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Abstract In the past years, major efforts have been made to
understand the genetics and molecular pathogenesis of Alz-
heimer’s disease (AD), which has been translated into exten-
sive experimental approaches aimed at slowing down or halting
disease progression. Advances in transgenic (Tg) technologies
allowed the engineering of different mouse models of AD
recapitulating a range of AD-like features. These Tg models
provided excellent opportunities to analyze the bases for the
temporal evolution of the disease. Several lines of evidence
point to synaptic dysfunction as a cause of AD and that synapse
loss is a pathological correlate associated with cognitive

decline. Therefore, the phenotypic characterization of these
animals has included electrophysiological studies to analyze
hippocampal synaptic transmission and long-term potentiation,
a widely recognized cellular model for learning and memory.
Transgenic mice, along with non-Tg models derived mainly
from exogenous application of Aβ, have also been useful
experimental tools to test the various therapeutic approaches.
As a result, numerous pharmacological interventions have been
reported to attenuate synaptic dysfunction and improve behav-
ior in the different AD models. To date, however, very few of
these findings have resulted in target validation or successful
translation into disease-modifying compounds in humans.
Here, we will briefly review the synaptic alterations across
the different animal models and we will recapitulate the phar-
macological strategies aimed at rescuing hippocampal plastic-
ity phenotypes. Finally, we will highlight intrinsic limitations in
the use of experimental systems and related challenges in
translating preclinical studies into human clinical trials.
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Introduction

Alzheimer’s disease (AD) is a devastating neurodegenerative
disease that affects more than 35million people worldwide. AD
is characterized by gradual and progressive memory impair-
ment associated with deterioration of daily living activities and
behavioral disturbances throughout the course of the disease.

Although there has been substantial progress in the thera-
peutic approach to AD in the past years with the use of
cholinesterase inhibitors and the glutamate-modulating drug
memantine, treatment for AD still remains a challenge for
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physicians. In fact, regardless of the therapy prescribed, the
current approaches to AD treatment provide only temporary
symptomatic relief and do not inhibit and/or reverse the un-
derlying disease mechanisms. This highlights the urgent need
for disease-modifying drugs for AD. There are currently ap-
proximately 80 compounds at various stages of clinical inves-
tigation for the treatment of AD (www.alzforum.org).

From a neuropathological point of view, the AD brain
shows senile (neuritic) plaques, neurofibrillary tangles
(NFT), and marked atrophy in the brain [1]. The most severe
neuropathological changes occur in the hippocampus, fol-
lowed by the association cortices and subcortical structures,
including the amygdala and nucleus basalis of Meynert [2].

In recent years, however, evidence has accumulated dem-
onstrating that synaptic loss, rather than amyloid beta (Aβ)
plaques, NFTs, or neuronal loss, is the best pathological
correlate of cognitive impairment [1]. Consequently, AD has
been suggested to be a form of synaptic plasticity failure [3].
This theory implies that amplification of the plasticity burden
at an early stage, leading to a primarily adaptive upregulation
of tau phosphorylation and amyloid β precursor protein
(AβPP) turnover, may over time contribute to the formation
of Aβ and NFTs and eventually precipitate cell death as the
final expression of neuroplasticity failure. Consistent with this
hypothesis, some brain regions possess more potential for
adaptative mechanisms, with neuronal plasticity and synaptic
remodeling being particularly elevated in those areas affected
early in AD [4]. This indicates that the processes underlying
activity-dependent synaptic plasticity in the adult are particu-
larly susceptible to the primary causes of AD.

Of note, impaired synaptic function of the hippocampus
appears to be an early event leading to defective
hippocampal-dependent memory processing long before
the appearance of amyloid plaque burden and neuronal cell
death [1, 5]. Therefore, synaptic plasticity is often used to
evaluate the phenotype of AD animal models. Accordingly,
within the last 20 years, several electrophysiological studies
have been performed on several AD experimental models.
These models provide important tools to define the temporal
evolution of cellular abnormalities in AD brains and to
delineate the basic mechanisms that cause synaptic dysfunc-
tion. They have also been instrumental in validating drug
targets and designing novel pharmacological strategies.

Here we will summarize how hippocampal plasticity is
affected across many of these animal models and describe
the main pharmacological approaches utilized to rescue
synaptic dysfunction.

Experimental Models of AD

There is no existing animal model that resembles all the
cognitive, histopathological, biochemical, and behavioral

abnormalities observed in AD patients. However, partial
reproduction of AD neuropathology and functional deficits
has been achieved either with exogenous application of Aβ
or through genetically engineered mouse models of AD. A
full review of the different experimental AD models is
beyond the scope of this work. For more comprehensive
reviews, readers may refer to recent reports [6, 7].

Non-transgenic Models

Based on the cholinergic hypothesis, scopolamine-induced
amnesia, excitotoxic lesions of the basal forebrain and aged
primates have been widely used in the past to evaluate
cognitive impairment. Current symptomatic medications
for AD were successfully assessed in these models, but their
etiological relevance is low [8]. It was originally thought
that Aβ plaques, by causing disruption in neural connectiv-
ity and function, were responsible for the cognitive decline
in AD patients. However, it is now becoming clear that
certain of the soluble Aβ species (i.e., monomeric, oligo-
meric, and protofibrillary Aβ species) seem to be the pri-
mary cause for the functional deficits in rodents and
probably also contributes to cognitive impairment in AD
patients [9]. For these reasons, an alternative approach con-
sisted in the direct in vitro and in vivo application of differ-
ent synaptotoxic fragments of Aβ. This provided the
opportunity to understand how different Aβ-derived diffus-
ible ligands (ADDLs) impact excitatory synaptic transmis-
sion and plasticity in the hippocampus.

