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Abstract Glioblastoma (GBM) is a highly aggressive brain
cancer with the worst prognosis of any central nervous system
disease despite intensive multimodal therapy. Inevitably, glio-
blastoma is fatal, with recurrence of treatment-resistant tumour
growth at distal sites leading to an extremely low median
survival rate of 12–15 months from the time of initial diagno-
sis. With the advent of microarray and gene profiling technol-
ogy, researchers have investigated trends in genetic alterations
and, in this regard, the role of dysregulatedmicroRNAs (highly
conserved endogenous small RNAmolecules) in glioblastoma
has been studied with a view to identifying novel mechanisms
of acquired drug resistance and allow for development of
microRNA (miRNA)-based therapeutics for GBM patients.
Considering the development of miRNA research from initial
association to GBM to commercial development of miR-based
therapeutics in less than a decade, it is not beyond reasonable
doubt to anticipate significant advancements in this field of
study, hopefully with the ultimate conclusion of improved
patient outcome. This review discusses the recent advance-
ments in miRNA-based therapeutic development for use in
glioblastoma treatment and the challenges faced with respect
to in vivo and clinical application.
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Introduction

The term ‘brain tumour’ is a standard idiom for an intracra-
nial solid neoplasm which is located either within the brain

itself or within the spinal canal. Although diagnosis of any
form of brain cancer is innately serious and life threatening,
patient prognosis and overall survival rates differ greatly
with respect to the precise classification of the brain tumour
type. Glioblastoma (GBM) is a highly aggressive subtype of
glioma, designated as a grade IV astrocytoma by the World
Health Organization [1, 2]. This form of glioma is extremely
invasive with the worst prognosis of any central nervous
system disease despite multimodal therapy. Typically, pri-
mary care involves mass surgical resection through open
craniotomy; however, the infiltrative nature of the glioblas-
toma cells typically requires post-operative radiotherapy
(RT) and concurrent chemotherapy (temozolomide) treat-
ment [3]. Inevitably, glioblastoma is fatal, with recurrence
of treatment-resistant tumour growth at distal sites leading to
an extremely low median survival rate of 12–15 months
from the time of initial diagnosis [3].

Many aspects of glioblastoma contribute to its poor prog-
nosis including the invasive nature of these abnormal cells
[4] and the extreme heterogeneity of this cancer both
intratumourally and between patients [5]. In addition, treat-
ment progression has been hindered by challenges including
drug delivery across the blood–brain barrier (BBB), not to
mention the delicate procedures required to remove such
tumours completely in the first instance. Despite the exten-
sive clinical differences between individual patients, current
treatment regimens are unilaterally applied with the
resulting consequence that many patients do not respond
to standard therapy and are not reaching median survival
times. In this regard, researchers have begun to focus their
studies on identifying genetic biomarkers in the hope of
developing individual-based treatment options through pa-
tient sample gene profiling and deep sequencing for known
mutations; for example, our group has previously identified
a subset of glioblastoma patients with gene mutations in
alternative lengthening of telomeres and isocitrate dehydro-
genase 1 which is indicative of improved survival and drug
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responsiveness [6] or the clinical associate of miR-124a
with reduced glioblastoma survival rates as a result of al-
tered invasive potential [7].

With the advent of microarray and gene profiling technol-
ogy, new studies have allowed researchers to investigate
trends in genetic alterations which may provide result in the
development of novel therapeutics for GBM patients [4,
8–15]. Assessment of differential gene expression in glioblas-
toma patient samples led to the discovery that O6-
methylguanione-DNA methyltransferase (MGMT) promoter
methylation status is a clinical indicator of a patient’s intrinsic
resistance to temozolomide treatment [16–18]. Temozolomide
is an alkylating chemotherapy which causes cytotoxic DNA
damage such as O6-methylguanine [19, 20]. MGMT is a
DNA repair enzyme responsible for the removal of an alkyl
group from the O6 position of guanine [21]. MGMT promoter
methylation is an epigenetic modification in some glioblasto-
ma resulting inMGMT protein suppression. When expression
is silenced, these cancer cells are not capable of repairing the
damaging effects induced by alkylating chemotherapy agents
thereby rendering them more effective in induction of tumour
damage. In phase III clinical trials, MGMTmethylation status
was shown to be a significant predictive marker of
temozolomide (TMZ)/RT treatment response [20, 22]; how-
ever, survival rates still remain less than 15 months suggesting
that additional genetic biomarkers need to be identified to
allow more targeted therapeutic development.

