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Abstract Reactive gliosis, also known as glial scar forma-
tion, is an inflammatory response characterized by the pro-
liferation of microglia and astrocytes as well as astrocytic
hypertrophy following injury in the central nervous system
(CNS). The glial scar forms a physical and molecular barrier
to isolate the injured area from adjacent normal nervous
tissue for re-establishing the integrity of the CNS. It pre-
vents the further spread of cellular damage but represents an

obstacle to regrowing axons. In this review, we integrated
the current findings to elucidate the tightly reciprocal mod-
ulation between activated microglia and astrocytes in reac-
tive gliosis and proposed that modification of cellular
response to the injury or cellular reprogramming in the glial
scar could lead advances in axon regeneration and function-
al recovery after the CNS injury.
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Introduction

Reactive gliosis, also known as glial scar (GS) formation, is a
reactive cellular process that occurs after injury in the central
nervous system (CNS), involving reactive astrocytes, activated
microglia, fibroblast, endothelial cells, infiltrating immune
cells, and extracellularmatrix surrounding the damaged region.
The inflammation seems to be a critical step in secondary
degeneration after the CNS injury and causal to the GS forma-
tion. Growing evidence suggests that cytokines released from
microglia, macrophages, and infiltrating immune cells during
the acute phase of CNS damage may function as either initial
molecular inducers [e.g., interleukin (IL)-6, tumor necrosis
factor alpha (TNF-α), interferon gamma (IFN-γ)] or repressors
(e.g., IL-10) of astrocyte proliferation and GS formation [1–4].
On the other hand, molecules released from reactive astrocytes
in turn maintain a persistent inflammatory response and modu-
late the microglial activation during the chronic phase of the
CNS injury. For the regenerative studies of spinal cord injury
(SCI), reactive astrogliosis has become an important therapeu-
tic target for axonal regrowth and functional recovery [5–7]. In
the primary lesion stage of SCI, astrocytes first provide support
to the injured area, maintain blood–cord barrier, secrete cyto-
kines, and prevent excitotoxicity. In the secondary lesion stage,
astrocytes enter the hypertrophic state (reactive astrocytes)
with increased synthesis of intermediate filaments such as glial
fibrillary acidic protein (GFAP) and vimentin, which form a
physical wall and produce inhibitory proteoglycans [e.g.,
chondroitin sulfate proteoglycans (CSPGs) and KSPGs) to
drive back axonal regeneration [6]. Although theGS represents
a physical and molecular barrier to axonal regrowth, it also
isolates the injury site from healthy tissue, which prevents
further damage due to uncontrolled expansion of inflammation
[8, 9]. However, the reciprocal impact of microglia and astro-
cytes and how it determines the progression of CNS injury are
still poorly understood. In this review, we will attempt to
address this complex issue by integrating current findings in
microglial and astrocytic activation after the CNS injury, which
may aid in understanding the fine balance between inflamma-
tion and the GS formation.

Origin, Development, and Physiological Functions
of Microglia and Astrocytes in the CNS

Microglia

Microglia are widely regarded as the resident mononuclear
phagocytes distributed ubiquitously throughout the nervous
system, which are typically characterized by ramified morphol-
ogy in a “resting” state and express certain cell surface antigens,
such as CD11b/c, CD14, major histocompatibility complex
molecules, chemokine receptors, and several other markers