There is now substantial evidence that ADDLs of syn-
thetic human Aβ inhibit the maintenance of hippocampal
long-term potentiation (LTP) if applied in vitro [10, 11] or
following intracerebroventricular (i.c.v.) administration
[12–14]. Besides synthetic Aβ, also soluble oligomers of
cell-derived naturally secreted human Aβ impair LTP at
concentrations similar to those found in human cerebrospi-
nal fluid (CSF). This effect has been observed following in
vivo infusion in living rats [15] or by direct application to
hippocampal slices [16]. In addition, it was demonstrated
that mouse slices perfused with Aβ oligomers extracted
from the cerebral cortex of AD patients showed reduced
LTP and enhanced long-term depression. These effects were
specifically attributable to Aβ dimers [17].

Taken together, these results provide evidence that de-
creased hippocampal LTP can be directly attributed to bio-
chemically defined assemblies of human Aβ (with low-n
soluble oligomers possibly ranging from dimers to dodeca-
mers), in absence of amyloid fibrils or protofibrils. None-
theless, the exact mechanism(s) by which soluble oligomers
interact with plasma membranes and bind to receptor and/or
channel proteins thereby affecting signaling pathways re-
quired for synaptic plasticity still remains poorly under-
stood. One limiting factor derived from these studies is the
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inability of exogenously applied Aβ to cross the plasma-
lemma [18], thus not addressing the potentially relevant role
of elevated intracellular Aβ.

Transgenic Models

Transgenic (Tg) mouse models that recapitulate the major
hallmarks of AD have been utilized since the early 1990s to
explore in detail mechanisms underlying disease pathology.
Most Tg models of AD have been engineered by inserting
mutated human genes in the mouse genome, first identified
in early-onset familial cases of AD (FAD). Hereafter, we
summarize electrophysiological studies addressing hippo-
campal synaptic plasticity in the main Tg models.

AβPP-Derived Models

A first effort to create Tg models consisted in overexpress-
ing the entire sequence of the human AβPP gene [19, 20].
Although AβPP transgene was clearly expressed in the
brain, it did not lead to significant plaque deposition or
any AD-like neuropathological features. Besides AβPP
overexpression, the insertion of human AD mutations pro-
vided Tg models with elevated levels of Aβ42 [21, 22]. The
single mutations inserted in the AβPP gene represent FAD-
linked mutations, which are named the Swedish (swe), the
Indiana (ind), the London (Ld), and the Arctic (arc)
mutations.

These models display age-dependent plaque deposition,
hyperphosphorylated tau, neuroinflammation, oxidative
stress, and hippocampal-dependent memory deficits resem-
bling human AD. However, they do not exhibit NFTs,
cholinergic deficits, nor neuronal loss [7].

Unfortunately, electrophysiological analysis of hippo-
campal synaptic transmission and plasticity on AβPP-
based models has generated inconsistent results. For exam-
ple, in one study, APPSWE mice exhibit normal basal trans-
mission but impaired LTP [23], while in another study
synaptic transmission was impaired but LTP was normal
[24]. The reason for this inconsistency is not known but
could perhaps be related to differences in the housing con-
ditions, experimental variables, or prior experience of the
animals. In line with this, we have recently demonstrated
that the plasticity phenotype can be strongly influenced by
the cognitive history of the animal. Thus, while LTP was
normal at naïve synapses, it was impaired following training
of a spatial task in the AβPP23 model [25].

PS1-Derived Models

Presenilin 1 (PS1) is implicated in the proteolysis of AβPP as
part of the γ-secretase complex [26]. Tg mice expressing
either a wild-type or mutated presenilin gene fail to develop

significant AD-like phenotypes, despite the presence of ele-
vated Aβ [27–30]. In the context of synaptic plasticity, PS1-
derived models show a biphasic phenotype with increased
LTP in young mice and reduced LTP at later stages [31, 32].

Double Transgenic Mice

When mutant PS1 mice were crossed to mutant AβPP mice,
formation of Aβ plaques was greatly accelerated [33], indi-
cating that there is a synergistic interaction between both
genes. In these models, plaques are composed of the Aβ40

and Aβ42 fragments and are localized in cortical and hippo-
campal areas [34, 35]. Behavioral deficits in spatial and rec-
ognitionmemory have been found in double Tgmice [35–37],
whereas inconsistency between the electrophysiological find-
ings was observed also for this model (reviewed in [38]). In
fact, LTP was either reduced [38] or normal [39], possibly
depending on the type of PS1 mutation harbored by the mice.

Triple Transgenic Mice

One of the important limitations of the Tg mice described so
far is the lack of NFTs despite the presence of hyperphos-
phorylated tau protein. Oddo et al. [40] generated the first
triple transgenic model (3xTg-AD), harboring PS1
(M146V), AβPPSWE, and microtubule-associated protein
tau (MAPT, P301L) transgenes. This model accumulates
intraneuronal Aβ and subsequently forms amyloid plaques
and MAPT lesions in an age-dependent fashion. Over time
these mice also develop synaptic dysfunction, including
synaptic transmission and LTP deficits that well correlate
with the levels of intraneuronal Aβ [41]. Most recently, new
triple Tg lines carrying AβPP, PS2, and tau mutations have
been created [42, 43].

