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Abstract Nitric oxide is a short-lived intracellular and in-
tercellular messenger. The first realisation that nitric oxide is
important in physiology occurred in 1987 when its identity
with the endothelium-derived relaxing factor was discov-
ered. Subsequent studies have shown that nitric oxide pos-
sesses a number of physiological functions that are essential
not only to vascular homeostasis but also to neurotransmis-
sion, such as in the processes of learning and memory and
endocrine gland regulation, as well as inflammation and
immune responses. The discovery in 1995 that a splice
variant of the neuronal nitric oxide synthase is localised at
the sarcolemma via the dystrophin–glycoprotein complex
and of its displacement in Duchenne muscular dystrophy
has stimulated a host of studies exploring the role of nitric
oxide in skeletal muscle physiology. Recently, nitric oxide
has emerged as a relevant messenger also of myogenesis
that it regulates at several key steps, especially when the
process is stimulated for muscle repair following acute and
chronic muscle injuries. Here, we will review briefly the
mechanisms and functions of nitric oxide in skeletal muscle
and discuss its role in myogenesis, with specific attention to
the promising nitric oxide-based approaches now being
explored at the pre-clinical and clinical level for the therapy
of muscular dystrophy.
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Introduction

In 1987, nitric oxide (NO) was identified as the gaseous
messenger accounting for the vasodilating activity of the
endothelium-derived relaxing factor originally described by
Furchgott [1, 2], explaining also why organic nitrates and
sodium nitroprusside have therapeutic efficacy in diseases
affecting the cardiovascular system. Since then, thousands
of papers have elucidated the molecular mechanisms of NO
action and described its biological role not only in the
cardiovascular system but also in neurones and virtually in
all other mammalian cells and tissues. The discovery that a
NO synthesising enzyme, a splice variant of the neuronal
NO synthase, is expressed in skeletal muscle and that its
localisation and activity are altered in Duchenne muscular
dystrophy opened new perspectives on the physiological
role of this messenger. In the last 20 years, the role of NO
in skeletal muscle physiology has been investigated in de-
tail; more recently, its role in myogenesis has also been
explored. This review summarises our current understand-
ing on the role of NO in skeletal muscle pathophysiology
and describes how this new evidence is opening exciting
perspectives for the use of NO-donating drugs as therapeutic
agents for muscle repair in muscular dystrophies.

The Nitric Oxide System and Skeletal Muscle Physiology

Nitric Oxide Synthases in Skeletal Muscle

NO is synthesised from L-arginine and oxygen by NO
synthases (NOS) in almost all mammalian cells and tissues
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[3, 4]. Three distinct isoforms of NOS have been identified,
two of which, namely the endothelial (eNOS) and neuronal
(nNOS) isoforms, are regulated by second messengers,
whereas one is inducible by cytokines and bacterial products
(iNOS).

All three NOS isoforms are expressed in skeletal muscle:
nNOS has been detected in several human muscles, includ-
ing gastrocnemius and quadriceps muscles, and in rodent
diaphragma, soleus, tibialis anterior and extensor digitorum
longus muscles. Neuronal NOS is abundant at the surface of
type II fibres (fast twitch), whereas it is less represented in
type I (slow twitch) fibres [5]. Likewise, eNOS has been
described in several muscles as a peripheral membrane
protein, which is bound to plasmalemmal caveolae through
specific interaction with caveolin-1 and caveolin-3. Induc-
ible NOS messenger RNA is absent or present at very low
levels in skeletal muscles under physiological conditions.
The three NOS isoforms differ in their mechanisms of
activation, regulation and catalytic activity. Neuronal and
endothelial NOS are constitutively expressed and require the
Ca2+/calmodulin complex for their activation. Changes in
the expression of these enzymes may occur: in skeletal
muscle, expression of nNOS is increased by crush injury,
muscle activity and ageing [6]; and that of eNOS, by chronic
exercise and shear stress [7]. These changes, however, are
usually of small extent. Both nNOS and eNOS produce NO
at low, physiological levels (in the pico to nanomolar range)
for short periods. Conversely, iNOS is expressed in skeletal
muscle primarily under severe inflammatory conditions,
such as in the course of autoimmune inflammatory myopa-
thies [8] and after crash injury [6]. The activity of iNOS is
independent of the Ca2+/calmodulin complex and generates
NO at high concentrations (micromolar range) for prolonged
periods.