[10]. In mice, microglial progenitors with amoeboid/phagocytic
morphology start to colonize in neural tube around E10.5 (i.e.,
embryonic day 10.5) [11]. Three days later, they are signifi-
cantly detected within the superficial mantle layer of the spinal
cord as well as the subventricular zone in the brain [12]. The
precise origin and cell lineage of microglia remain debated. At
least two separate “populations” of microglial progenitors exist
during the prenatal CNS development. Onemainly comes from
extravascular progenitors that are of myeloid/mesenchymal
progressively developing until the adulthood. The other derives
from circulating progenitors—monocytes and/or fetal macro-
phages that are seeded within the CNS after the fetal circulation
has been established at E14. They may also be derived from
neuroectoderm similar to oligodendrocytes and astrocytes.
However, in the early postnatal and adult CNS, blood-borne
precursors only give rise to a small number of perivascular
ameboid-like macrophages/microglia, not most of ramified mi-
croglia that are widely and stably distributed in the CNS [12,
13].Microglial progenitors are differentiated and localized along
vascular/ventricular margins and white matter during prenatal
stages. Around 5 days after birth (~PND5), these microglia are
observed in both white matter and gray matter regions, which
dramatically proliferate between PND5 and PND15. By
PND20, the adult microglia are well matured and distributed
throughout the CNS (Fig. 1). Traditionally, microglia are
thought to be in a “resting” state to maintain homoeostatic
activity in the normal CNS. Recently, accumulating evidence
revealed that microglia are highly dynamic to communicate with
neurons, astrocytes, oligodendrocytes, and immune cells, which
are proposed to be renamed as “surveying” microglia [13, 14].

Astrocytes

Astrocytes, known as astroglia, are the most abundant cells in
the CNS. Astrocytes are classically identified as cells expres-
sing the intermediate filament GFAP, a marker of terminally
differentiated astrocytes. Although originally defined as gap
fillers for the neuronal network, astrocytes have strategic loca-
tions, being in closely contact with CNS-resident cells (neu-
rons, microglia, oligodendrocytes, and other astrocytes) and
with blood vessels. The initiation of glial specification occurs
after the neurogenesis at E11.5 in the rodent CNS. Radial glial
cells derived from the neuroepithelium are the primary precur-
sor cells at embryonic stages to generate neurons first, followed
by glia. The timing of this neuron–glia switch is temporally–
spatially controlled by extrinsic and intrinsic factors [15, 16].
The bone morphogenetic proteins, Delta-Notch, and Jak-Stat
pathways are well-known signaling to activate a set of tran-
scription factors that determine the cell fate of astrocytes in the
populations of the ventricular zone (VZ). However, the precise
timing of astroglial specification remains unclear. Patterning
domains in the ventral spinal cord that generate astrocyte have
been established in the p1, p2, and p3 domains at the VZ along
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the dorsal–ventral axis which specify three subtypes of ventral
white matter astrocytes—VA1, VA2, and VA3, respectively
[16, 17]. All newly born astrocytes could be essentially identi-
cal, but differentiate into different “shapes” due to their final
residential area. The morphology of astrocyte appears to be
mature by the third to fourth postnatal week. Two types of
astrocytes are identified based on their location in the white
versus gray matter [18–21]. Fibrous astrocytes typically show-
ing more classic “star-like” processes with dense GFAP
staining populate the white matter. Protoplasmic astrocytes
having more thinner and spongiform processes reside in gray
matter (Fig. 2). The lack of reliable markers is a major limita-
tion for astrocyte study. GFAP, as a terminally differentiated
astrocyte marker, is mainly expressed in the late development
of fibrous astrocytes and activated astrocytes under pathologi-
cal conditions. It is also synthesized in type B multipotent cells
at the subventricular zone (SVZ) in the adult rodents. Since
neural cells are generated from the neuroepithelium, astrocytes
share some markers the same as either neurons [e.g., nuclear
factor I protein A and B (NFI A/B), FABP7/BLBP, fibroblast
growth factor receptor 3 (FGFR3), and sex determining region
Y-box 9 (Sox9)] or oligodendrocytes (e.g., Glast, NFI A/B,
FGFR3, Sox9, Id3, and S-100β) at specific embryonic stages
[22]. Astrocytes now have been found not only to participate in
neurotransmitter regulation, ion homeostasis, blood–brain bar-
rier maintenance, immune responses modulation, and the pro-
duction of extracellular matrix (ECM) molecules [23, 24], but
also to play a number of active roles in cell migration, diffe-
rentiation, and maturation in the developing CNS, not just as a

supportive cell [25]. More recent studies further showed that
astrocytes were involved in regulating synaptic plasticity [26]
and myelin maturation [14]. In the adult rodent brain, GFAP-
positive astrocyte-like cells at the VZ–SVZ (type B cells) serve
as stem/progenitor cells that give rise to adult-born neurons in
the olfactory bulb [27].