In this regard, over the past decade, the role of dysregulated
microRNAs in glioblastoma has been studied with a view to
identifying potentially novel mechanisms of acquired drug
resistance and allow for development of microRNA
(miRNA)-based therapeutics for GBM patients.

MicroRNAs in Glioblastoma

miRNAs are highly conserved endogenous small RNA mol-
ecules of approximately 22 nucleotides in length, function-
ing through complementary messenger RNA (mRNA) base
pairing and subsequent gene silencing. Although similar to
RNA interference (RNAi), resulting from the use of short
interfering RNA (siRNA) or short hairpin RNA (shRNA),
complementarity between the target mRNA and the miRNA
is not 100 % complete, and therefore, a single miRNA can
regulate multiple protein transcripts; unlike an siRNAwhich
is designed to be single-target specific. This mechanism of
miRNA function has been referred to as the ‘one hit multiple
target’ mechanism (Fig. 1) [23, 24].

Transport of microRNAs from one cell type to another, to
elicit their effect, has recently been associated with bioactive
vesicles called exosomes [25]. Studies of these small extra-
cellular vesicles have shown that miRNAs can be functionally
transported by such means [26, 27]. Exosomal shuttling of

miRNAs has been identified in glioblastoma and malignant
glioma [28], thereby identifying a mechanism by which
tumour-derived miRNA-loaded exosomes can target specific
proteins in surrounding cell types, effecting processes such as
angiogenesis and reduced immune response [29]

Although miRNAs were first characterized in the early
1990s by Lee et al. [30], these molecules were not recognized
as a distinct class of biological regulators with defined func-
tions until over a decade later. It is now widely accepted that
there are over 1,900miRNAs in humans, regulating over 30%
of genomic RNA [31]. It was not until 2002, however, that
miRNAs were first linked to cancer [10] and it was a further
3 years before altered miRNA expression, specifically in
glioblastoma, was assessed [32, 33]. Since that date however,
the number of peer-reviewed publications has increased ex-
ponentially providing insight not only to miRNA expression
patterns in differing GBM cell types and patient samples, but
also into the function and mechanisms of several key miRNAs
and their potential efficacy in GBM treatment (refer to
Table 1). Based on the approach of Möller et al. [34], a
Medline/PubMed database search on ‘microRNA and glio-
blastoma’ was carried out (search date, 29 November 2012).
Publication relevance was determined based on title and ab-
stract content, yielding 313 papers, which were of significance
to this publication. Of these, 42 were reviews and 136
research-based papers detailed the pro- or anti-apoptotic or
proliferative effects of specific miRNAs on glioblastoma, with
a subset of 28 papers including in vivo evaluation of individ-
ual miRNAs. Of the original 313 papers, 22 papers dealt with
the topic of chemoresistance or sensitization caused or in-
duced by miRNAs in GBM and 173 correlated miRNA pro-
files to patient outcome and/or diagnosis. Notably, of the 313
papers of relevance, 57 % were published since 2011; most
likely, as mentioned previously, due to the advancing tech-
niques and availability of microarray technology.

The pattern of over-expression or suppression of specific
miRNAs has been of immense interest to researchers working
in the glioblastoma field in the hope that reintroduction of a
depleted miRNA molecule, or inhibition of a particular
miRNA which is over-expressed, may provide a novel path-
way through which targeted therapy may be investigated.
MiRNA profiles have previously been used to classify tu-
mours based on tissue type and disease state in chronic lym-
phatic leukaemia, bladder, lung, breast and ovarian cancer [10,
35, 36]. Although still in its infancy with respect to glioblas-
toma, researchers have highlighted several miRNAs which
have been shown to correlate to glioma pathogenesis [20,
37–48] and, as highlighted in Table 1, miRNAs which have
been studied in detail have predominantly been shown to be
significantly decreased in glioblastoma patient samples or cell
lines compared to controls. These miRNAs tend to be encoded
in regions of chromosomal loss in glioblastoma patients [49];
for example, miR-34a is encoded at Chr1p36.22, a regionwith
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significant loss in many glioblastoma patient samples
[50–53].