Studies in recent years have uncovered an increasingly
important role of physical association of the NOS isoforms
with a variety of regulatory and structural proteins [9].
nNOS may be inhibited by interaction with caveolin-3 [10]
or with PIN [11]; eNOS is activated by the interaction with
the 90-kDa heat shock protein; and iNOS is inhibited by
association with kalirin [12].

Of importance, these protein–protein interactions, as well
as regulating the activity of NOSs often target them to cellular
membranes. The N-terminus of nNOS contains a PDZ (post-
synaptic density protein-95, discs-large, Z0-1) domain that
allows interactions of the enzyme with other PDZ-
containing proteins at the cellular plasma membrane. In skel-
etal muscle, the localisation of nNOS to the dystrophin–gly-
coprotein complex at sarcolemma, due to the binding via one
of these PDZ-containing proteins,α1-syntrophin [13], is a key
aspect that explains the coupling of NO generation with
muscle contractile activity. Pathological features of muscular
dystrophies are, in part, due to the displacement of nNOS from

the sarcolemma as a consequence of the disruption of the
dystrophin–glycoprotein complex [13]. Endothelial NOS is
localised at both the plasma membrane and the Golgi complex
through its ability to be myristoylated and palmitoylated [14].
In addition, both iNOS and eNOS may interact with caveolin
1 and/or 3, proteins responsible not only for the localisation of
these enzymes at the plasma membrane but also for the
regulation of their activity and expression in an inhibitory
fashion [15, 16].

Nitric Oxide Action in Skeletal Muscle Physiology

The role of NO in the regulation of skeletal muscle physi-
ological activity, including excitation–contraction coupling,
auto-regulation of blood flow, calcium homeostasis and
bioenergetics has been investigated extensively; several ex-
cellent reviews on it are already present in the literature. We
will, thus, only briefly highlight here those effects of NO
that contribute to its therapeutic role in muscle repair and
concentrate our focus on its effects on myogenesis, which
have not been reviewed to date.

NO exerts its effects in skeletal muscle by activation of
the NO-dependent guanylyl cyclase, with formation of cy-
clic GMP, inhibition of cytochrome c oxidase in the mito-
chondrial respiratory chain and/or S-nitrosylation, the
covalent attachment of a nitrogen monoxide group to the
thiol side chain of cysteine. These three events in turn
activate a variety of downstream signalling cascades that
ultimately shape skeletal muscle responses to NO.

Generation of cyclic GMP appears of particular rele-
vance. Alongside mediating most of NO effects on myo-
genesis, as outlined below, cyclic GMP-dependent
signalling plays a major role in NO-dependent vasodilation
and vascular responses and presides over complex intracel-
lular crosstalk events involving calcium and sphingolipids,
which are key players in muscle homeostasis [17, 18]. In
addition, cyclic GMP mediates the NO-dependent biogene-
sis of mitochondria, which occurs via activation of a path-
way involving sirtuin 1, the peroxisome proliferator-
activated receptor-γ coactivator 1-α, the nuclear respiratory
factor 1 and the mitochondrial transcription factor A [19].
Increased mitochondrial biogenesis leads to an enhanced
ability by the skeletal muscle to generate ATP via mitochon-
drial respiration [20]. Such an effect is complemented by
NO-dependent stimulation of glucose transport [7], both in
the case of insulin [5, 21] and exercise-stimulated glucose
uptake [21].

Inhibition of cytochrome c oxidase in mitochondria that
occurs at physiological concentrations of NO is conceivably
relevant in skeletal muscle although specific studies on this
aspect are still missing. Whenever investigated, the binding
of NO to cytochrome c oxidase is reversible, occurs in
competition with oxygen and results in inhibition of enzyme
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activity [22, 23]. The interaction of NO with cytochrome c
oxidase, together with regulation of the expression of the
hypoxia-inducible factor 1 α, also dependent on the NO-
cytochrome c oxidase interaction [24], may contribute to a
fine-tuning of skeletal muscle cell metabolism, adapting it to
low oxygen conditions.