Reactive Gliosis Following the CNS Injury—
from Inflammation to Glial Scar

Microglia Activation and Inflammatory Response

Microglia are considered “the tissue macrophages” in the
nervous system, owing to their phenotype and reactivity fol-
lowing any disturbance or loss of homeostasis that indicates
real or potential danger to the nervous system. It has been
reported that a subpopulation of monocytes enters the neural
tissue and transforms into microglia after blood–brain barrier
damage [28]. Under the pathological conditions of the CNS
injury such as infection, ischemia, neurodegenerative disease,
trauma, etc., microglia are readily activated and undergo a
dramatic transformation from their “surveying” ramified state
into an amoeboid morphology [29]. The “surveying” microg-
lia are able to extend or retract cytoplasmic processes within
seconds or minutes and reorient their processes within a few
minutes. The transformed microglia (activated state) migrate
towards the site of lesion in the CNS and form a dense border
that seems to seal the lesion and block the spread of the

Fig. 1 Origin and development of microglia in the rodent CNS. The
myeloid/mesenchymal-derived microglial progenitors start to colonize in
neural tube around E10.5. Four days later, the second population of
microglial progenitors originates from the circulating blood monocytes
and/or fetal macrophages. The proliferating progenitors are differentiated
and localized along vascular/ventricular margins and white matter during

prenatal stages. Around PND5, these microglia are observed in both
white matter and gray matter regions, which dramatically proliferated
between PND5 and PND15. By PND20, the microglia are well matured
with ramified morphology and stably distributed throughout the CNS. In
the early postnatal and adult CNS, blood-borne precursors also generate a
small number of perivascular ameboid-like macrophages/microglia
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damage [30]. In their activated state, they can up-regulate or
express de novo distinct profiles of cell surface “phenotypic”
markers, which are also found on other mononuclear phago-
cytes such as macrophages. They serve diverse beneficial
functions essential to neuron survival, which include cellular
maintenance and innate immunity [31]. Meanwhile, activated
microglia are also involved in regulating the CNS develop-
ment and neurogenesis through the release of trophic and anti-
inflammatory factors [13]. However, under the over-activated
state, microglia induce detrimental neurotoxic effects by re-
leasing a diverse set of cytotoxic substances, including pro-
inflammatory factors such as TNF-α, PGE2, and INF-γ and
oxidative stress factors which are toxic to neurons [32–34].
Some experiments have shown that two kinds of functional
subsets of monocyte-derived macrophages exist in peripheral
blood andmay contribute to distinct biological performance in
inflammatory diseases [35]. Similarly, different stimulus to
microglia may lead to diverse phenotype, referred to as
microglial polarization, which results in cells with either pro-
or anti-inflammatory properties [36]. In the SCI, the classical-
ly activatedM1macrophages/microglia activated by lipopoly-
saccharide and pro-inflammatory cytokine IFN-γ produce
high levels of oxidative metabolites (e.g., nitric oxide, super-
oxide) and pro-inflammatory cytokines (IL-12, IL-23, IL-1β,
and TNF-α) and increase their phagocytic and antigen-

presenting capacity [37]. M1 macrophages/microglia not only
play essential roles in host defense but also cause the damage
to peripheral healthy cells and tissue [38]. Conversely, alter-
nativeM2macrophages/microglia activated by cytokines IL-4
or IL-13 promote angiogenesis, matrix remodeling, and ex-
pression of MHCII molecules. They also suppress destructive
immunity, nitric oxide (NO), and pro-inflammation cytokines
(TNF-α, IL-1β, IL-2, IL-8, IL-12, and CXCL10) release
[39–41].M1macrophages/microglia express specific antigens
such as CD86, CD32, and inducible NO synthase, while M2
can be identified by arginase 1, mannose receptor, and CD206
[38, 39].