Pharmacological Strategies to Rescue Synaptic Dysfunction
in Experimental AD

Although the exact pathogenesis of AD remains to be fully
defined, several pharmacological approaches for the treatment
of AD are under active investigation. In this section we will
describe the classes of drugs proven effective to rescue syn-
aptic dysfunction in the different preclinical models of AD
(summarized in Table 1). It is beyond the scope of this review
to include the rescue achieved by genetic approaches. This has
been addressed by a recent review [44].

Targeting Aβ

Currently, the amyloid cascade hypothesis is the most im-
portant theory of AD postulating that accumulation of Aβ
into plaques is the causative pathological event [45]. Based
on this hypothesis, interventions that reduce Aβ load in the
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Table 1 Pharmacotherapeutic
strategies for the treatment of
Alzheimer’s disease

Pharmacological strategies Drugs Trials/status

Targeting Aβ

Aβ fibrillogenesis inhibitors RS-0406, RS-0466

γ-Secretase inhibitor DAPM, MK560, CHF5074 II (CHF5074)

Immunotherapy

Monoclonal antibody (6E10)

Monoclonal antibody (4G8)

Monoclonal anti-PrP antibody (6D11)

Antigen-binding antibody fragment (D13)

Tau kinase inhibitors

GSK-3 inhibitors AR-A014418

Lithium II

Kenpaullone

CT-99021

Pan caspase inhibitor Z-VAD-FMK

Cdk-5 inhibitors Butyrolactone

Roscovitine

Phosphatase inhibitors

Calcineurin (PP2B) inhibitors FK506

Cyclosporin A

PP1 inhibitors Tautomycin

Drugs acting on cholinergic transmission

α4β2 antagonist Diihydro-beta-erythroidine

α7 nAChR antagonist Methyllycaconitine

α7 nAChR agonist Dimethoxynebzylidine

Acetylcholinesterase inhibitor (AChEI) Donepezil IV

nAChR Nicotine

Drugs acting on glutamate receptors

Uncompetitive inhibitor of NMDARs Memantine IV

Selective NR2B antagonist Ifenprodil

Ro 25-6981

mGluR5 NAM MPEP

Anti-inflammatory drugs

TNFα inhibitors Infliximab II

TNF peptide antagonist II

Inhibitor of TNFα production Thalidomide II/III

Interleukin 1 receptor antagonist IL-1ra

Selective COX-2 inhibitors MF tricyclic

Ns-398

Antioxidants

ROS scavengers EUK134

MitoQ

SkQR1

Insulin and insulin-sensitizing drugs

Insulin receptor Insulin II

Insulin-like growth factor 1 receptor IGF-1

Glucagon-like peptide 1 receptor GLP-1

GIP

Insulin-sensitizing drugs/agonists
of the PPAR-γ

Thiazolidinediones II/IV

Rosiglitazone II/IV
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brain would be likely to attenuate both the neuropathologi-
cal changes and functional deficits characterizing AD. In-
deed, several different Aβ-lowering strategies have been
developed over the past years.

Among these, Aβ fibrillogenesis represents a major target
for the therapeutic intervention in AD and related human β-
amyloidoses [46]. Certain small-molecule inhibitors of syn-
thetic Aβ fibrillogenesis (RS-0406 and RS-0466) inhibit for-
mation of cell-derived, secreted oligomers of Aβ and prevent
the impairment of LTP induced by Aβ [47, 48]. Importantly,
this protective effect was achieved only under conditions in
which they prevented new oligomer formation [49]. In fact, in
order to be effective, inhibitors of fibrillogenesis need to be
used at the initial stages of oligomerization thus avoiding a
paradoxical enhanced neurotoxicity which may derive from
active pre-fibrillar assemblies such as low-n oligomers re-
leased following inhibition of fibril formation. For these rea-
sons, a promising strategy consisted in preventing the
formation of Aβ by enhancing α-secretase activity or inhibit-
ing either β-secretase or γ-secretase activity.

The first attempt to test the potential effects of targeting γ-
secretase was conducted by Walsh et al. [15]. In an intriguing
study, these authors showed that the cell penetrant γ-secretase
inhibitor DAPM was able to restore LTP disruption after i.c.v.
infusion of oligomers of human Aβ in rats. A related study
showed that 3 days of oral dosing with the γ-secretase inhibitor
MK-560 was sufficient to reverse LTP deficit in 6-month-old
Tg2576 mice, at a stage when mice show synaptic dysfunction
and behavioral changes before significant plaque deposition
[50]. This study also highlights the ability of some γ-secretase
inhibitors to cross the blood–brain barrier (BBB). Although
inhibition of γ-secretase represents a rational pharmacological
approach, serious concerns about their toxicity have been raised
due to the fact that γ-secretase can cleave several other mem-
brane proteins, the most relevant of which is the Notch protein.
The discovery that some NSAIDs behave as γ-secretase mod-
ulators, thereby preventing Aβ42 production by binding to

AβPP rather than to γ-secretase, suggested a way to avoid
Notch toxicity. In line with this, we have recently demon-
strated that oral administration of the novel γ-secretase
modulator CHF5074 was able to restore synaptic plasticity
in 5-month-old Tg2576 mice, and this effect was associated
with reduced hyperphosphorylated tau and intraneuronal Aβ
[51]. Notably, CHF5074 is currently undergoing phase II
clinical trial evaluation. Beyond targeting γ-secretase, also
the pharmacological inhibition of AβPP cleavage by
β-secretase rescued synaptic deficits in a mouse modeling
familial Danish dementia [52].