The observation that nNOS is localised in close proxim-
ity with mitochondria suggests a tight coupling between NO
generation and regulation of mitochondrial respiration and
metabolism [25]. As a consequence of cytochrome c oxidase
regulation [26, 27], NO controls the generation of reactive
oxygen species preventing their excessive generation and
ensuing toxicity. This is particularly relevant since small
concentrations of these radicals, generated physiologically
under NO control, may be beneficial and contribute to the
maintenance of an antioxidant defence in tissues [26].

A significant contribution to regulation of NO concen-
trations in muscle, with consequence also on its bioenergetic
role, comes from myoglobin that acts as a NO scavenger in
skeletal muscle, thus regulating its delivery [28]. Myoglobin
expression is developmentally regulated in skeletal muscle,
and its expression is higher in oxidative, fatigue-resistant
fibres [29]. In myoglobin-deficient mice there is an in-
creased compensatory stimulation of skeletal muscle NO
generation, associated with other changes relevant to me-
tabolism such as fibre type transition (type I to type II in the
soleus muscle), increased expression of the hypoxia-
inducible factor 1 α, stress proteins such as heat shock
protein 27, and the vascular endothelial growth factor that
stimulates angiogenesis [30].

The third main mechanism of NO action, S-nitrosylation,
regulates the activity of several enzymes that are important in
skeletal muscle physiology, among which are phosphatases,
caspases and oxidoreductases [31–35] as well as several tran-
scription factors, such as p53 and NF-κB [36, 37] Two other
important S-nitrosylation-dependent effects deserve mention:
the regulation of oxygen binding to, and release from, haemo-
globin [38] and thus the supply of oxygen to mitochondria,
and the activity of type II histone deacetylases that is relevant
to muscle repair, as will be explained below [39, 40].

Nitric Oxide in Myogenesis and Skeletal Muscle Repair

Post-natal skeletal muscle is able to continuously regenerate
its fibres following damage. Such ability is mostly depen-
dent on myogenic precursor cells. Among these cells, par-
ticularly relevant are the satellite cells (SC), which are
located under the basal lamina of myofibres, although other
interstitial stem cells may also play a role [41]. SC activate
and differentiate upon muscle injury contributing signifi-
cantly to its repair. In addition, SC are characterised by
reversible quiescence and self-renewal capacities that are

critical to maintain their reserve pool which is used to
sustain tissue regeneration during numerous rounds of dam-
age [42, 43]. Several studies in the last decade have shown
that NO regulates these myogenic precursor cells through a
variety of actions, mediated by different signal transduction
pathways and downstream effectors. Of importance, it also
appears that such regulation can be sustained by NO gener-
ated endogenously by these same cells, although NO pro-
duced by myofibres or endothelial cells may also play a role.
These various actions of NO converge in stimulating, on the
one hand, the process of proliferation, activation and differ-
entiation of these cells; on the other hand, in maintaining
their reserve pool so that it does not become exhausted
during physiological muscle damage. Such mechanisms by
NO, described below in detail, account not only for its
physiological role in myogenesis but also explain, at least
in part, why NO may have therapeutic efficacy in patholo-
gies, such as muscular dystrophies, where the muscle is
subject to repetitive rounds of damage. Figure 1 summarizes
on the various actions through which NO stimulates muscle
repair and the relevant mechanisms mediating its effect.

Nitric Oxide and Satellite Cells Proliferation: Maintenance
of the Satellite Cells Reserve Pool

The state of quiescence of SC is characterised by the persis-
tence of a G0 phase, the expression of several markers includ-
ing M-cadherin, syndecans 3 and 4, CD34, α-7 integrin, Sca-
1, SM/C 2.6 [44–47] and the expression of the paired-box
protein Pax7, a regulator of cell survival and myogenic pro-
gression [48, 49]. Upon activation, SC proliferate and give
rise to a population of myoblasts expressing myogenic regu-
latory factors among which is Myf5; activated SC progres-
sively down-regulate Pax7 and, after multiple rounds of cell
division, terminally differentiate to finally fuse and generate
new fibres [50, 51]. A subset of SC maintains or re-expresses
Pax7 and returns to quiescence by both symmetric and asym-
metric division [52]. This “reserve cell” pool is particularly
relevant as it is the one accounting physiologically for muscle
repair throughout a lifespan.

