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Abstract The four mammalian phosphatidylinositol 4-
kinases, together with the PI(4,5)P2 depleting 5-
phosphatases of the oculocerebrorenal syndrome of Lowe
and synaptojanin families, modulate neuronal pools of PI4P
lipid and regulate intracellular membrane trafficking in the
endocytic and secretory pathways. Dysfunctions in these
enzymes have been associated with a broad spectrum of
disorders including schizophrenia, bipolar disorder, Lowe
syndrome, age-related neurodegeneration, Alzheimer’s dis-
ease and Down syndrome. Recent work has shown that
reduced expression of individual phosphatidylinositol 4-
kinase isozymes is associated with impaired survival of
specific neuronal populations within the CNS. Furthermore,
alterations to the concentrations of different phosphoinosi-
tide lipid species in the brain and, in particular, the ratio of
PI4P to PI(4,5)P2 can have deleterious effects on clathrin-
dependent membrane trafficking both in the Golgi–endo-
somal pathway and at the plasma membrane. In this article,
we focus on the cell biology, biochemistry and neuronal
functions of the phosphatidylinositol 4-kinases and their
emerging roles in psychiatric and neurological pathologies.
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Abbreviations
Aβ Amyloid β peptide
ARF ADP-ribosylation factor
NCS-1 Neuronal calcium sensor-1

TGN Trans-Golgi network
PAO Phenylarsine oxide
PI Phosphatidylinositol
PI4P Phosphatidylinositol 4-phosphate
PI(4,5)P2 Phosphatidylinositol (4,5)-bisphosphate
PI(3,4,5)P3 Phosphatidylinositol (3,4,5)-trisphosphate
PI 3-kinase Phosphoinositide 3-kinase
PI4K Phosphatidylinositol 4-kinase
PI4KIII Type III PI 4-kinase
PICALM Phosphatidylinositol clathrin assembly

lymphoid myeloid leukaemia
PIPK PI4P 5-kinase

Introduction

Phosphoinositide lipids regulate key cellular functions
including endocytosis, signalling and secretion. In neu-
ronal systems, well-studied areas include the roles of
phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) in
synaptic vesicle recycling [1, 2] and ion channel regu-
lation (for examples, see [3–8]) and the function of
phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3)
in neuronal cell survival mediated through Akt activa-
tion [9]. Both PI(4,5)P2 generation by phosphatidylino-
sitol 4-phosphate 5-kinases (PIPK) and the subsequent
generation of PI(3,4,5)P3 by the phosphoinositide 3-
kinases are dependent on an initial phosphorylation of
phosphatidylinositol (PI) on the D4 position by one of
the four mammalian PI 4-kinase enzymes synthesising
phosphatidylinositol 4-phosphate (PI4P) [10, 11]. Indeed,
there are now numerous examples showing a requirement for
PI 4-kinase activity in the maintenance of PI(4,5)P2
pools necessary for ion channel regulation [12–22].
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Furthermore, PI4P can function on intracellular mem-
branes in the recruitment of clathrin adaptor proteins
such as AP-3 [23], AP-1 [24] and GGAs [25] during
Golgi–endosomal trafficking. In this way, PI 4-kinases
have the potential to regulate many phosphoinositide-
dependent trafficking and signalling functions. Yet de-
spite being the first committed phosphorylation step in
the pathway that synthesises PI(4,5)P2 and PI(3,4,5)P3
(Fig. 1), the neurobiological roles of PI4P are only
slowly emerging.

In addition to its synthesis by PI 4-kinases, neuronal PI4P
levels can potentially be augmented by the action of phosphoi-
nositide 5-phosphatases such as the synaptojanins [2, 26–29]
and oculocerebrorenal syndrome of Lowe (OCRL) [30] which
dephosphorylate PI(4,5)P2 on the D5 position to produce PI4P.
Synaptojanin also contains a sac1 PI4P phosphatase domain
[28, 31, 32] and thus has the potential to also decrease PI4P
levels in neuronal tissue. Recent evidence suggests that PI4P
levels on intracellular membranes, and particularly at the trans-
Golgi network and endosomes, have important neuronal func-
tions and that deregulated PI4P generation can have neuro-
pathological consequences. In this article, we evaluate and
discuss recent trends in this newly emerging area.