Immunotherapy

One of the most promising disease-modifying therapies for AD
is immunization against Aβ. Intracerebroventricular injection
of naturally secreted human Aβ inhibited LTP in rat hippo-
campus in vivo, but a monoclonal antibody (6E10) to Aβ
completely prevented LTP impairment evenwhen injected after
Aβ. Partial protection against the block of LTPwas also present
in rats that were successfully actively immunized with pre-
aggregated Aβ [53]. A later report showed that also a single
intraperitoneal (i.p.) injection of the antibody 6E10 was able to
rescue LTP deficit observed in Tg Arc mice [54]. More recent-
ly, it was suggested that systemic passive immunization
achieved with intracardiac injection of the monoclonal anti-
Aβ antibody 4G8was able to prevent the disruption of synaptic
plasticity by Aβ dimer-containing human CSF in vivo [55].

These findings provide important evidence that antibodies
directed to Aβ can rapidly neutralize the synaptic plasticity-
disrupting effects of low-n oligomers of Aβ in the brain.
Recently, passive immunization with anti-tau antibodies has
been shown to reduce tau pathology and slow down disease
progression in two Tg models of tauopathy [56]. However no
studies addressed so far have demonstrated whether this treat-
ment could also rescue synaptic dysfunction in preclinical
models of AD.

Table 1 (continued)

Pharmacological strategies Drugs Trials/status

Neurotrophins

trkB-acting neurotrophins NT4

Isoleucine derivative LM11A-31

Targeting the CREB–CBP pathway

PDE4 inhibitor Rolipram

β2 adrenoceptor agonist Terbutaline

Activator of adenylate cyclase Forskolin

NO donor DEA/NO

sGC stimulator BAY41-2272
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Emerging data highlight how the cellular prion protein
PrPC can serve as a receptor for Aβ oligomers. Aβ
oligomers suppress LTP in murine hippocampal slices but
synaptic activity remains preserved in PrPC null mice [57]
and following pretreatment with the anti-PrPC antibody
6D11 [58]. LTP was also prevented when AβPP/PS1 mice
were intraperitoneally injected with 6D11 [58]. A further
study reported that i.c.v. administration of antigen-binding
antibody fragment D13, targeting an unknown Aβ-binding
site on PrPC, restored LTP deficit induced by AD brain-
derived Aβ [59]. While these findings indicate the potential
usefulness of immunotherapeutically targeting the binding
of synaptotoxic Aβ assemblies to PrPC, two studies [60, 61]
and experiments performed in our laboratory (unpublished
data) have generated conflicting results.

Tau Kinase Inhibitors

Microtubule-associated protein tau is abnormally hyper-
phosphorylated in AD. This is likely the result of an imbal-
ance in kinase and phosphatases activities leading to
destabilization of microtubules, damage of neuronal cyto-
skeletal architecture, compromised neuronal transport, dys-
trophy, and eventually neuronal death [62]. Primary kinases
involved in the phosphorylation of tau include glycogen
synthase kinase (GSK-3) and cyclin-dependent protein
kinase 5 (Cdk-5), thus representing important targets for
pharmacological intervention in AD [63]. Several studies,
for example, have demonstrated that inhibition of GSK-3
reverses synaptic dysfunction in different models of AD.
Accordingly, the selective GSK-3 inhibitor AR-A014418
prevented LTP impairment by human Aβ42 in wild-type
slices [64] and either lithium or kenpaullone, two structurally
distinct GSK-3 antagonists, rescued LTP deficit in slices
from Tg2576 mice [65]. The latter study also provided
evidence that upregulation of mTOR signaling mediates this
neuroprotective effect, supporting the idea that mTOR path-
way is compromised in this Tg model. Similar results were
obtained with the more specific GSK-3 inhibitor CT-99021;
this was able to prevent Aβ42-induced impairment of LTP
both in organotypic hippocampal cultures and in acute slices
from 4- to 5-week-old rats [66]. Additionally it was found
that Aβ42-induced impairment of LTP was absent in caspase
3 KO mice and that it was inhibited in neurons in organo-
typic slices that had been transfected with a mutant form of
Akt1 that was resistant to cleavage by this caspase [66]. This
led to the hypothesis that activation of caspase 3 leads to
cleavage of Akt1, thereby removing a tonic inhibition of
GSK-3. Besides GSK-3, the pharmacological blockade of
Cdk-5 with either butyrolactone or roscovitine also pre-
vented the Aβ-mediated inhibition of LTP [67], confirming
previous studies showing that Cdk inhibitors successfully
prevent Aβ-induced neurotoxicity [68].

In addition, therapies that stabilize microtubules by com-
pensating for the loss of tau function are nowadays under
investigation. Indeed, the reduction in microtubule integrity
has been proposed to be an important factor in synaptic
dysfunction [69]. Accordingly, taxol was able to protect
against synaptic loss in response to lysosomal stress [69].
However, to date, no studies addressing their protective
potential in the context of synaptic function have been
conducted.

Phosphatase Inhibitors

A growing body of evidence suggests that phosphatases and
kinases antagonistically regulate the balance of synaptic
strength, thereby serving as a gate for LTP and memory
storage [70]. In support of this general model, Aβ-induced
LTP deficits could be the consequence of increased phos-
phatases activity that may shift the gating balance of synap-
tic plasticity.

Accordingly, it has been shown that blockade of the
calcineurin (PP2B) activity with FK506 or cyclosporin A
completely prevented Aβ-induced LTP deficits in the hip-
pocampal dentate gyrus [71]. Furthermore the pharmacolog-
ical inhibition of PP1 with tautomycin was able to reverse
the defect in synaptic plasticity in acute hippocampal slices
from Tg Arc mice and AβPP/PS1 model [54]. Notably, also
genetic inactivation of the striatal-enriched protein tyrosine
phosphatase (STEP) reverses cognitive and cellular deficits
observed in the triple Tg mouse model [72]. Taken together,
these results support an important role for phosphatases in
the mechanisms of Aβ oligomer-mediated toxicity, high-
lighting these proteins as promising targets for the develop-
ment of potential therapeutic approaches in AD.