Among the several factors involved in SC self-renewal
identified so far, members of the canonical/β-catenin-de-
pendent and of the non-canonical Wnt pathways appear to
be relevant, the latter involving Wnt7a, its receptor Friz-
zled7 (Fzd7) and Vangl2, the mammalian homologue of the
Drosophila Vangl2/Stbm [53–60].

We have recently demonstrated that NO acts both on pro-
liferation of SC and the maintenance of their reserve pool; NO
stimulates proliferation of SC via generation of cyclic GMP
[61], while the maintenance of the pool of Pax7+Myf5− SC
depends on the Vangl2-dependent Wnt non-canonical path-
way. The cyclic GMP-dependent effect on proliferation is in
line with previous reports about the mitogenic action of NO,
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for which the effectors downstream of cyclic GMP have been
identified [62–64]. The effect of NO on Vangl2 signalling
suggests that NO acts not only in adult skeletal muscle but
also during embryonic muscle development, since the non-
canonical Wnt pathway plays a role in differential activation
of genes in epaxial or hypaxial progenitors [65, 66]. While the
effect of NO on embryonic myogenesis needs to be investi-
gated further, the role of NO on adult muscle appears of
importance as it prevents the exhaustion of the SC pool in
case of severe muscle damage, such as in muscular dystrophy

[61]. In this conditions, genetic ablation of nNOS in fibres or
treatment with NOS inhibitors is sufficient to induce progres-
sive reduction of the muscle regenerative capacity [61], con-
firming the obligatory role of NO in maintaining the
myogenic precursor pool in vivo.

Nitric Oxide and Satellite Cells Activation

One of the initial reports about a role of NO in myogenesis
was on its ability to induce activation of SC immediately

Fig. 1 Schematic diagram summarising the various actions through
which NO stimulates muscle repair and the relevant mechanisms medi-
ating the effect of NO. The upper inset depicts how NO regulates the
differentiation of the myogenic precursor cells pool leading to enhanced
myogenesis, which is a key action of NO as a muscle healer (dark boxes,
phases of myogenic differentiation regulated by NO; white boxes, mech-
anisms of NO-dependent control). In particular, NO stimulates the myo-
genic precursor cells proliferation in a way that the quiescent reserve pool
is also maintained. This action is exerted via a combined stimulation of
cell cycle and enhanced expression of Vangl-2, a key transcription factor
in the Wnt non-canonical pathway. NO stimulates also activation of the
myogenic precursor cells via hepatocyte growth factor release and
favours the differentiation of these cells by inhibiting Drp-1 activity and
thereby mitochondrial fission, with formation of bioenergetically compe-
tent elongated mitochondria. Finally, NO drives the fusion of the myo-
genic precursor cells between themselves and to the existingmyofibres by
enhancing the expression and release of follistatin. Several other effects,
exerted directly on the skeletal muscle myofibres, synergise with the
actions of NO on myogenesis towards muscle repair. NO generated by

nNOS duringmuscle contractile activity induces vasodilation and thereby
increases the supply of nutrients and oxygen to the contracting muscle. A
relevant event in this respect is the increase in the expression of the
glucose transporter GLUT4 leading to increased glucose uptake by the
muscle. NO also exerts a relevant control of muscle bioenergetics, by
increasing mitochondrial biogenesis in a pathway involving sirtuin-1-
dependent increase in expression of the mitochondrial biogenetic tran-
scription factors peroxisome proliferator-activated receptor-γ coactivator
1-α, nuclear respiratory factor 1 and mitochondrial transcription factor A.
Such mitochondrial biogenesis is accompanied by a tight control of
mitochondrial respiration through direct and reversible inhibition of cy-
tochrome c oxidase in competition with oxygen, with reduced generation
of noxious reactive oxygen species. NO has been reported also to control
the activity of immune competent cells. This action may account for
inhibition of inflammation in the damaged muscle observed with some
NO-donating drugs such as molsidomine, even if muscle repair is best
observed by combining NO donation with a frank inhibition of inflam-
mation obtained by co-administration of NSAIDs
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upon damage [67]. Reduced NOS activity prevented the
increase in myogenic cells yield, when they were isolated
from the injured muscle, and delayed the activation of SC
after isolation [67]. Further, a single administration of NOS
inhibitors in rats subjected to muscle trauma prevented the
increase of SC number [68]; rats in which NOS activity was
inhibited also showed increased levels of collagen, suggest-
ing that blocking NO signal in the early phase of injury
impairs muscle repair, favouring fibrotic scar tissue produc-
tion. The mechanism by which NO influences SC activation
involves release of the hepatocyte growth factor from extra-
cellular matrix [69]. The molecular mechanism leading to
the release of this growth factor has not been investigated in
detail, although it was reported that NO acted through
metalloproteinases induction [69].