Four mammalian PI 4-kinases have been cloned and
characterised; they are the type III PI 4-kinases (PI4KIII)
which are inhibited by high micromolar concentrations of
the PI 3-kinase inhibitors wortmannin and LY 294002, and
the type II PI 4-kinases (PI4KII) which are wortmannin-
insensitive but can be inhibited by low micromolar concen-
trations of adenosine [11]. The two PI4KIIs, PI4KIIα (Fig. 2)
and PI4KIIβ are highly homologous ~55-kDa enzymes [33],
whereas the larger PI4KIIIs consisting of the 230 kDa
PI4KIIIα and 92 kDa PI4KIIIβ isoforms form a distinct
protein family with greater homology to the PI 3-kinase
family of enzymes in both catalytic and non-catalytic domains
[10]. Despite their structural and biochemical differences, all
the four mammalian PI 4-kinases synthesise the same PI4P
lipid product. However, as the PI 4-kinases are targeted to
different subcellular membranes, there are also isoform-
dependent differences in the rates of PI4P synthesis at

different intracellular locations [34–37] and subsequently
highly compartmentalised roles for individual isoforms in
PI4P-dependent signalling and trafficking [34, 38].

All of the PI 4-kinases are expressed in the brain and,
with the exception of the PI4KIIβ isoform, detailed immu-
nohistochemical analyses are available on their distributions
within the CNS. While there is no single systematic study
comparing the distributions of all the PI 4-kinases in the
CNS, there are some trends in their neuroanatomical expres-
sion patterns that are worth considering.

Mapping of PI4KIII expression by in situ mRNA hybrid-
isation [39], and by light and electron microscopy, [40] has
revealed that PI4KIIIα and PI4KIIIβ are localised in neu-
rons throughout the central nervous system. There are some
differences in PI4KIII isoform distribution in that PI4KIIIα
was more highly expressed in spinal cord and cerebral cortex
neurons, whereas PI4KIIIβ was most intensely immunos-
tained in Bergman glia in the molecular layer of the cerebellar
cortex. In addition, the hippocampus expresses high levels of
PI4KIIIα [40] and an mRNA differential display study has
demonstrated that expression of this isozyme is selectively
decreased in ischemia-induced delayed neuronal death in the
CA1 area of this brain region [41]. Interestingly, relatively

Fig. 1 PI kinases and phosphatases involved in the metabolism of
PI4P in the CNS

Fig. 2 Diagram illustrating the main structural features of the PI 4-
kinases (adapted from [11]). a The PI4KII isoforms share homology in
the conserved catalytic core. A conspicuous feature of the enzymes is a
conserved cysteine-rich region in the kinase domain that undergoes
palmitoylation and mediates membrane targeting to cholesterol-rich
membrane microdomains. The N-terminal regions of the PI4KIIs are
the least similar: whereas PI4KIIα is proline-rich, amphiphillic in
character and contains an AP-3-binding motif 57ERQPLL62, the N-
terminus of PI4KIIβ contains a large number of acidic residues. b
Domain organisation of mammalian PI4KIIIs. The catalytic domains
of PI4KIIIα and PI4KIIIβ display minimal homology to the PI4KIIs
but are more homologous with the PI3K family of enzymes especially
in the conserved lipid kinase unique (LKU) domain. PI4KIIIα contains
an N-terminal proline-rich domain and an internal PH domain. Non-
catalytic domains in PI4KIIIβ include a proline-rich sequence and a
binding site for NCS-1
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intense staining for PI4KIIIβ has also been reported in the
CA1 subregion of the hippocampus although there is no
evidence that levels of this protein are reduced following
ischaemia [42]. Separately, there is evidence for a correlation
between learning impairment and depressed G protein-
coupled receptor (GPCR)-induced phosphoinositide signal-
ling in the hippocampus of aged animals [43]. Since both
PI4KIIIα and PI4KIIIβ are known to supply PI4P substrate
during GPCR-activated phospholipase C signalling [34, 38],
their hippocampal enrichments may indicate a potential role
for these enzymes in muscarinic and metabotropic receptor
signalling in this brain region.