Generally speaking, short-term microglial activation is not
considered to be detrimental and even plays beneficial effects
in CNS injury or diseases. Microglia produce a number of
neuroprotective substances in response to injury, including
anti-inflammatory cytokines and neurotrophic factors.
Transforming growth factor beta (TGF-β) and IL-10 down-
regulate the expression of molecules associated with antigen
presentation and decrease the production of pro-inflammatory
cytokines, chemokines, and nitric and oxygen free radicals
[42, 43]. Microglia can also release brain-derived growth
factor (BDNF) and insulin-like growth factor1 (IGF1), which
led to improved neuronal cell viability [44]. Recent evidence
indicates that different cytokines released from activated

Fig. 2 Origin and development of astrocyte in the rodent CNS. a
Generation, morphological changes, and physiological functions of
astrocyte across developmental time. The initiation of glial specifica-
tion occurs after the neurogenesis at E11.5 in the rodent CNS. Radial
glial cell-derived astroglial progenitors are generated after the neuron–
glia switch at E11.5. The precise timing of astroglial specification
remains unclear. All newly born astrocytes could be essentially

identical, but differentiate into fibrous or protoplasmic astrocyte with
respective functions due to their final location in the white matter or
gray matter. b Signaling pathways that determine the astroglial speci-
fication. c A schematic illustration of neuronal, oligodendroglial, and
astroglial domains in the ventral spinal cord development. The
homeodomain code controls the generation of neuron, oligodendro-
cyte, and white matter astrocyte
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microglia can stimulate T immune cells to acquire diverse
phenotypes with detrimental [45] or beneficial [36, 46] effects
in the CNS. In the acute stage of SCI, macrophages/microglia
are activated (Fig. 3a) and become the primary source of the
pro-inflammatory cytokines IL-1, IL-6, and TNF-α [47].
Most macrophages/microglia are M1 cells, with only a tran-
sient and small number showing M2 polarization. cDNA
microarray and quantitative real-time PCR analyses showed
that M1 andM2markers were rapidly unregulated after spinal
cord injury. The M2 marker—arginase 1—had only a tran-
sient increase and returned to normal levels by 7 days post
injury. In contrast, in M1 markers, CD16/32 and CD86 ex-
pression was maintained for up to 1 month post-injury [38].
The in vivo and in vitro studies indicate that M1 macrophages
can directly induce neuronal death and correlate with tissue
damage in spinal cord injury as those anti-inflammatory M2

macrophages/microglia probably contributes to the prolonged
pro-inflammatory response that has detrimental effects on
tissue preservation and cell viability. Furthermore, M1 mac-
rophages may have a negative impact on axon regeneration
possibly due to the 17-fold higher expression of CSPGs inM1
than that inM2 cells [48]. In culture, M1-conditioned medium
induces stunted, short neurites with multiple branches, where-
as M2-conditioned medium promotes extensive, long neurites
from dorsal root ganglion cells [38], suggesting that M2
macrophages/microglia may provide a more permissive axon
regeneration microenvironment than M1 macrophages in spi-
nal cord injury. Thus, it is very important to understand the
diverse phenotype acquired and their regulatory signals of
microglial cells responding to the diverse stimulations. It
may provide a new therapeutical strategy for the treatment
of CNS injury via adjusting the shift of microglial subtypes.

Fig. 3 Reactive gliosis in the mouse spinal cord injury of dorsally
cervical laceration. a Activation of microglia (CD68+ cells) and astro-
cytes (GFAP + cells) in the acute stage of SCI. dpi days post injury. b
Major cellular populations in the adult spinal cord and glial scar
formation after the spinal cord injury. In the adult spinal cord, “sur-
veying or resting” microglia (brown) and astrocytes (green) are uni-
formly distributed as ependymal cells (blue) are confined to the
epithelium lining the central canal. More adult oligodendrocyte pre-
cursor cells (NG2+, red) are located in gray matter than those in white
matter. After the injury, the resident microglia, infiltrating macro-
phages, and fibroblasts evenly form the epicenter of the glial scar
surrounded by ependymal cell-derived GFAP-negative astrocytes
(blue) and activated preexisting GFAP-positive astrocytes (green). This