Nitric Oxide and Myogenic Differentiation

Alongside the control by NO of mitochondrial respiration
and mitochondrial biogenesis, relevant for adult skeletal
muscle homeostasis, a third action by NO on mitochondria
more directly relevant for myogenesis has been recently
described. During myogenic differentiation, the short mito-
chondria of the myoblasts change into the extensive elon-
gated network observed in the myotubes [70], suggesting
that they may have a role in myogenesis. Such an effect
appears to initiate already in differentiating myoblasts prior
to their fusion [71]. Physiological generation of NO was
found to inhibit the activity of the dynamin-related protein 1
(Drp-1), a protein playing a key role in the process of
mitochondrial fission. Inhibition of the synthesis of NO in
myogenic precursors enhanced the activity, translocation
and docking to mitochondria of Drp-1, leading to inhibition
of mitochondrial elongation [71]. Under this condition, dif-
ferentiating myoblasts displayed a latent mitochondrial dys-
function. These effects, due to NO synthesis blockade, were
not observed when Drp-1 action was counteracted by its
dominant negative form. This establishes a formal link
between NO generation and inhibition of Drp-1 activity
[71]. Both the NO-dependent repression of Drp-1 action
and the maintenance of mitochondrial integrity are revers-
ible (with a fast onset and offset) and mediated by genera-
tion of cyclic GMP. Of importance, the inhibition of
mitochondrial fission by NO has physiological consequen-
ces as it allows myogenesis to occur [71]. This indicates that
NO exerts a quality control check on differentiation by
regulating mitochondrial morphology and function.

In neurones, high cytotoxic concentrations of NO have
been reported to promote mitochondrial fission and apopto-
sis via S-nitrosylation of Drp-1 [72, 73], i.e. a mechanism
different from the cyclic GMP-dependent phosphorylation
described above, which activates rather than inhibits the
enzyme. The findings in neurones are only apparently

contradictory to the those in the skeletal muscle, in keeping
with the concept that NO is a double-edged messenger that,
depending on its concentration, mechanism and site of ac-
tion, can have opposing effects on a particular mechanism or
target [74, 75].

Why an elongated mitochondrial network is required in
differentiating skeletal muscle, at variance with other tissues
such as the liver where respiration is sustained by short
mitochondria, remains to be established. A possibility
resides in the specific architecture of the myotubes, espe-
cially in their need of sustaining the activity of the actin–
myosin contractile apparatus [76].

The fact that mitochondrial volume and network exten-
sion correlate positively with the efficiency of mitochondrial
respiratory function and myogenic differentiation of myo-
genic precursor cells has biological relevance also for the
mature myofibres. The decrease in mitochondrial size ob-
served in tissues from eNOS null mice [19] is likely to be a
morphological correlate of the reduced mitochondrial func-
tion. Likewise, impaired oxidative phosphorylation has been
reported in dystrophic muscles, which lack a functional
nNOS [77–81].

Nitric Oxide and Myogenic Precursor Cells Fusion

The effect of NO on myogenic precursor cell fusion was
described for the first time in 1994 when Lee and collabo-
rators [82] showed a peak in NOS activity in chicken myo-
blast competent for fusion, but not in proliferating
myoblasts and myotubes. In this fusion-competent myogen-
ic precursor cells, NO induced early fusion, whereas inhibi-
tion of NO production delayed the time of fusion [82].