Studies on the PI4KIIs have shown that with the exception
of white matter, PI4KIIα is expressed at varying levels in
neurons and astrocytes throughout the brain with high levels
in Purkinje cells and in Bergman glia of the cerebellar molec-
ular layer [44]. A separate detailed immunocytochemical
analysis of PI4KIIα expression in the hippocampus reported
high expression of the enzyme in pyramidal cells and in the
molecular layer of the dentate gyrus, the dentate hilius and the
stratum lucidium of the CA3 region [45]. Immunohistochem-
ical results from the Human Protein Atlas [46–48] have shown
that PI4KIIβ distribution in the cerebellum mirrors that of
both PI4KIIα and PI4KIIIβ with highest expression in the
molecular layer. Overall, though, staining for PI4KIIβ is
strongest in hippocampal neurons. It is worth noting that
mRNA in situ hybridisation studies from the Allen BrainAtlas
[49] also support hippocampal and cerebellar localisations for
all the PI4K isoforms. Together these findings show that
multiple PI 4-kinase isoforms can be expressed at different
levels in a single neuroanatomical location (Fig. 3), and also
that all of these enzymes can be localised to neurons.

Subcellular Localisations of Pi 4-Kinases in Neurons
of the CNS

Detailed ultrastructural studies on the localisation of the
PI4KIIIs in neurons from the ventral horn of the spinal cord
demonstrated that PI4KIIIα immunoreactivity was associated
mainly with rough endoplasmic reticulum, mitochondrial out-
er membrane, occasionally on multivesicular bodies and close
to synaptic specialisations [40]. PI4KIIIβ was also found
associated with the rough endoplasmic reticulum, mitochon-
dria and the Golgi complex [40]. In non-neuronal cells, con-
focal imaging studies have shown that PI4KIIIα is an
endoplasmic reticulum enzyme while PI4KIIIβ is mainly
found associated with Golgi membranes [50, 51]. Further-
more, a mitochondrial localisation for either PI4KIII isoform
has not been reported in non-neuronal cells. Of the PI4KIIs,
detailed neuronal subcellular localisation data is available
only for the PI4KIIα isoform where it localises to dendrites,
the Golgi and synaptic vesicles [45, 52]. Therefore, similar to
non-neuronal cells, each PI 4-kinase isoform exhibits a

distinct pattern of membrane localisation in neurons which
also indicates that PI4P synthesis is likely to be highly com-
partmentalised within individual cells of the CNS (Fig. 4).

Neuronal Functions and Dysfunctions of the PI 4-Kinases

Early work from the Martin laboratory identified PI 4-kinase
activity on secretory vesicles involved in the supply of PI4P
substrates to PI4P 5-kinases [53, 54]. In the intervening years,

PI4KIIα PI4KIIβ

PI4KIIIα PI4KIIIβ

Fig. 3 In situ hybridisation images showing the distribution and
expression of PI 4-kinase mRNAs in sagittal sections of mouse brain
[49]. Note that mRNAs for all PI 4-kinase isoforms are highly
expressed in the cerebellum and in the hippocampus. Data from Allen
Mouse Brain Atlas, Seattle (WA): Allen Institute for Brain Science
©2009 (http://mouse.brain-map.org)

Fig. 4 Intracellular localisations of PI 4-kinase isoforms in neurons.
There is no systematic or comprehensive study detailing the subcellular
distributions of the four mammalian PI 4-kinases in neurons and no data
at all is available for PI4KIIβ. This schematic diagram therefore depicts
proposed PI 4-kinase localisations using information derived from sepa-
rate reports that used different methods and different neuronal cell types
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there has been some progress in understanding the functions
of different PI 4-kinases in neuronal vesicle trafficking events.

In the absence of isoform-selective PI 4-kinase inhibitors,
many early investigations used phenylarsine oxide (PAO) to
inhibit PI4P synthesis. PAO is now known to react with vicinal
thiol groups on a variety of enzymes to inhibit their catalytic
activity [55–57], but nevertheless it was employed, albeit as a
nonspecific intervention, to gain some initial insights into
neurophysiological functions of the PI 4-kinases. As an exam-
ple, sensitivity to PAO inhibition was used to infer a role for
PI4P in the retrograde axonal transport of neurotrophin-4 [58]
and nerve growth factor [59] in both sympathetic and sensory
neurons, suggesting that PI 4-kinases may regulate multiple
vesicle trafficking processes. It is important to bear inmind that
there has been disagreement as to whether PAO is a more
potent inhibitor of PI4KIIs or PI4KIIIs, particularly in light
of earlier work which inferred a role for PI4KII activity on
chromaffin granule membranes in regulated secretion [60].
This controversy has been more recently addressed by a de-
tailed analysis [61] using purified recombinant PI 4-kinases
which revealed that PAO was most selective for PI4KIIIα
inhibition when added at low 1–5-μM concentrations. At
higher PAO concentrations exceeding ~10 μM, there was
pronounced inhibition of PI4P generation by three isoforms
PI4KIIIα, PI4KIIIβ and PI4KIIα [61]. The recent discoveries
of better isoform-selective small molecule inhibitors of the
PI4KIIIs [62–64] have the potential to open up new avenues
of research into the roles of these enzymes in the regulation of
exocytosis and retrograde trafficking.