intense inflammatory response leads to a cascade of secondary damage
including dystrophic axons and their demyelination. On the other hand,
up-regulation of inhibitory extracellular matrix molecules secreted by
microglia and astrocytes, such as proteoglycans, is distributed in an
increasing concentration gradient from the lesion penumbra to the
lesion center. The inhibitory extracellular matrix molecules impede
axonal regrowth and remyelination by the surrounding adult oligoden-
drocytes and precursor cells that are originated mostly from resident
adult oligodendrocyte precursor cells (red) and sporadically from
ependymal cells (blue). Meanwhile, a few axonal sprouting may appear
in the area adjacent to the glial scar. SC spinal cord, SCI spinal cord
injury, GS glial scar, WM white matter, GM gray matter, OPC oligo-
dendrocyte precursor cell, OL mature oligodendrocyte
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Reactive Astrocytes in the GS Formation

Reactive astrocytes (also known as astrogliosis or astrocytic
scar) are the main cellular component of the GS, which is
characterized by cellular hypertrophy and an abnormal apparent
increase in the number of astrocytes. After the injury, astrocytes
are likely to react promptly to the damage, which undergo
morphological changes, extend their processes, and increase
synthesis of intermediate filament proteins. Up-regulation of
intermediate filament proteins, in particular GFAP, vimentin,
and nestin in astrocytes, is regarded as the hallmark of
astrogliosis. As a major intermediate filament protein in mature
astrocytes, significantly increased expression of GFAP has been
found in the process of astrogliosis in numerous experimental
models (Fig. 3a). The levels of vimentin in astrocytes range from
very low to intermediate, depending on the subpopulation of
astrocytes. It has been suggested that re-expression of vimentin
in reactive astrocytes following the injury is indicative of these
cells recapitulating developmental migratory processes [49].
Nestin is regarded as a marker of “neural stem/progenitor cells,”
which are expressed in both neuronal and glial precursors
[50–52]. Nestin-immunopositive cells can be seen in reactive
astrocytes in response to the CNS injury [53]. Recent in vivo
studies identified two cellular origins of astrocytes in theGS after
the SCI—preexisting GFAP-positive astrocytes and ependymal
cell-derived GFAP-negative astrocytes [54, 55]. The ependymal
cell-derived astrocytes express Sox9 and vimentin but not GFAP.
They form the core of the GS surrounded by resident GFAP +
astrocytes activated after SCI (Fig. 3b).

Astrocytes perform a serial of protective effects in the CNS
injury condition. Activated astrocytes limit the infiltration of
peripheral leukocytes/macrophage and activation of local resi-
dent microglia by initiating the repair of the damaged blood–
spinal cord or blood–brain barrier [56, 57]. They can modulate
blood flow by the release of vasoconstrictors [58] and also
protect neurons and oligodendrocytes from glutamate
excitotoxicity by uptaking excess glutamate in the environ-
ment [8, 59]. Deactivation of astrocytes via genetic ablation of
GFAP resulted in widespread tissue disruption, pronounced
cellular degeneration, and severe persisting motor deficits [9].
These findings show that reactive astrocytes provide an es-
sential ability that protect tissue loss and preserve function
after the CNS injury. On the other hand, reactive astrocytes
contribute significantly to the release of the inhibitory ECM
components after the CNS injury [60], which form a dense GS
around the injured lesion to pose physical and chemical bar-
riers [61, 62]. It suggested that ependymal cell-derived astro-
cytes do not synthesize those inhibitory ECM components
[55]. ECM components such as CSPGs, tenascins, and colla-
gen are dramatically up-regulated in the GS after the CNS
injury and inhibit axonal elongation and sprouting [63–65]. It
has been found that ChABC, a bacterial enzyme that is able to
degrade CSPG gradient, can enhance axonal regeneration

through the GS after the SCI [66]. CSPGs also influence the
properties of oligodendrocyte precursor cells (OPCs). They
inhibit the outgrowth of OPC processes, OPC migration, and
differentiation [67, 68], which eventually lead to failure of
remyelination for regenerated axons. In addition, astrocytes
and matrix components create a scaffold for the vasculariza-
tion network at the injury site where endothelial cells and
fibroblasts are recruited to form new capillaries. Thus, modu-
lation of reactive astrocytes and ECM in the GS may be
crucial for axonal regeneration following the CNS injury.