The mechanisms and biological relevance of the fuso-
genic action of NO on myogenic precursor cells was inves-
tigated further. In particular, NO was found to be crucial for
the fusion of SC also in mammals [83]. Of importance, this
effect was observed not only on adult SC but also on the
presomitic mesoderm, further indicating that NO has an
effect, still to be characterised in full detail, at critical stages
of pre-postnatal muscle developmental life. The mechanism
of NO action on fusion is mediated via cyclic GMP produc-
tion and enhanced expression and release of follistatin [83].

Follistatin induction by NO/cGMP involves MyoD,
NFAT and CREB. The fact that MyoD, CREB, and NFAT
mediate the transcriptional effect of NO resembles the situ-
ation already described for stimulation of myoblast fusion
by the deacteylase inhibitor trichostatin A [84]. Follistatin is
also essential in mediating the effect of trichostatin A on
muscle size and SC recruitment interacting with, and regu-
lating the biological activity of, transforming growth factor-
β family members and by blocking myostatin [84]. The
similarity between the action of trichostatin A and NO and
the evidence that trichostatin A up-regulates the expression
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of eNOS in non endothelial cells [85, 86], suggesting that
NO is involved in regulating the process of acetylation.
Indeed, it has now been demonstrated that NO inhibits the
activity of class IIa histone deacetylases via S-nitrosylation
[39, 40]. Of importance, the nitrosylation state of class IIa
histone deacetylases influences the expression of specific
microRNAs genes important for muscle regeneration [87],
indicating that nNOS, follistatin, class IIa histone deacety-
lases and microRNAs are in the same regulatory pathway.

Neuronal, Inducible and Endothelial Nitric Oxide
Synthases: Which Roles Do They Play in Myogenesis?

From the evidence reported in the paragraphs above, NO
clearly emerges as a key messenger presiding over several
crucial steps of myogenic differentiation important in mus-
cle repair; still, the role of NO in muscle repair needs further
clarification. In certain conditions, NO may be even detri-
mental. Rubinstein and collaborators [6] showed that muscle
crush is associated with activation of the NO system, and
that this is an important mechanism leading to muscle dam-
age. The detrimental action by NO observed by these
authors may be due to excessive NO production in their
experimental system where iNOS and eNOS are up-
regulated.

Studies are still needed also to clarify the role of the three
NOS isoforms, in particular, the role of eNOS for which a
function, if any, in muscle repair has not been established.

The role of iNOS has been investigated to some extent.
This enzyme is up-regulated during muscle mechanical
damage and has been shown to play a negative effect on
regeneration [6, 68, 88]. Indeed, ablation of iNOS in
dystrophin-deficient mice significantly reduces muscle
membrane lysis, suggesting that iNOS promotes injury of
dystrophic muscles, an effect that appears to be due to the
enhanced infiltration of the diseased tissue by iNOS-
expressing M1 macrophages [89]. Yet, in another study,
the role played by this enzyme in dystrophy appears to be
minor, if any [90].

The role of nNOS for muscle physiological repair
appears instead more clearly defined. Alongside its absence
from the sarcolemma of mdx mice and of patients affected
by Duchenne muscular dystrophy [91], nNOS mislocalisa-
tion has been observed in models of other pathologies
affecting muscle homeostasis and performance, such as in
mouse models of limb-girdle muscular dystrophy (α, β and
δ sarcoglycan null mice) [92] and in models of amyotrophic
lateral sclerosis and catabolic stress [93, 94]. Neuronal NOS
overexpression in mdx mice significantly ameliorates the
dystrophic phenotype [95].

Indeed, nNOS null mice show reduced skeletal muscle
mass, reduced maximum titanic force with a more severe
phenotype in male mice compared to female [96]. Neuronal

NOS null mice display an altered activation of SC [67], and
even if they regenerate after myotoxic injury [97], no com-
plete restitutio ad integrum of muscle tissue has been ob-
served. Indeed, significant pathological alterations are still
present, including a significantly reduced cross-sectional
area of the newly regenerated myofibres [97].