Studies on synaptic vesicle pools in synaptosomes derived
frommature central nerve terminals determined that repetitive
synaptic vesicle recycling did not require phosphoinositides,
but that PI 4-kinases were required for the transfer of a non-
releasable reserve pool of synaptic vesicles to a pool which
was readily releasable in response to hypertonic stimulation
[65]. Another interesting finding is there may also be cargo-
specific requirements for PI 4-kinase activity in stimulated
exocytosis, in that noradrenaline release requires phosphoino-
sitide synthesis but glutamate or GABA release do not [66].
Therefore, PI 4-kinases and particularly PI4KIIIs have very
specific functions restricted to particular points in the synaptic
vesicle cycle, and these roles may be further restricted to
particular neurotransmitters.

As regards the regulation of PI 4-kinases on secretory
vesicles, PI4KIIIβ represents the best characterised example
with insights being gained mainly from PC12 neuroendocrine
cells [67, 68] but with some important observations also being
derived from studies on non-neuronal cell lines [69–73]. On
secretory vesicle membranes, the lipid kinase activity of
PI4KIIIβ is stimulated by interaction with neuronal calcium
sensor 1 (NCS-1) [67–83]. NCS-1 is a Ca2+-binding EF hand
protein which can activate membrane-associated PI4KIIIβ in
response to elevated cytosolic Ca2+ concentrations, thereby

providing some rationalisation of the relationship between
Ca2+-sensitive exocytosis and PI4P synthesis. Additionally,
both NCS-1 and PI4KIIIβ are targeted to intracellular mem-
branes via interactions with ADP-ribosylation factor (ARF)
proteins [75, 84], and PI4KIIIβ interactions with ARF-1 are
important for regulatory exocytosis [70].

While there has been significant progress in understand-
ing the functions of PI4KIIIβ, NCS-1 and ARF-1 in the
regulation of stimulated secretion, there is also some evi-
dence that the PI4KIIα isozyme may also function on this
pathway. Indeed, PI4KIIα activity is particularly enriched
on synaptic [52] and secretory vesicles [85], and it is note-
worthy that the enzyme was originally purified and cloned
from a secretory vesicle membrane fraction as found by
Barylko and colleagues [86]. PI4KIIα is required for the
recruitment of AP-1 at the trans-Golgi network (TGN) and
thus the formation of clathrin-coated vesicles [24]. A more
recent work specifically investigating the role of PI4KIIα in
neuronal vesicle trafficking has shown that the enzyme coop-
erates with the BLOC-1 and AP-3 complexes to regulate
trafficking from the cell body to the nerve terminal [45]. In
light of the recent precedent that both PI4KIIα and PI4KIIIβ
isozymes are required for correct Golgi–lysosomal trafficking
of the Gaucher disease enzyme β-glucocerebrosidase [87], it
seems likely that different PI 4-kinases may control distinct
biochemical steps in neuronal vesicle trafficking. Table 1
shows the emerging roles for PI 4-kinases in neuronal disease.

Emerging Neuropathological Roles for the PI 4-Kinases

Schizophrenia

Even though there is still much to be learned about the role
of the different PI 4-kinases in normal neuronal physiology,

Table 1 Emerging roles for PI 4-kinases in neuronal disease

PI4K isozyme Pathology

PI4KIIα Knock-out mice develop neurodegeneration
similar to autosomal recessive hereditary
spastic paraplegia [44].