Reactive Gliosis and Functional Recovery in the CNS Injury

The CNS lesion may cause locomotor deficits, sensory im-
pairment, and/or chronic neuropathic pain to various extents,
depending on the location, range, and severity of the injury.
Animal studies have shown that anti-inflammatory treatments
significantly ameliorated motor and sensory functional reco-
very [69–73]. Reducing the infiltration of neutrophils, macro-
phages, or T cells with neutralizing antibodies [69, 70],
depletion of macrophages [71], or anti-inflammatory cytokine
therapy [72] in the acute phase decreased the secondary tissue
damage with functional improvement. Repression of
microglial/macrophage activation by administration of
minocycline or CD25 antibodies during either acute or chron-
ic phases increased the neuroperformance after the traumatic
SCI [73–75]. Inhibiting the astroglial activation or remodeling
the ECM of astrocytic scar enhanced axonal plasticity and
regeneration and promoted the functional improvement in the
rodent SCI models [76–80]. Recently, accumulating evidence
suggests that inflammation and reactive gliosis (both microg-
lia and astrocytes) have emerged as key contributors to path-
ological and chronic neuropathic painmechanisms in the CNS
injury [72, 81–85]. Thus, anti-inflammatory therapy may also
relieve the chronic neuropathic pain [86, 87].

Microglial Modulation on Astrogliosis in the CNS Injury

Although astrogliosis is associated with diverse neurological
disorders, the cellular and molecular mechanisms leading to
astrogliosis are not yet completely understood. As the first
line of defense in the CNS, macrophages/microglia respond
immediately to the presence of danger signals, react quickly
to increase inflammatory signals, and destroy the infectious
agents before they cause damage in neural tissue [88]. They
can respond within minutes after injury with production of
pro-inflammatory cytokines. Growing evidence suggests
that activated macrophages/microglia may contribute to the
subsequent activation of astrocytes in the CNS injury. A
number of cytokines, chemokines, growth factors, and tran-
scription factors have been identified as triggers and modu-
lators for astrogliosis [89], including TNF-α, IL-1β, IL-6,
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IL-10, TGF-α, TGF-β, ciliary neurotrophic factor (CNTF),
fibroblast growth factor-2, platelet-derived growth factor,
insulin-like growth factor (IGF), leukemia inhibitory factor,
monocyte chemoattractant protein-1, endothelin-1, erythro-
poietin, fibrinogen, matrix metalloproteinase-9, and Sox9.
As the most important pro-inflammatory cytokines secreted
by macrophages/microglia, IL-1, IL-2, IL-6, and TNF-α
play important roles as initial triggers to activate the astro-
cytes via their receptors in the acute phase of CNS injury
[90–93]. IL-1, IL-2, IL-6, and TNF-α have been found to
increase GFAP immunoreactivity when they were
microinjected into the brain in the neonatal stab-wound
mouse model [94]. IL-1 injected into the cerebral cortex of
adult rats not only elicits new blood vessel growth but also
stimulates GFAP expression as well as hypertrophy of astro-
cytes [95], indicating that IL-1-secreting inflammatory cells
may mediate astrocyte activation in the CNS injury. IL-6 has
been reported to link several neurological disorders such as
multiple sclerosis and Alzheimer’s disease. IL-6 induces the
synthesis of neurotrophic factors [nerve growth factors
(NGFs)] [96] and inhibits the production of the potentially
neurotoxic molecule TNF-α [97] in astrocytes. However,
excessive expression of IL-6 mice showed marked gliosis
and neurological signs even after mild injury of the spinal
cord [98]. In IL-6 knockout mice, reactive GFAP-positive
stellar astrocytes and gliosis are drastically inhibited [99].
Blocking the IL-6 signal with IL-6 receptor antibody after
the contusive mouse injury model can repress the GS forma-
tion at the center of the injured spinal cord by suppressing the
transformation of ependymal cells to astrocytes [91]. The in
vitro studies showed that TNF-α can promote changes in
astrocytes via activation of epidermal growth factor receptor
(EGFR) [100] and increase astrocyte proliferation and sur-
vival [101]. In transgenic model, overexpression of TNF-α
directly enhances the immunoactivity of GFAP and vimentin
in hypertrophied astrocytes possessing numerous thick pro-
cesses via activating the EGFR [102].