Re-expression of these miRNAs in glioblastoma cells has
been, in some cases, proven efficacious with respect to
reduced proliferation, colony formation, migration and in-
vasion, as is the case for miR-34a [45–48]. Conversely,
miR-21 has been extensively studied due to its significant
upregulation in glioblastoma and the noted observation that
miR-21 inhibition induced apoptosis in glioblastoma cells in
vitro [32, 54–56] and in vivo [40, 57, 58]. Although such
studies used specific miR-21 inhibitors called anti-miRs,
alternative approaches to reduce over-expressed miRNAs
include sponge modulators [59]. A sponge modulator acts
as a competitive inhibitor of the miRNA binding site. They

are transcripts which are expressed from vectors designed
with strong promoters and contain multiple binding sites for
the microRNA of interest; thereby attracting miRNA bind-
ing to the introduced vector as opposed to the native target
transcript [60]. This approach has been evaluated by Mei et
al. in glioblastoma for the microRNA, miR-146a [61].

Chemoresistance and miRNAs in Glioblastoma

An additional aspect of miRNA study in glioblastoma is the
evaluation of miR-based therapeutics as an adjunct therapy in
an attempt to improve patient response to current chemother-
apeutics. Several groups have evaluated the effect of miRNA

Fig. 1 microRNA and si/shRNA mechanisms of action. RNA interfer-
ence is a mechanism of gene transcript regulation by transcriptional
repression or target transcript degradation. Short interfering RNAs
(siRNAs), short hairpin RNAs (shRNAs) or microRNAs (miRNAs) are
capable of inducing this mechanism through two similar, but independent,
pathways. The microRNA pathway begins with primary microRNA
transcripts (pri-miRNAs) which are endogenously expressed within the
host genome. These pri-miRNAs are transcribed by RNA polymerase II

(Pol II), processed by Drosha to form precursor miRNAs (pre-miRNAs),
exported from the nucleus by Exportin 5 and subsequently processed by
the Dicer enzyme for loading onto the AGO2–RISC complex. The pre-
miRNAwhich is loaded onto RISC has imperfect sequence complemen-
tarity; and therefore, the sense strand is unwound leaving a mature
miRNA bound to active RISC. This mature miRNA recognizes target
sites typically in the mRNA 3'-UTR, leading to direct translational inhi-
bition or mRNA target degradation in processing (P)-bodies
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modulation in enhancing glioblastoma chemosensitivity to
temozolomide [62–64], taxol [56, 65] and cisplatin [66], re-
ducing the intrinsic resistance of glioblastoma cells to current
therapeutics. Although this approach would benefit patients
from the point of initial diagnosis, acquired resistance remains
a major obstacle to improvements in current glioblastoma
treatment. As mentioned previously, distal tumours often oc-
cur in these patients after primary TMZ/RT treatment which
are refractory to additional chemotherapy; and although sev-
eral hypothesis have been proposed as to why such a resis-
tance occurs after initial treatment [67], there are currently no
biomarkers or molecular indicators to suggest genetic predis-
position to acquired resistance in glioblastoma. Initial studies
have assessed the differential expression of miRNAs in ac-
quired resistance in vitro providing potential avenues of miR-
based targeting to improve patient treatment response [68, 69].

Multidrug resistance proteins (MRPs) are ATP-binding
cassette transporters (ABC transporters) which have previ-
ously been identified to play a significant role in drug resis-
tance in several forms of cancer [67, 70, 71], and in 1994,
Abe et al. identified a potential role for MRP transporter
proteins in drug-resistant glioma cells [72], specifically
over-expression of MRP1, 3, 4, 5 (ABCC1, ABCC3,
ABCC4 and ABCC5, respectively) and ABCG2 [71, 73].
Although small molecule inhibition of the MRP1 transporter
has been evaluated with respect to other forms of cancer such
as neuroblastoma [74], and although high grade glioblasto-
ma patients exhibit vascular permeability [75], effective
delivery across the BBB in glioblastoma has yet to be eval-
uated. Although there is no absolute cut-off with respect to
molecular size of compound transport across the BBB [76,
77], passive transport is facilitated in molecules under 500D,
with low hydrogen bonding capability and lipophilicity,
criteria which many current chemotherapies fail to achieve
[78]. As a means of evaluating alternative anti-cancer mole-
cules, with potential of crossing the BBB, miRNAs which
have altered expression in glioblastoma have been identified
and studied. With respect to ABC transporters, miRNA-328
targeting of ABCG2 [79] or miR-9 effect on ABCC3 [80]
was assessed in an attempt to improve glioblastoma cell
exposure to chemotherapy treatment. Notably, however,
such studies were carried out in vitro.