Transports dysbindin, a schizophrenia
susceptibility protein [45]

Inhibited by nM concentrations of Aβ
protein [99, 100]

PI4KIIβ Potential role in schizophrenia [92]

PI4KIIIα Schizophrenia [88]

22q11.2 deletion syndrome [89]

Downregulated in hypoxia-induced neuronal
cell death [41]

Downregulated following chronic ethanol
treatment [93]

364 Mol Neurobiol (2013) 47:361–372



there are nevertheless a number of reports implicating these
enzymes in psychiatric and neurological diseases. One
emerging story is that PI4KIIIα and PI4KIIα may be im-
portant in schizophrenia. The gene for PI4KIIIα, termed
PI4K3A, maps to chromosome 22q11, a locus which is of
high interest in terms of understanding the genetic basis of
mental illness. Individuals with a hemizygous deletion in
this chromosomal region in what is known as 22q11.2
deletion syndrome are more susceptible to a number of
psychiatric conditions including depression, autism, bipolar
disorder and schizophrenia.

In a study involving a cohort of 310 Dutch patients,
Jungerius and colleagues [88] identified a significant associ-
ation between three intronic PI4K3A single nucleotide poly-
morphisms and schizophrenia. It is noteworthy that this
association was later confirmed in a different study in patients
with 22q11.2 deletion syndrome [89]. However, a similar study
on a Japanese group of patients did not replicate these findings
[90]. Therefore, compensatory mechanisms due to differences
in genetic background and possibly related to ethnic variation
may affect the linkage betweenPI4K3A and schizophrenia. In a
separate study which investigated the frequencies of PI4K3A
polymorphisms [91] in schizophrenia and bipolar disorder,
there was some evidence for the occurrence of two rare but
possibly functional variants in a few patients; the first could
possibly result in the creation of a CREB transcription factor
binding site in the promoter region and the second had the
potential to disrupt splicing of the PI4K3A gene.

While most work has been focused on the possible role of
the PI4KIIIα isoform in schizophrenia, there is some evi-
dence that other PI 4-kinases may have a role in this disease.
A potential association between the PI4KIIβ isoform and
schizophrenia was suggested in a study centred on a large
Scottish family cohort [92], and the PI4KIIα isoform is
involved in vesicular transport of dysbindin, a schizophrenia
susceptibility protein [45]. This leads to the now familiar
conclusion that multiple PI 4-kinases may be involved in
schizophrenia although it is not yet clear if such an associ-
ation is only limited to a subset of patients.

PI4KIIIα in Chronic Alcohol Consumption

Altered PI4KIIIα expression has been reported in rat hip-
pocampus following chronic ethanol treatment. Using
cDNA microarrays to analyse gene expression, Saito et al.
[93] found that the expression of PI4KIIIα was downregu-
lated 1.6-fold in the brains of ethanol-treated rats. Several
other proteins including profilin, synaptophysin, ARF-1 and
dynamin-1 also exhibited a similar degree of downregulal-
tion, leading to the suggestion that cytoskeletal and vesicu-
lar trafficking processes may be particularly sensitive to
perturbation by ethanol [93]. PI4KIIIα is not known to regu-
late post-Golgi vesicle trafficking, but emerging evidence

from other experimental models suggesting a pro-survival
signalling role for this isoform via the MAPK/ERK pathway
may be worth investigating in a neuronal context. In particu-
lar, knockdown of PI4KIIIα in zebrafish morphilinos gave
rise to anomalous brain development which seems likely to be
due to defective growth factor-stimulated MAPK and PI 3-
kinase signalling [94]. Also noteworthy in this regard is a
siRNA kinase screen in medulloblastoma-derived cell lines
which identified PI4KIIIα as a protein required to sustain cell
proliferation and in underlying resistance to the chemothera-
peutic reagent cisplatin [95]. These results combined with
other emerging insights into the role of PI 4-kinases in cell
survival [96] suggest that further work is warranted to inves-
tigate the possible targeting of these enzymes in brain cancers
difficult to treat such as medulloblastomas which have poor
survival rates.

Neuronal Cell Death Following Ischemia

In a rat model for transient forebrain ischemia, induced by the
four-vessel occlusion method, PI4KIIIα expression is specif-
ically downregulated 30–80 % in CA1 pyramidal neurons but
not in other brain regions [41]. This event precedes the
delayed neuronal apoptosis that occurs in these neurons fol-
lowing ischemic shock and correlated with a reduction in PI
(4,5)P2 levels. Significantly, recombinant overexpression of
wild-type but not catalytically inactive PI4KIIIα in neuroblas-
toma cells could rescue hypoxia-induced cell death, thus
demonstrating that PI4KIIIα-catalysed PI4P generation was
essential for cell survival under these conditions [41].