Effect of Reactive Astrocytes on Microglial Activation
After the CNS Injury

Inflammatory response, mediated largely by macrophages/
microglia, has been implicated in several different neurolog-
ical disorders from acute injuries such as spinal cord injury to
chronic neurodegenerative conditions such as Alzheimer’s
disease. Compared to the rapid microglial response, the
astrocytic response usually occurs as a secondary event. A
recent study reported a secondary peak of microglia and
macrophage presenting in the injured spinal cord at 60 days,
with continued elevation through 180 days after SCI, apart
from the primary peak in 3 to 7 days [103], suggesting that
the secondary signals stimulate microglia and eventually

cause such long-time chronic inflammation following the
SCI. It demonstrated that astrogliosis or GS components
may be involved in the modulation of inflammation follow-
ing the SCI. Some studies indicated that disruption of the
scar or some of its components reduced the numbers of
reactive microglia in the lesion area and attenuated mono-
cytic activity [104]. Other studies verified that the glial scar
was partially required to maintain inflammatory response
under balanced condition. Ablation of active astrocytes in-
hibits leukocyte infiltration in the spinal lesion area [9, 105].
However, the underlying mechanisms are still ambiguous.

Reactive astrocytes contribute to the release of pro- and
anti-inflammatory cytokines such as interleukins (IL-1 and
IL-6), TNF-α, TGF-β, and IFN-γ, which may in return acti-
vate microglia and cause the secondary injury [106]. The
studies in vitro provide certain hints: astrocyte-conditioned
medium increases ramification of blood monocytes in culture
[107], which was prevented by neutralizing antibodies against
astrocyte-derived cytokines [108]. Since active microglia also
secrete the same inflammatory cytokines that exert biochemi-
cal effects on themselves by way of autocrine or paracrine, it is
difficult to determine in vivo if the stimulus signals come from
reactive astrocytes. Activated astrocytes produce several
growth factors and neurotrophic factors, such as IGF, NGF,
BDNF, CNTF, and neurotrophin 3 to support the surrounding
cells [109, 110]. They also synthesize and release adenosine
triphosphate (ATP), glutamate, reactive oxygen species (ROS)
and NO, and ECM proteins such as CSPGs [62, 64]. Like
microglia, reactive astrocytes can regulate their own activities
in an autocrine or paracrine fashion [6, 57]. Meanwhile, they
may play important regulatory roles in the activation, survival,
and regeneration of adjacent neurons, oligodendrocytes, and
microglia by way of paracrine. ATP, as the second messenger,
is actually one of the main responsible messengers in the
activation of microglia through purinergic receptors that are
expressed prominently on microglia [111, 112]. In response to
local brain injury, the ATP released from astrocytes activates
morphological changes of local microglia migrating towards
the injury site quickly [30, 113]. Another report showed that
ATP mediated the calcium signaling between astrocytes and
microglia involved in controlling the number and function of
microglial cells under pathophysiologic CNS conditions [114].
Ca2 + −dependent glutamate released from astrocytes may
exacerbate the neuroinflammation in neurodegenerative disor-
ders [115]. Some data implied that glutamate can act on
metabotropic glutamate receptor to suppress some facet of
the glutamate export mechanism in the process of activation
of microglia [116]. The effect of glutamate onmicroglia can be
reversed by glutamate receptor antagonists in the process of
neuroinflammation in some neurodegeneration models
[117–119]. All these results indicate that ATP and glutamate
released from activated astrocytes directly affect the microglial
activity in neuropathological condition. In addition, as
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products of oxidative stress, ROS and NO are other important
mediators of inflammatory processes during microglia activa-
tion [120]. After the CNS injury, over-reactive astrocytes at the
lesion site form the GS and alter the composition of ECM
dramatically. ECM components including CSPGs and
tenascins are markedly up-regulated in astrocytes [121, 122].
CSPGswere found to adhere to chemoattractivemolecules and
growth factors which are needed for recruitment and activation
of macrophages [123], immune cells [124], and dendritic cells
[125]. These findings suggest that CSPGs may capture these
factors and increase their focal concentration to attract more
microglia migrating towards the lesion area, thereby enlarging
immune response to the CNS damage. CD44 functions as a
receptor colocalized in astrocytes and microglia. CD44-
neutralizing antibodies can suppress CSPG-induced activation
of microglia and modulate the release of neurotrophic factors
[126, 127]. Furthermore, inhibition of CSPG production leads
to a dramatic effect on the spatial organization of the infiltrat-
ing macrophages and resident microglia around the lesion site,
decrease of IGF-1 expression, and increase of TNF-α level in
the acute stage of the SCI, which enhances the motor function-
al recovery [127]. On the other hand, it has been reported that
activated astrocytes can exert inhibitory effects on microglial
activation. TGF-β mainly produced by astrocytes [128] can
reduce microglial activation by down-regulating the expres-
sions of molecules associated with antigen presentation, pro-