In Vivo Research of miRNAs in GBM

In reviewing several papers detailing the effects of miRNAs
in glioblastoma, it was obvious that many of these studies
are focused on in vitro work, and the in vivo applications of
many of these regulatory molecules in glioblastoma progres-
sion have not yet been evaluated. Of significant importance
is the fact that those publications which did undertake in
vivo research focused on evaluation of subcutaneous tumour

formation subsequent to glioblastoma cell inoculation [40,
58, 81–95], orthotopic intracranial injection of glioblastoma
cells which were pre-treated with a particular miRNA [52,
53, 57, 61, 63, 96] or direct intracranial injection of a chosen
miRNA to an orthotopic model of glioblastoma [57, 63]. A
single study evaluated the effect of systemic delivery of a
miRNA target protein (EZH2) inhibitor (DZNep), as a com-
parative molecule to the miRNA (miR-101) itself, with
respect to orthotopic glioblastoma tumour formation [91].
This approach, however, eliminated the multi-gene target
effect which miR-101 may possess in glioblastoma.

Major limitations in using microRNAs for in vivo thera-
peutics are their rapid degradation in serum conditions, their
lack of reliable delivery to the intracellular space [97] and,
when combined with the intrinsic challenges of delivery
across the BBB, many researchers have focused on direct,
rather than systemic, administration of miR-based therapeu-
tics [57, 63]. Notably, the angiogenic and migratory poten-
tial of glioblastoma cannot be reflected in subcutaneous
tumour models due to the absence of the brain microenvi-
ronment which is known to play a significant role in glio-
blastoma pathogenesis and drug resistance [98–105].
Therefore, translational research requires the use of
orthotopic models of glioblastoma in combination with sys-
temic delivery of a potential therapeutic. In a clinical setting,
systemic intravenous delivery of potential therapeutics to
glioblastoma patients is more favourable with respect to
willing involvement in clinical trials due, in part, to the
minimal disruption experienced by the patient as the drug
of interest may be administered in conjunction with current-
ly established chemotherapy treatment regimens.

When questioning the potential which miR-based thera-
peutics holds for chronic diseases such as cancer, attention
must be drawn to the recent initiation of a phase IIa clinical
trial using an anti-miR-122-based drug, miravirsen
(SPC3649), in patients with hepatitis C [106] by Regulus
TherapeuticsTM; also additional research into miR-21 for he-
patocellular carcinoma, kidney fibrosis, miR-33 for athero-
sclerosis and miR-10b for glioblastoma research progression
is the primary focus within this company’s therapeutic pipe-
line [107]. Similarly, Mirna TherapeuticsTM focuses its re-
search on miRNAs which affect solid and blood-borne
tumours, such as hepatocellular carcinoma, non-small cell
lung cancer, colorectal cancer and pancreatic carcinoma, with
MRX34 (miR-34a mimic) due to progress to clinical devel-
opment in 2013 [108]. Additionally, Miragen TherapeuticsTM

has several miRNAs which are nearing the end of preclinical
assessment in a variety of chronic and cancer-related condi-
tions. Although such commercialized research shows transla-
tional promise for miR-based therapeutics, a major challenge
for such therapeutics however, as with many drugs, will be
stability, and in the case of miR-10b for glioblastoma, suc-
cessful delivery across the BBB.
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Potentials for miRNA Delivery Across BBB