Alzheimer’s Disease

Both phosphoinositde levels [97] and PI 4-kinase activity are
reduced by up to 50 % in the brains of patients with Alz-
heimer’s disease [98]. Intriguingly, pathologically relevant
nanomolar concentrations of amyloid β (Aβ) protein can
inhibit PI4KII activity in a neuronal plasma membrane prep-
aration [99] with concomitant, augmented glutamate toxicity.
In a later study, it was demonstrated that the suppression of
PI4P synthesis and glutamate neurotoxicity by Aβ protein
could be antagonised with a simple Ile-Gly-Leu tripeptide
[100]. Similar to the key Alzheimer’s proteases BACE [101]
and γ-secretase [102], the catalytic activity of PI4KIIα is
highly sensitive to membrane cholesterol levels, and this en-
zyme is also targeted to cholesterol- and glycosphingolipid-
rich microdomains of the TGN and endosomes [103–105].
Recently, it has been reported that γ-secretase activity is
strongly inhibited by phosphatidylinositol in vitro [106]. Fur-
thermore, single nucleotide polymorphisms in PICALM, a
gene encoding phosphatidylinositol clathrin assembly lym-
phoid myeloid leukaemia (PICALM), are strongly associated
with Alzheimer’s disease [107, 108]. PICALMbinds PI(4,5)P2
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and regulates clathrin-mediated endocytosis of amyloid pre-
cursor protein and its subsequent trafficking to endosomes
where it is proteolytically processed into Aβ [109, 110]. Thus
PICALM functionally links PI4P metabolism with endocytic
trafficking and amyloid plaque formation [109, 110]. Together
these observations suggest a common sterol-sensitive pathway
that may link amyloid protein processing with PI4P metabo-
lism and possibly in the upstream production of PI(4,5)P2 [26].

Neuropathology in PI4KIIα Knock-out Mice

Acute RNAi-induced inhibition of any of the PI 4-kinase
isozymes in cell lines can result in defective phosphoinosi-
tide signalling and aberrant intracellular trafficking. Thus, it
could have been expected that PI 4-kinase knock-out ani-
mals would exhibit multiple abnormalities. To date, only the
pi4k2a gene encoding the PI4KIIα isozyme has been
knocked out in mice [44]. Surprisingly however, generation
of a PI4KIIα gene trap knock-out mouse showed that ho-
mozygous−/− animals were viable and initially developed
normally [44]. As the animals aged, a progressive neurolog-
ical phenotype developed, with the mice exhibiting a spastic
gait, nodding tremor and incontinence. These characteristics
resemble the progression of autosomal recessive hereditary
spastic paraplegia. Histological analysis of aged animals
revealed a marked decrease in the number of Purkinje cells,
along with axonal defects in both the ascending and
descending tracts of the spinal cords [44]. The appearance
of lipofuscin deposits in affected mice suggests that loss of
PI4KIIα expression induces a cumulative failure in endo-
lysosomal trafficking, since defects in this pathway charac-
teristically give rise to endosomal storage diseases [87].
However, further investigations are required to establish
whether there exists a link between early onset neuropathy
and defective, PI4KIIα-dependent, intracellular trafficking.

The progressive nature of the defects in PI4KIIα knock-
out mice suggests that there is initial compensation for the
loss of the enzyme perhaps through functional redundancy
of the other PI 4-kinase isotypes. While it is not known
whether pro-survival neuronal signalling was inhibited or if
membrane trafficking was defective in the knock-out mouse
model, it is clear that, over time, the continued expression of
PI4KIIα is essential for the viability of particular cell pop-
ulations in the CNS.

Neuronal Dysfunction Controlled by other PI4P Modulators

While perturbations of the PI 4-kinase isoforms themselves
are sufficient to induce neuronal dysfunction, PI4P concen-
trations can also be modulated by PI4P 5-kinase phosphory-
lation to generate PI(4,5)P2 by, or conversely via phosphatase-
mediated D5 dephosphorylation of PI(4,5)P2 to generate PI4P.
There is now strong evidence that deregulation of either

pathway of PI4Pmetabolism can lead to neuronal dysfunction
and disease.