inflammatory cytokines, NO, and ROS [129]. Additionally,
astrocytes can restrain the infiltration of the circulating macro-
phage and other immune cells by repairing the damaged
blood–brain and blood–spinal cord barriers [8, 9]. Taken to-
gether, accumulative evidence indicates that reactive astrocytes
and their products are mostly associated with modulation of
inflammatory response by regulating the number, location, and
activation of infiltrating monocytes–macrophages and resident
microglia.

Conclusions and Prospects

In the CNS, reactive gliosis is a complicated process with both
beneficial and detrimental effects on injury recovery. As two
major cellular populations of reactive gliosis, microglia and
astrocytes can activate each other and have a tightly reciprocal
modulation during the GS formation. Either microglia or astro-
cytes can release a battery of signal molecules to feedback
themselves or serve a cross-talk with adjacent brain cells, i.e.,
neurons, oligodendrocytes, astrocytes, microglia, and infiltrat-
ing immune cells. Under the pathological conditions in the
CNS, microglia are activated earlier than astrocytes. In acute
phase, most subpopulations of macrophages/microglia are pro-
inflammatory M1 cells, while only a transient and small num-
ber are anti-inflammatory M2 cells. The inflammatory mole-
cules produced by activated M1 microglia activate both
preexisting GFAP-positive astrocytes and GFAP-negative as-
trocytes derived from ependymal cells, which form the GS
confining the lesion area in the CNS. The products released
from reactive astrocytes may contribute to induce a secondary
peak of macrophages/microglia presenting in the lesion site and
maintain a persistent inflammatory response during the chronic
phase of the CNS injury (Fig. 4). The following points remain
poorly understood: (1) the mechanisms to determine the shift
between M1 and M2 microglia, (2) the functional difference in
preexisting GFAP-positive astrocytes and ependymal cell-
derived GFAP-negative astrocytes, and (3) how activated mi-
croglia and astrocytes synergistically modulate ECM compo-
nents in the GS formation. A precise understanding of the
underlying mechanisms will have a significant bearing for
potential therapeutic use. Modulation of injury response and
cellular function in activated microglia and astrocytes with a
new balance of protective and inhibitory effects in the injured
CNS will likely become the master key to create a nourishing
niche for axonal regeneration. In addition, recent studies in
vitro show that lineage-specific transcription factors or
microRNA can induce differentiated cells (e.g., fibroblasts
and astrocytes) to trans-differentiate into functional neurons
without going back to the fully undifferentiated state
[130–137], which may alternatively provide an in vivo source
of neurons and modify the microenvironment for use in cell-
based therapies. Thus, cellular components of the GS, including

Fig. 4 Hypothetical intermodulation between microglia and astrocytes
in reactive gliosis following the CNS injury
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fibroblasts, astrocytes, microglia, etc., could be reprogrammed
onsite and driven toward the neuronal lineage for functional
repair.
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