinal tissue and the intensity of pain in patients.

Therapeutic strategy for neuropathic pain continues to
focus on designing drugs to hit neuronal targets and block
neurotransmission. Unfortunately, they address pain symp-
toms but not the underlying pathology of neuropathic pain,
and provide no more than transient relief in only a fraction of
patients while producing severe CNS side effects. Mast cell
stabilizers suppress the development of hyperalgesia but do

not touch microglia. On the other side of the coin, glial in-
hibitors for pain rely in large part on their anti-inflammatory
properties, and are burdened with issues such as non-
selectivity in targeting one cell population, while risk of either
acute or cumulative toxicity could hamper long-term use.
Targeting regulators of neuroinflammation may prove to be
a more viable therapeutic strategy to affect a diverse array of
nervous system disorders. Future studies should investigate
the role of mast cells in inflammatory diseases as a network,
which requires a critical examination of specific tissue local-
ization, function, and dynamic interaction with endogenous
cells.

The capacity of PEA to modulate the protective responses
of animals during inflammation and pain led to the hypoth-
esis that endogenous PEA may be a component of the com-
plex homeostatic system controlling the basal threshold of
both inflammation and pain. The production of PEA during
inflammatory conditions supports this role, and emerging
data that selective inhibition of PEA degradation is anti-
inflammatory provides more direct evidence for the involve-
ment of PEA in the control of pain and inflammation. As an
endogenous compound, PEA has no adverse effects at phar-
macological doses, while possessing a double therapeutic
effect (i.e., anti-inflammatory and anti-nociceptive).

Although clinical data are only now being to emerge, PEA
has been reported to improve myelinated fiber function in
patients with chemotherapy-induced painful neuropathy
[158], and to reduce neuropathic pain in a patient with
multiple sclerosis [159]. Hesselink and Hekker [160] recent-
ly presented a case series describing the application and
potential efficacy and safety of micronized and ultra-
micronized PEA in the treatment of various syndromes as-
sociated with chronic pain that is poorly responsive to stan-
dard therapies. In addition, nearly 40 clinical trials have been
conducted to date, with a total of more than 2,000 patients
having been entered in these trials (reviewed in [161]).
Lastly, a case study reported on the effects of ultramicronized
PEA in sporadic amyotrophic lateral sclerosis, in which
treatment led to an improved clinical picture, as evidenced
by electromyographic analysis and pulmonary function
[162] (Table 1).

It is clear that we still have much to learn about signaling
mechanisms that regulate neuroinflammation. PEA, its ana-
logues, and agents that inhibit specifically its degradation are
likely to result in the development of new therapeutic strat-
egies for the treatment of pathological conditions where
neuroinflammation is a factor.
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