OCRL

OCRL is a phosphoinositide D5 phosphatase, capable of
producing PI4P through the dephosphorylation of PI(4,5)P2
(reviewed in [111]). OCRL is deleted or mutated in individu-
als suffering from Lowe syndrome and in Dent’s disease
[112]. This is an X-linked disorder and, along with the asso-
ciated ophthalmological and renal symptoms, there is a dis-
tinct neuronal phenotype, with affected boys suffering from
varying degrees of intellectual impairment, seizures and mal-
adaptive behavioural issues. OCRL is typically found on
endosomes and at the Golgi of non-neuronal cell lines. De-
fective OCRL leads to PI(4,5)P2 accumulating on early endo-
somes and consequently enhanced N-WASP-mediated F-actin
accumulation and defective trafficking [113], thus indicating
that alterations to the PI4P:PI(4,5)P2 balance on intracellular
membranes can have pathological consequences. Very little is
known about the role of PI4P in the endosomal pathway, and
this may be partly due to the technical difficulties in imaging
non-Golgi PI4P pools with currently available anti-PI4P anti-
bodies and PI4P-specific PH domain-binding proteins [114].
Nevertheless, work involving the expression of recombinant,
catalytically inactive PI4KIIα, has implicated PI4P generation
by this isoform in the recruitment of AP-3 to late endosomes
in non-neuronal cells [23]. More recently, Larimore and col-
leagues have shown that PI4KIIα operating in conjunction
with the AP-3 and the BLOC-1 complexes, mediates traffick-
ing of synaptic-like microvesicles from the cell body to both
neurites and nerve terminals [45]. These new insights suggest
that changes to PI4P concentrations on intracellular mem-
branes have the potential to alter the dynamics of cargo
delivery to synaptic membranes, but further work is needed
to evaluate the degree to which compartmentalised changes to
PI 4-kinase catalytic activity can alter localised PI4P:PI(4,5)P2
ratios and to establish if this impacts on intra-neuronal
vesicular trafficking.

OCRL also contains a clathrin-binding motif within a
non-phosphoinositide-binding PH domain [115], a non-
functional Rho-GAP domain, and domains which can inter-
act with endosomal trafficking proteins such as APPL1 and
Rab GTPases (reviewed in [116]), suggesting that the pro-
tein functionally integrates PI4P generation with intracellu-
lar vesicle trafficking. A splice variant of OCRL, termed
OCRLa, is only expressed in the brain, has a higher affinity
for clathrin binding than the more ubiquitously expressed
OCRLb variant, and is found associated with clathrin-coated
intermediates [117], again suggesting an important linkage
between clathrin-dependent trafficking and PI4P generation in
the CNS. In concordance with this, OCRL has been co-purified
with neuronal clathrin-coated vesicles from synaptosomal
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preparations [118] and has been imaged in association
with late stage clathrin-coated endocytic pits [119]. Further
work is needed to evaluate the relative contributions of altered
PI4P metabolism and the non-catalytic endosomal functions
of OCRL in neurological disease particularly since missense
mutations within the APPL1 binding region, situated outside
the phosphatase domain, are sufficient to induce the OCRL
neuropathology [120].

Synaptojanin 1

Synaptojanin 1, the main neuronal PI(4,5)P2 D5 phospha-
tase, which also contains a PI4P phosphatase sac1 domain,
is essential for synaptic vesicle endocytosis in neurons and
is thus essential for maintenance of neuronal transmission.
Knock-out mice deficient in Synaptojanin 1 die shortly after
birth and exhibit numerous neurological defects including
severe weakness, ataxia and convulsions. These mice have
elevated levels of PI(4,5)P2, and accumulate a large number
of clathrin-coated intermediates [2] which are infrequently
observed in wild-type animals.

Synaptojanin is one of the genes present on chromosome
21, the trisomy of which results in excess production of
synaptojanin 1 in individuals suffering from Down syn-
drome [121]. In a mouse model, increased gene dosage of
synaptojanin 1 led to a 15–20 % increase in PI(4,5)P2 mass
in the brains of affected mice [122] and impaired cognitive
performance when assessed by the Morris water maze task.
Neurons cultured from mouse models of Down syndrome,
trisomic for synaptojanin 1, were found to possess signifi-
cantly enlarged early endosomes [123]. This effect was
recapitulated in neuroblastoma cell lines through the over-
expression of tagged synaptojanin 1 [123]. Since synapto-
janin possesses both D5 and D4-phosphatase activities,
excesses of this enzyme have the potential to increase either
PI4P or PI levels in cells. Indeed, both activities are required
for synaptic vesicle recycling, indicating a requirement for
both PI4P and PI(4,5)P2 in this event [32]. However, the
membrane concentrations of different phosphoinositide spe-
cies present on the enlarged early endosomes have not yet
been determined.