Drugs Acting on Cholinergic Transmission

Different strategies have been undertaken to improve
cholinergic neurotransmission. These include the increasing
of acetylcholine synthesis, facilitation of presynaptic ace-
tylcholine release, stimulation of cholinergic muscarinic
and nicotinic receptors, and inhibition of acetylcholine
metabolism with cholinesterase inhibitors. A growing
body of evidence suggests that Aβ peptide impairs nico-
tinic acetylcholine receptor (nAChR) function, even
though the mechanism remains poorly understood. On
the other hand, Aβ42 was found to have a beneficial effect
on synaptic plasticity at picomolar concentrations (as
found in healthy brains) via the activation of presynaptic
α7 nAChRs [73].

Experimental evidence suggests that α4β2 and α7 seem
to be required for the Aβ-induced suppression of LTP.
Accordingly, diihydro-beta-erythroidine, a selective α4β2
antagonist and methyllycaconitine (MLA), a selective α7
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nAChR antagonist, have both proven effective in attenuating
Aβ31–35-mediated LTP impairment [74, 75]. Conversely, an-
other study failed to observe any protective effect of MLA,
although a different fragment (Aβ42) was used [67]. A further
report suggested a protective effect of the α7 agonist dime-
thoxybenzylidine against Aβ-induced loss of LTP [76]. The
different findings may be due to concentration-dependent
actions of Aβ, as low levels activate and high levels desensi-
tize α7 [77] and/or interact with other nAChRs subtypes [78].
These data further suggest that the effect of Aβ could be
independent from a direct interaction between Aβ and
nAChRs.

Also the effect of nicotine has been evaluated in
different experimental models of AD. Both acute and
chronic nicotine treatments were found to enhance LTP
via α7 receptors [79]. Accordingly, recent work showed
a protective effect of chronic nicotine treatment in a rat
model of AD [80, 81], although a paradoxical depres-
sive effect of nicotine on the impairment of LTP caused
by i.c.v. injection of Aβ40 was previously found [82].
Besides nicotine, also donepezil, a widely used drug for
the treatment of AD, had neuroprotective effects on
synaptic plasticity following Aβ42 [83].

Aβ also exerts effects on the cholinergic system by
interacting with G protein-coupled muscarinic acetylcho-
line receptors (mAChRs). It is widely believed that M2
receptors are reduced in the brains of AD patients [84].
Notably, perfusion of medial septum slices with Aβ40

reduced excitatory transmission and this effect was
blocked by calcicludine (a selective L-type Ca2+ channel
antagonist) and by pirenzepine, an mAChR antagonist
[85]. Interestingly, AβPP/PS1 mice display synaptic dys-
function, which was associated with a decrease in the
ability of endogenous mAChR activation to reduce basal
glutamatergic transmission in the CA1 area of the hippo-
campus [86], suggesting that muscarinic receptor dys-
function is among the causes of functional impairment.

Drugs Acting on Glutamate Receptors

There is a growing body of evidence that Aβ soluble
oligomers can cause perturbation of glutamatergic signaling,
affecting in particular N-methyl-D-aspartate (NMDA) and
also metabotropic glutamate receptors (mGluRs). Support
for a role of NMDA receptors (NMDARs) in the cognitive
deficits of AD is also provided by the current use of mem-
antine in clinical practice. Memantine acts as an uncompet-
itive inhibitor of NMDARs at therapeutic concentrations
[87, 88]. Accordingly, if bath applied at a therapeutically
relevant concentration, it has been found to reverse LTP
deficiency against the rapid disruptive effects of soluble
Aβ42 both in the CA1 [89] and in the DG [90] of the
hippocampus.

Aβ42 has been shown to co-immunoprecipitate with the
GluN1 and GluN2A subunits of the NMDA receptor [91],
and its oligomers bind to excitatory synapses expressing
NR1 and NR2B receptors [92]. Moreover, a previous study
demonstrated that Aβ activates STEP, which dephosphory-
lates a regulatory tyrosine site (tyr1472) on the GluN2B
subunit, leading to internalization of NMDA receptors [93].

The notion that soluble Aβ-induced impairment of LTP
in the CA1 region of hippocampus requires GluN2B-
containing NMDARs has been supported by the rescuing
effects afforded by the two selective NR2B antagonist ifen-
prodil and Ro 25-6981 [74, 89]. In an effort to characterize
the potential therapeutic value of other allosteric sites on
glutamate receptors as alternative targets in the treatment of
AD, also MPEP, a specific negative allosteric modulator
(NAM) against mGlu5 receptors [94], has been successfully
tested [67]. In fact, MPEP can reverse the Aβ42 oligomer-
induced inhibition of LTP at nanomolar concentrations [89].

Anti-inflammatory Drugs

Converging lines of evidence suggest that neuroinflamma-
tory processes play important roles in the pathogenesis of
neurodegenerative diseases. Accordingly, postmortem ex-
amination of AD brain shows extensive evidence of inflam-
mation, including activation and proliferation of glia and
elevated concentrations of inflammatory mediators. Howev-
er, it is not clear how early in the disease process brain
inflammation occurs or its relative contribution to disease
progression and clinical symptoms [95].