Neuronal NOS deficiency causes also an increased sus-
ceptibility to contraction-induced fatigue both in male and
female mice. Thus, aberrant nNOS signalling impairs three
important clinical features common to dystrophinopathies
and sarcoglycanopathies: maintenance of muscle bulk, force
generation and fatigability. Finally, nNOS plays a significant
role in muscle auto-regulation of blood flow. While normal
blood flow and exercise-induced hyperaemia are generally
preserved in nNOS null mice, they lack contraction-induced
suppression of adrenergic vasoconstriction [98, 99]. Strik-
ingly, contraction fails to suppress adrenergic vasoconstric-
tion also in mdx mice, consistent with their reduced NOS
function [99]. Because of these haemodynamic effects,
nNOS deficiency has been associated with induction of
inactivity after mild exercise, and it has been clearly shown
that the lack of normal cyclic GMP response as a conse-
quence of reduced NO generation leads to narrowing of
vasculature and reduced muscle nutrient supply [100]. In
dystrophic patients with an already altered muscle homeo-
stasis, these haemodynamic effects may contribute to the
worsening of muscle structure [98].

Nitric Oxide and the Therapy of Muscular Dystrophies

The need for novel therapeutic strategies for muscular dys-
trophies is particularly urgent. The therapeutic protocols
currently in use are still based on corticosteroid administra-
tion. These drugs, while delaying the progression of the
disease, are associated with severe side effects [101], such
that optimisation of their use is still being actively pursued,
and a clinical trial to this end has just been initiated. Ther-
apies that substitute corticosteroids or at least may act as
corticosteroid-sparing drugs are, thus, being actively
investigated.

Whereas exon skipping and stem cell approaches appear
to be significant steps forward to a resolutive therapy, they
are expensive and still not really available, as the results of
the last clinical trials indicate [102–105]. In addition, they
target only specific subsets of patients (e.g. about 13 % in
the case of exon 51 skipping). “Classical” pharmacological
approaches appear therefore still attractive and of significant
value, as they address all patients and at affordable costs.

The well-known regulation by NO of skeletal muscle
force excitation–contraction coupling, auto-regulation of
blood flow and glucose homeostasis [106], alongside the
newly characterised role of NO in myogenesis and muscle
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repair outlined above, suggests a possible use of NO as a
tool for therapeutic strategies in Duchenne, Becker and
limb-girdle muscular dystrophies, where genetic alterations
in genes coding for structural muscle proteins lead to re-
peated and enhanced muscle damage during physiological
activity. The role of NO as a therapeutic is also supported by
the evidence that rescue of function in mdx and dystrophin/
utrophin double-knockout mice does not require a strict
nNOS localisation to, and generation of, NO at the sarco-
lemma [95, 107]. The efficacy of therapies based on the
administration of NO has, thus, been investigated by several
groups in mouse models of muscular dystrophy.

Approaches with only NO donors or the NOS substrate
L-arginine yielded some amelioration of the mdx mouse
dystrophic phenotype; however, none of these studies
reported long-term observations. Thus, the assessment of
the validity of NO donation/generation as a therapeutic
strategy yielding persistent beneficial effects could not be
defined [108–113]. Recently, the efficacy of two NO
donors, the organic nitrate isosorbide dinitrate and molsido-
mine, has been investigated. Isosorbide dinitrate alone was
not effective, and molsidomine showed a moderate long-
term efficacy [61]. Why molsidomine is more effective than
the other NO donors tested so far remains to be established.
A likely possibility is that molsidomine is particularly ef-
fective in increasing SC number [61]. Such an action may
depend on the pharmacokinetic profile of NO release by
molsidomine or on the fact that it releases also biologically
active nitrites and nitrates [114], which have beneficial
functions in skeletal muscle [115, 116]. Notwithstanding
the positive results with molsidomine, a strategy based on
NO donation alone appears not endowed with the character-
istics of clinical efficacy needed for an effective pharmaco-
logical therapy.