Synaptojanin is also thought to play a role in the progres-
sion of synaptic dysfunction in Alzheimer’s disease [26].
Through their action on synaptojanin 1, Aβ peptides can
acutely and chronically destabilise the metabolism of PI
(4,5)P2 in primary cortical cultures, implicating synaptojanin
and Aβ oligomers in pathophysiological progression of this
disease. This implies that normal synaptojanin levels of ex-
pression are essential for both the highly specialised, neuron-
specific, synaptic vesicle cycle, as well as the ubiquitous
membrane trafficking pathways found in other tissues. As
mentioned previously, Aβ proteins have also been shown to
inhibit PI4KIIα activity [99, 100] in the nanomolar range all

of which suggests that alterations to the PI:PI4P:PI(4,5)P2
ratio in neurons may be an important factor in the aetiology
of Alzheimer’s disease.

PIPKIγ

Three PIPK enzymes are capable of generating PI(4,5)P2
through phosphorylation of PI4P on the D5 position. Of
these three isoforms, PIPKIγ is the dominant form found
in the nervous system, where it plays a critical role in
synaptic transmission [124, 125], embryonic neural tube
closure, adherens junction formation and neuronal migration
[126]. Indeed murine genetic studies have revealed that loss
of PIPKIγ results in either embryonic [126] or early post-
natal lethality [1, 127], and also that a single allele of
PIPKIγ is sufficient to ensure development to adulthood
and to maintain neuronal PI(4,5)P2 levels [127].

A lipid kinase-inactivating, single point mutation in PIP-
KIγ resulting in the substitution of aspartic acid with aspar-
agine at amino acid 253 was found to be the cause of lethal
congenital contractural syndrome type 3 (LCCS3), a disease
which causes foetal or neo-natal mortality [128]. Interest-
ingly, the PIPKIγ knock-out mouse did not replicate the
muscle wasting and joint contracture of LCCS3, although it
did cause early postnatal lethality [1]. Detailed studies of the
presynapse of these knock-out mice revealed a significant
defect and delay in the reformation of synaptic vesicles
following exocytosis, in conjunction with pronounced rapid
exocytic depression during periods of intense stimulation
[1]. It is noteworthy that these PIPKIγ-deficient synapses
produced significantly more and larger endosomes in re-
sponse to elevated stimulation. These are reminiscent of
activity-dependent bulk endocytosis profiles, which are in-
duced in central nervous synapses in response to strong
synaptic stimulus [129]. The resulting smaller recycling
pool and delayed synaptic vesicle recycling of PIPKIγ-
deficient synapses may indicate a defect in the generation
of single synaptic vesicles which bud from these large bulk
endosomes. This implicates a hitherto uninvestigated role
for PI4P-derived phosphoinositides in the generation of
synaptic vesicle membranes from bulk endocytic structures.

Conclusions and Future Perspectives

PI 4-kinases and PI4P are beginning to be implicated across a
wide range of neuronal functions and pathologies, but this
remains a very underdeveloped field of study. Future work,
perhaps on transgenic models with conditional CNS expres-
sion of PI 4-kinase structural variants may be key to under-
standing the catalytic and non-catalytic functions of these
enzymes in neuronal vesicle trafficking and synaptic trans-
mission. The recent availability of small molecule inhibitors
particularly of the PI4KIIIs [62–64] may facilitate a more
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meaningful analysis of the neuronal functions of this class of
enzymes and facilitate the design of novel chemotherapeutics
with potential applications in the treatment of neurological
and psychiatric diseases. On the other hand, the current dearth
of isoform-specific inhibitors directed against the PI4KIIs,
PIPKs and PI(4,5)P2 phosphatases is reflected in a continued
reliance on recombinant and genetic strategies to understand
the enzymology and regulation of neuronal PI4P pools. Final-
ly, new approaches to manipulate and detect levels of PI4P in
different subcellular compartments [8, 20, 38, 114] are likely
to be extremely important in dissecting specific roles for this
phospholipid in the CNS.
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