Tumor necrosis factor α (TNFα) is a key cytokine that has
been involved in several brain functions, as well as in medi-
ating pro-inflammatory processes in neurodegenerative dis-
eases including AD [96]. Considering that TNFα is increased
in the brain of AD patients [97] and that it can directly
modulate hippocampal synaptic plasticity [98], the question
of whether this cytokine could also mediate the detrimental
effects of Aβ on LTP was also addressed. Indeed, the sup-
pression of LTP by Aβ was absent in mutant mice null for
TNF receptor type 1 and was prevented by the monoclonal
antibody infliximab, the TNF peptide antagonist, and thalid-
omide, the inhibitor of TNFα production [99].

Besides TNFα, the pro-inflammatory cytokine interleu-
kin 1β (IL-1β) has also been reported to mediate the toxic
effects of Aβ peptide [100]. Indeed, i.c.v. administration of
interleukin 1 receptor antagonist (IL-1ra) rescued post-
tetanic potentiation impairment following injection of
Aβ40 [101].

Several studies in transgenic AβPP mice have documented
the effects of nonsteroidal anti-inflammatory agents
(NSAIDs) on amyloid load and inflammation [102], but only
one study so far has addressed the effects of NSAIDs on Aβ-
mediated disruption of synaptic plasticity and memory. It was
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found that both MF tricyclic and Ns-398, two selective COX-
2 inhibitors, were effective in preventing the disruption of LTP
by synthetic soluble Aβ42. Of note, the same effect was not
achieved with the COX-1 inhibitor piroxicam [103].

Antioxidants

Strong evidence has been accumulated to link reactive ox-
ygen species (ROS) with neurodegenerative diseases [104].
In fact, ROS-mediated oxidative stress is used as a valuable
AD biomarker and antioxidants offer new hope to patients
suffering from AD [105]. However, current clinical trials
with antioxidants resulted in mild or no effects to attenuate
disease progression and cognitive dysfunction in AD.

Several studies have demonstrated that intraneuronal Aβ
is linked to altered mitochondrial function [106]. In fact, Aβ
can directly affect mitochondrial function, thus causing ox-
idative stress [107]. However, the exact mechanisms under-
lying Aβ-mediated mitochondrial disruption have not yet
been fully elucidated. Notably, it recently emerged that
Cyclophilin D (CypD), an integral component of the mito-
chondrial permeability transition pore, can interact with
mitochondrial Aβ thereby precipitating neuronal and syn-
aptic stress. In fact, either the genetic removal of this Aβ-
binding partner or its pharmacological inhibition with cyclo-
sporin A improved synaptic dysfunction by Aβ42 application.
In the presence of the ROS-scavenging enzymes SOD plus
catalase, LTP was further alleviated [108]. There are two other
structurally distinct ROS scavengers, EUK134 and MitoQ, a
synthetic SOD and catalase mimetic and a mitochondria-
targeted antioxidant, respectively. They were able to attenuate
LTP deficit following Aβ42 application and in AβPP/PS1
mice [109]. A related study demonstrated that rats treated with
i.p. injections of SkQR1, a mitochondria-targeted plastoqui-
none derivative, exhibit normal hippocampal LTP levels in the
presence of Aβ42 [110]. This study also highlights the ability
of novel antioxidants to cross the BBB.

Insulin and Insulin-Sensitizing Drugs

Several studies show that insulin plays a key role in higher
brain functions such as learning and memory [111] and
synaptic plasticity [112], whereas impairment of insulin
signaling has been linked to neurodegenerative disorders
[113]. For example, a clinical study has revealed that the
insulin levels in CSF were decreased in patients with spo-
radic AD [114]. It has also been reported that insulin can
protect hippocampal neurons against Aβ-induced cytotox-
icity [115], suggesting a potential crosstalk between insulin
and Aβ. In a recent work, it was demonstrated that insulin
and insulin growth factor 1 (IGF-1) inhibit formation of Aβ
oligomers and thus prevent the block of LTP induced by
different Aβ fragments [116].

In addition to insulin, also pretreatment with the
glucagon-like peptide 1 (GLP-1), which physiologically
stimulates insulin release, has been proven effective in
reversing LTP following Aβ25–35 [117], Aβ40 [118],
and in aged AβPP/PS1 mice [119]. Similar results
were also obtained with the novel glucose-dependent
insulinotropic polypeptide (GIP), a peptide hormone
targeting pancreatic islets to enhance insulin secretion
[117].

Insulin-sensitizing drugs such as the thiazolidinediones
act as specific agonists of the peroxisome proliferator-
activated receptor gamma (PPAR-γ), thereby sensitizing
insulin action in the target sites. Different PPAR-γ agonists
attenuated the detrimental effects of Aβ40 on LTP [120], and
rosiglitazone improved learning and memory deficits in the
Tg2576 mouse model [121]. Taken together, these preclin-
ical results raise the possibility that insulin and insulin-
sensitizing drugs may serve as therapeutic agents for the
treatment of AD.

Neurotrophins

The growing evidence that neurotrophins are essential
modulators of synaptic plasticity [122] and that synaptic
transmission becomes dysfunctional before the onset of
AD raise the question of whether synaptic failure could
be ascribed to neurotrophin dysregulation. In line with
this notion, a Tg mouse line expressing chronic nerve
growth factor (NGF) deprivation displays age-related
defects in synaptic plasticity, supporting a “neurotrophic
unbalance” hypothesis underlying AD-like neurodegen-
eration [123]. Accordingly, exogenous supply of neuro-
trophins was proven effective to restore synaptic
alterations in experimental AD. Indeed, it was recently
demonstrated that application of neurotrophin 4 (NT4),
a neurotrophic factor that signals predominantly through
the TrkB receptor tyrosine kinase, prevented LTP defi-
cits induced by Aβ both in the CA1 and DG of rat
hippocampal slices [124]. This rescuing effect was as-
sociated with enhanced CaMKII autophosphorylation, a
signaling event normally stimulated by LTP but sup-
pressed by Aβ42.