An alternative strategy is to use NO donation in combi-
nation with anti-inflammatory drugs. A study in mdx mice
indeed reported functional recovery using the association of
L-arginine and the corticosteroid drug deflazacort on muscle
voluntary exercise [117]. Despite the validity of such an
approach, it still implies the use of corticosteroids. At var-
iance with this approach, a different strategy has been tested,
in which the anti-inflammatory activity was obtained using
non-steroidal anti-inflammatory agents (NSAIDs).

Two approaches were used, one in which the NO-
donating agent is a different molecular entity with respect
to the NSAID, in particular, a combination of isosorbide
dinitrate and ibuprofen; the other approach consisted of
compounds of the CINOD class (cyclooxygenase-inhibiting
nitric oxide (NO) donators) in which the two activities are
combined in a single molecular entity [118]. All these drugs
or drug combinations exerted significant therapeutic effects
in both the α-sarcoglycan null and the mdx mouse models in
the absence of relevant side effects or signs of toxicity. They

significantly slowed disease progression and maintained the
functional capacity of muscles. Of importance, the benefi-
cial effects were found to persist long term, i.e. up to the end
of the observation period, which was set at 12 months to
mimic a chronic treatment in a clinical setting with patients.
Several mechanisms synergised to yield the therapeutic
effect of the combined therapy: significant reduction in both
fibre damage and inflammation and increases in the myo-
genic precursor cells number and differentiation capacity,
which preserve the long-term regeneration capacity of mus-
cle [119–121]. Other actions of NO on skeletal muscle such
as vasodilation and thus reduction of the ischaemia induced
by nNOS displacement, increase in glucose uptake and in
energy generation [106] may also have contributed to mus-
cle repair. In addition, NO is a potent angiogenic factor
[122], and angiogenesis may also significantly contribute
to muscle repair [123]. An additional interesting aspect of
these therapies is that they significantly enhance the homing
of exogenously added myogenic stem cells to dystrophic
muscles [119, 124]. This observation suggests the possibil-
ity of obtaining synergic effects by combining pharmaco-
logical with cell therapy approaches. Whereas no significant
differences in the efficacy of CINOD vs. the combination of
NO-donating drugs plus NSAID were observed, an advan-
tage in therapeutic perspective of the use of a combination of
drugs is the possibility of titrating the two active principles
independently, thus optimising their use of single patients.

The therapeutic potential of the combination of the drugs
isosorbide dinitrate and ibuprofen was also tested on dys-
trophic patients in an open-label pilot study in a cohort of
adult patients affected by Duchenne, Becker and limb-girdle
muscular dystrophies. The trial was designed mainly to
evaluate safety and tolerability of the drug combination,
but exploratory measures of efficacy, such as the motor
function measure scale, were also applied. Good safety
and tolerability profiles of the long-term co-administration
of the drugs were demonstrated with only few and transient
side effects. Of importance, the exploratory efficacy meas-
ures evidenced a trend towards amelioration that was sig-
nificant in the D1 dimension of the motor function measure
scale (assessing muscle standing and transfers) [125]. These
results strongly indicate that the systemic administration of a
combination of NO-donating drugs and NSAIDs (and pos-
sibly of CINODs) is of potential clinical relevance and
should be optimised and further investigated in future clin-
ical studies.

Concluding Remarks

The discovery of a role of NO in myogenesis and muscle
repair and, thus, the possibility of using NO-based
approaches in muscular dystrophies opens novel perspective
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for NO as a therapeutic molecule beyond cardiovascular
disorders, which have been, to date, the only widely recog-
nised field of application of NO donors in humans. The use
of NO-donating molecules in muscular dystrophy brings
about some important considerations. Firstly, NO donation
alone appears insufficient to yield a full therapeutic benefit,
which can be only obtained by combining the properties of
NO with the anti-inflammatory activity of NSAIDs. Sec-
ondly, the pharmacological approach with NO (plus
NSAIDs), while efficacious per se, may also constitute the
basis for combinatorial therapies in which the pharmacolog-
ical therapy is associated with stem cell approaches to obtain
an enhanced therapeutic benefit. These aspects bring new
life to NO donors as drugs, highlighting their use in novel
therapeutic applications; in addition, they suggest that the
use of NO donors in combination with cell and possibly
gene therapies yields synergic effects that can be likely
exploited also beyond the muscular systems.
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