Several studies have been undertaken to assess the delivery of
exogenously administered microRNAs in various forms of
cancer. In most cases, miRNAs have been encapsulated in
lipid- or nanoparticle-based molecules. The system of choice
for miRNA, or anti-miR, delivery plays a critical role in the
delivery of an effective molecule capable of modulating gene
expression. Studies involving siRNA molecules have found
that delivery systems possessing an external cationic charge
can lead to stimulation of the host immune system [109].
Additional studies have shown that certain delivery systems
such as polypropylenimne dendrimer encapsulation may lead
to induction of particular ‘gene signatures’ not normally pres-
ent within the target cell, thereby leading to an increased
potential of off-target effects of the siRNA or miRNA being
delivered [110–112]. The choice of an efficient delivery sys-
tem is also dependent upon controlled release of the
miRNA/siRNAmolecule into the intracellular cytosol without
degradation in endosomes or lysosomes [113]. Similar to
previously described studies using miRNAs, or anti-miRs,
for brain tumour research, CNS delivery of siRNA has been
through localised intratumoural or intrathecal injection [114]
due to challenges in BBB penetration and biodistribution after
systemic administration. Notably, the first and only clinical
trial for RNAi-based treatment of inoperable brain tumours
required invasive surgery and direct injection of the siRNA to
the brain [115], although several studies have been evaluated
in vitro as reviewed by Guo et al. [116].

More recently, scientific studies have been undertaken to
evaluate the potential use of nanoparticles for a variety of
applications including cancer imaging [117, 118] and mole-
cule delivery [119]. Several studies have used nanoparticles
which have been modified to enable encapsulation of
miRNAs for tumour-specific delivery and cancer cell death
in numerous cancers including neuroblastoma [66, 120–122],
lymphoma [123] and head and neck squamous cell carcinoma
[124]. Such encapsulation of miRNAs, or indeed anti-miRs,
within biodegradable nanoparticles may be applied to numer-
ous miRNAs of interest in glioblastoma research. The chem-
istry of nanoparticle composition plays an important role with
respect to cargo encapsulation, transport across the BBB and
successful endocytosis, content release and degradation with-
in the tumour cell. As discussed previously, exosomes are
naturally occurring RNA nano-vesicles which may be
harnessed for miRNA transport across the BBB. Alvarez-
Erviti et al. delivered Cy5-labelled siRNA molecules
contained in immunological inert exosomes to brain regions
in an in vivo model of Alzheimer’s disease after systemic
administration [125]. Loading of exosomes may potentially
be exploited for efficient systemic delivery of miRNAs to an
orthotopic model of glioblastoma. Hwang do et al. carried out
a study using cysteine residue-modified polyethyleneimine

(SSPEI) to transport miR-124 to the brain in vivo. This study
was focused on the delivery of a functional miRNA molecule
across the BBB after systemic administration via tail vein
injection. Notably, this study utilized an isomer of sorbitol
(Mannitol) which temporarily shrinks the endothelial cells of
the BBB, stretching the tight junction between them [126],
facilitating temporary ‘opening’ of the BBB. This study
proved that SSPEI-miR124 was successfully transported
across the BBB to the brain parenchyma in vivo [97]. Alter-
native methodologies including siRNA targeting of the tight
junction protein, claudin-5, have been used to deliver small
peptide-based molecules into the brain [127]. To date, how-
ever, nanoparticle delivery of miRNA molecules in glioblas-
toma has only been assessed in vitro [56].

The aggressive progression and dismal prognosis associ-
ated with glioblastoma diagnosis have led clinicians and
researchers alike to explore new avenues of potential treat-
ment for these patients. MicroRNAs are involved in crucial
biological processes, not only in healthy cells but also in
cancer cell biology, including differentiation, proliferation
and apoptosis. As detailed in Table 1, exogenous altered
expression of several miRNAs in glioblastoma leads to sig-
nificant effects on glioblastoma cell morphology, invasive-
ness and tumourigenicity. The findings of such studies yield
great promise to the hypothesis that miRNAs may be used to
target specific traits of glioblastoma cell biology, for example
migration and invasion potential, angiogenic capabilities,
heterogeneity and resistance to current treatment regimes
[128] (refer to Table 1). The advent of nanoparticle-
mediated delivery and recent progression in RNAi- molecule
delivery across the BBB to both CNS disease and cancer
models proves encouraging to the progression of miR-based
therapeutic efficacy in this debilitating disease. Considering
the development of miRNA research from initial association
to glioblastoma [32, 33] to commercial development of miR-
based therapeutics [106–108] in less than a decade, it is not
beyond reasonable doubt to anticipate significant advance-
ments in this field of study, hopefully with the ultimate
conclusion of improved patient outcome.
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