On the other hand, Aβ can directly bind to p75 neuro-
trophin receptors (p75NTR), which are best known for me-
diating neuronal death and have been consistently linked to
the pathology of AD [125]. Therefore, blocking this recep-
tor with the isoleucine derivative LM11A-31 rescued Aβ-
induced LTP impairment without affecting baseline trans-
mission [126]. These results highlight neurotrophins or their
analogs as a new class of candidate molecule compounds for
AD therapeutics. Intriguingly, encapsulated cell biodelivery
of NGF to AD patients is currently undergoing phase I
clinical trials.
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Targeting the CREB–CBP Pathway

Genetic and pharmacological studies in a variety of organ-
isms have demonstrated that cAMP response element-
binding protein (CREB)–CREB binding protein (CBP) is a
signaling mechanism regulating LTP and is required for
long-term memory formation [127]. For these reasons, the
synaptic dysfunction associated with experimental AD
could result from impaired CREB–CBP signaling. Indeed,
reduced expression of the CREB–CBP pathway was found
in conditional double knockout mice both lacking both
presenilins [128]. In line with this reasoning, several phar-
macological approaches targeting the cAMP/PKA/CREB
pathway were proven effective in reversing LTP impairment
in Tg and non-Tg models of AD.

Accordingly, the phosphodiesterase (PDE) 4 inhibitor roli-
pram enhanced LTP in wild-type mice [129] and ameliorated
LTP deficit either in AβPP/PS1 mice [130] or in acute slices
exposed to Aβ [131]. Similarly, also the PDE5 inhibitor
sildenafil rescued synaptic deficits in the AβPP/PS1 model,
re-establishing normal levels of CREB phosphorylation after
tetanic stimulation [132]. Other drugs that stimulate the
cAMP/PKA signaling pathway, as the activator of adenylate
cyclase forskolin [131] or the β2 adrenoceptor agonist terbu-
taline [133], showed similar neuroprotective effects.

Considering that cAMP/PKA and NO/cGMP/cGK path-
ways are known to converge onto CREB to maintain syn-
aptic plasticity [134], another study tested whether targeting
the NO/cGMP/cGK/CREB system also alleviated Aβ-
induced suppression of LTP. Indeed, application of the NO
donor DEA/NO, the sGC stimulator BAY41-2272, and the
cGMP analogs 8-Br-cGMP and 8-pCPT-cGMP were all
effective in rescuing Aβ-induced LTP impairment and in
normalizing phospho-CREB activity during synaptic poten-
tiation [135].

Recent studies have provided evidence that Aβ peptide,
possibly through the activation of GluN2B, mGlu5, or α7
nicotinic receptor, could downregulate the ERK/MAPK/
CREB cascade, thereby negatively regulating synaptic plas-
ticity. On this line, blockade of the p38 MAPK by SB203580
was able to prevent Aβ-mediated suppression of LTP [67, 74],
further confirming that pharmacological modulation of these
pathways might be beneficial for AD therapeutics.

Emerging data also point out that epigenetic mechanisms
are involved in the altered synaptic function and memory
associated with AD [136]. In this scenario, Aβ and tau
protein have been shown to interact with CREB/CBP sig-
naling, downregulating CBP and in turn reducing histone
acetylation in different preclinical models of neurodegener-
ation [137, 138]. Therefore, histone deacetylase (HDAC)
inhibitors, which are currently being used in clinical trials
for the treatment of some forms of cancer, are now also
being considered as potential memory enhancers.

Experimental evidence shows that HDAC inhibitors en-
hance LTP in wild-type mice [139] and rescue hippocampal
LTP in AβPP/PS1 mice [140]. In this respect, HDAC inhib-
itors represent novel compounds to effectively counteract
disease progression in AD [141].

Other Neuroprotective Strategies

Several other rescuing strategies were evaluated in exper-
imental AD. These include multitarget drugs or com-
pounds acting with unconventional or still unknown
mechanism. Among these, over the past years Humanin
(HNG) has received much attention. HNG is a novel
peptide cloned from a cDNA library of the occipital lobe
of an AD brain [142], which has proven effective against
all sorts of AD-relevant insults in vitro. The tyrosine
kinase pathway mediated the protective action of HNG
against Aβ-induced LTP impairment, since genistein abol-
ished this effect [143, 144].

It has been reported that protein kinase C (PKC) plays a
leading role in the cellular signaling cascade targeting pro-
tein synthesis and thereby LTP formation [145, 146]. In
particular, human studies have shown that PKC and its
adaptor protein RACK1 (receptor for activated C kinase 1)
are both deficient in AD [147]. In this context, phorbol–
myristate–acetate, a membrane-permeable PKC agonist, ef-
fectively prevented Aβ31–35-induced deficits in the early
and late components of LTP [144].

Another kinase crucially involved in AD pathogenesis is
the c-jun N-terminal kinase (JNK) [148]. Indeed Aβ-
induced changes in hippocampal plasticity were shown to
be dependent upon IL-1β-triggered activation of JNK [149].
Accordingly, different JNK inhibitors rescued LTP deficit
induced by synthetic and cell-derived Aβ [67] and in the
TgCRND8 mouse model [150].

Overactivation of proteins known as calpains, which are
involved in memory formation, has been also linked to AD
[151]. Thus, different calpain inhibitors have been shown to
reverse synaptic plasticity impairment in AβPP/PS1 slices
[37] and in slices exposed to the soluble human Aβ [74].

Other neuroprotective agents reported to rescue hippocam-
pal LTP suppression by different Aβ fragments include the L-
type calcium channel (VDCC) blocker verapamil [152], argi-
nine vasopressin [153], neuregulin 1 [154], and the novel
phospholipid-based drug formulation VP025 [155]. Protec-
tion against Aβ-induced abnormal synaptic function has also
been obtained with some traditional medicinal products such
as Ginkgo Biloba extracts [156], curcumin [157], huperzine A
[158], and the herb mixture Danggui-Shaoyao-San [159].

Other electrophysiological studies performed in Tg mod-
els of AD suggest neuroprotective effects of estradiol [160],
picrotoxin [161], and the nonselective adrenergic receptor
antagonist carvedilol [162].
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Limitations of Preclinical Models and Future Challenges

This review has documented how a large variety of phar-
macological interventions can rescue synaptic dysfunction
in experimental AD, yet this success in rodents has not been
translated into successful therapies for humans. There are a
number of reasons why preclinical studies may have failed
to predict the outcome of clinical studies.

First, the consideration that Tg mice carry FAD muta-
tions, accounting for only 1–10 % of all AD cases in
humans, rather than the prevalent sporadic (SAD) form.
Also, while these models develop specific hallmarks of
AD, they do not recapitulate every aspect of the complex
human disease. An important issue that needs to be consid-
ered is whether the similar temporal profile of disease pro-
gression in AD patients is also conserved in Tg mice. For

Fig. 1 Proposed molecular mechanisms behind the experimental treat-
ment approaches to Alzheimer’s disease. Crucial to AD is the differ-
ential processing of the integral membrane protein amyloid β precursor
protein (AβPP) in the normal versus diseased state. In the normal state,
cleavage of APP by α-secretase generates soluble amino-terminal
ectodomain of AβPP (sAβPPα) and C83 C-terminal stub. The physi-
ological role of sAβPPα is associated with neuronal survival, neurite
outgrowth, synaptic plasticity, and learning and memory. In the disease
state, AβPP is sequentially cleaved by β-secretase and γ-secretase to

form soluble AβPP (sAβPP). Aβ is secreted into the extracellular
spaces and accumulates to form oligomers, fibrils and eventually senile
plaques. Aβ40/42 oligomers bind to several surface receptors, disrupt
membrane integrity, perturb calcium homeostasis, trigger inflammatory
state and mitochondrial oxidative stress, ultimately leading to neuronal
cell death. The microtubule-associated protein tau is abnormally hyper-
phosphorylated in AD and accumulates in neurons forming neurofi-
brillary tangle. The major sites for pharmacological intervention are
also highlighted (see text for details)
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example, while in Tg mice cognitive deficits precede plaque
load, in human patients the latter is more likely to happen
first. Second, the weakness with Tg mice is that there is
almost no neuronal cell death, differently from the substan-
tial neurodegeneration occurring in the human AD brain.

In general, it can be assumed that animal models of AD
are more useful as models of specific disease targets and
pathways. For this reason, they serve as tools for testing the
efficacy of candidate molecules on drug targets that may be
involved in AD pathogenesis. This target-driven approach in
animal models has translated over the past years to several
therapeutic studies in humans (see Table 1).

Besides the intrinsic limitations of animal models, experi-
mental studies are also susceptible to experimental bias. The
most frequently underestimated issues are related to gender-
and litter-dependent differences, variances in transgene ex-
pression across generations, and diverse genetic background
between drug- and placebo-treated groups. Other intrinsic
limitations to be considered in translation are differences
between mouse/human species including diversities in cere-
brovascular anatomy, neuronal network physiology, disease
susceptibility, and perhaps most importantly dynamics of
drug-target interactions. For these reasons, therapeutic studies
carried out in vivo should include a complete pharmacokinet-
ics/pharmacodynamics profile to maintain appropriate dosing
and timing of treatment. Toxicological studies should be
addressed in order to minimize putative off-target influence
on the results. Ideally, positive results should be re-evaluated
in multiple lines of mice, preferably in several laboratories,
and negative results should also be published in the scientific
literature. Certainly, raising the quality of preclinical research
can make the translation to human clinical trials more efficient
and reliable.

Conclusions

Looking ahead, prevalence of AD will overtake cardiovas-
cular diseases and AIDS in its prevalence (World Health
Organization). Therefore, continuous efforts are geared to-
wards the discovery of new anti-AD agents. The plastic
nature of synapses and their early involvement in the cog-
nitive decline associated with AD models provide new
potential targets for pharmacological intervention. It is be-
coming clear that therapeutic approaches cannot be directed
to single targets, but to a combination of targets which
should be considered for effective therapies (summarized
in Fig. 1). Certainly, to ensure a successful outcome, therapy
should start at the very early stage. In addition, highly
sensitive and specific biomarkers for diagnosing AD need
to be identified in order to recognize AD patients at the
onset of the disease. Besides diagnosis, markers would also
be essential to follow-up disease progression, to monitor the

efficacy of treatments during preclinical studies, and to
predict potential therapeutic effects in humans.

In spite of their limitations, experimental models of AD
still remain the most important scientific tool to understand
the basic mechanisms underlying AD. Indeed, a more care-
ful design of preclinical studies will provide important con-
tributions to the development of the first approved disease-
modifying drug for AD.
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