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Abstract The global trend of the phenomenon of popula-
tion ageing has dramatic consequences on public health and
the incidence of neurodegenerative diseases. Physiological
changes that occur during normal ageing of the brain may
exacerbate and initiate pathological processes that may lead
to neurodegenerative disorders, especially Alzheimer's dis-
ease (AD). Hence, the risk of AD rises exponentially with
age. While there is no cure currently available, sufficient
intake of certain micronutrients and secondary plant meta-
bolites may prevent disease onset. Polyphenols are highly
abundant in the human diet, and several experimental and
epidemiological evidences indicate that these secondary
plant products have beneficial effects on AD risks. This
study reviews current knowledge on the potential of poly-
phenols and selected polyphenol-rich diets on memory and
cognition in human subjects, focusing on recent data show-
ing in vivo efficacy of polyphenols in preventing neurode-
generative events during brain ageing and in dementia.
Concentrations of polyphenols in animal brains following
oral administration have been consistently reported to be
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very low, thus eliciting controversial discussion on their
neuroprotective effects and potential mechanisms. Whether
polyphenols exert any direct antioxidant effects in the brain
or rather act by evoking alterations in regulatory systems of
the brain or even the body periphery is still unclear. To
understand the mechanisms behind the protective abilities
of polyphenol-rich foods, an overall understanding of the
biotransformation of polyphenols and identification of the
various metabolites arising in the human body is also ur-
gently needed.

Keywords Polyphenols - Brain ageing - Alzheimer’s
disease - Mitochondria

Introduction

In 1936, the group of Szent-Gyorgyi (Nobel prize in 1937)
reported the isolation of the so-called ‘vitamin P’, which
showed capillary resistance-increasing properties in humans
[1]. The activity of ‘vitamin P’ has later been attributed to
the presence of various polyphenols, mainly flavonoids such
as flavones, flavanones and flavonols [2].

In the 75 years since the description of ‘vitamin P’, a
plethora of studies focused on polyphenols as plant food
constituents with possible health-beneficial effects, especial-
ly on age-related, chronic diseases such as Alzheimer’s
disease (AD) and other dementias, cancer, as well as car-
diovascular disease (CVD) [3—0].

In the human diet, polyphenols are highly abundant and
several hundreds of different compounds have been identi-
fied [7]. Polyphenols can be divided into several groups
based on the number of phenol rings and the structural
elements binding these rings to one another (Fig. 1) [8].
Flavonoids are the most abundant group among dietary
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Fig. 1 Polyphenol-rich diets with neuroprotective potentials and their
main polyphenolic compounds. In spices, tea, oils, fruits and herbs,
polyphenols have a great abundance in the human diet and several
hundreds of different compounds have been identified in food. As a
function of their number of phenol rings and of the structural elements
binding these rings to one another, these molecules can be divided into

polyphenols [9]. Flavonoids commonly consist of two aro-
matic rings bound together by three carbon atoms, forming
an oxygenated heterocycle. Flavonoids can further be divid-
ed into six subclasses: flavonols, flavones, isoflavones, fla-
vanones, anthocyanidins and flavanols (catechins and
proanthocyanidins) [8]. With the exception of the rarely
glycosylated flavanols, flavonoids are generally present in
glycosylated forms in plants [10].

The majority of studies reporting biological activities and
targets of polyphenols have used cell culture experiments
which are prone to artefacts. For example, the addition
of the green tea flavanol, epigallocatechin-3-gallate (EGCG;
but also of other redox-active compounds such as vitamin
C), at concentrations of 0.05—-1 mM to cell culture media
generates hydrogen peroxide in the low to high micromolar
range in various types of cell culture media [11,12].
Depending on its concentration, hydrogen peroxide acts as
a potent second messenger or cell stressor [13,14].
Both effects may significantly confound the interpretation
of cell culture data. Similarly underappreciated is the pro-
blem of nutrient depletion (e.g. of pyruvate) in cell culture
media due to test compound-induced hydrogen peroxide
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several groups. Flavonoids are the most abundant group among dietary
polyphenols. The common structure of flavonoids consists of two
aromatic rings bound together by three carbon atoms forming an
oxygenated heterocycle. Flavonoids themselves can be divided into
six subclasses: flavonols, flavones, isoflavones, flavanones, anthocya-
nidins and flavanols (catechins and pro-anthocyanidins)

production [15]. In addition, it is often difficult to extrapo-
late in vitro data to in vivo conditions [5]. Thus, our review
will focus on recent advances in the understanding of the in
vivo efficacy of polyphenols in preventing neurodegenera-
tive events during brain ageing and in dementia.

Mitochondria, Brain Ageing and Alzheimer’s Disease

Mitochondria—Key Organelles for Energy Supply and Cell
Death

Increasing evidence suggests that mitochondrial dysfunction
plays an important role not only in brain ageing, but also in
the pathogenesis of neurodegenerative diseases, including
AD [16]. Mitochondria are complex, network-forming
organelles, involved in different metabolic pathways, e.g.
tricarboxylic acid cycle (TCA), energy transformation, ami-
no acid metabolism and urea cycle [17]. Mitochondria
consist of inner and outer membranes composed of phos-
pholipid bilayers and proteins. The inner mitochondrial
membrane harbours the proteins of the electron transfer
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system (ETS), responsible for oxidative phosphorylation.
The mitochondrial oxidative phosphorylation (OXPHOS)
system is the final biochemical pathway that produces ener-
gy in form of ATP by consuming oxygen. Electrons are
transferred through the complexes of the mitochondrial res-
piratory chain and simultaneously, an electrochemical pro-
ton gradient is built across the inner mitochondrial
membrane, generating the proton-motive force that drives
the production of ATP [18,19].

Alterations of mitochondrial efficiency and function are
mainly related to alterations in mitochondrial mass, amount
of respiratory enzymes or changes in enzyme activities
[20-23]. A reduction in mitochondrial content or lowered
ETS results in a general limitation of cellular energy pro-
duction. Dysfunction of single complexes of the respiratory
system are frequently accompanied by deleterious side
effects, such as loss of mitochondrial membrane potential
(MMP) and subsequently decreased ATP levels, but also
production of reactive oxygen species (ROS) [24].

Apart from ROS enzymatically produced by NADPH
oxidases, cytochrome P450-dependent oxygenases and xan-
thine dehydrogenases, mitochondria are regarded as the
primary site of ROS production within cells. The ETS
constantly generates ROS, which are usually kept in balance
by various defence mechanisms, i.e. antioxidative molecules
(e.g. glutathione (GSH) or vitamin E) and antioxidant
enzymes (e.g. superoxide dismutase, catalase, glutathione
peroxidase and glutathione reductase), as long as ROS lev-
els are in the physiological range. Furthermore, slight
uncoupling of the ETC, e.g. by uncoupling proteins, may
also reduce ROS production. Functional failure of this sys-
tem can lead to deleterious effects, which may exaggerate
the consequences of mitochondrial dysfunction [25]. Mito-
chondria are often considered as both the initiator and the
first target of oxidative stress. Insufficient defence mecha-
nisms and excessive ROS production (e.g. as superoxide
anions) can lead to cell damage. The major sources of
superoxide anions are redox centres of complex I and III
of the ETS, and different mitochondrial flavoproteins. Su-
peroxide is a rather weak radical, but it is the precursor of
various, potentially more toxic ROS [18,26,27]. Its transfor-
mation into hydrogen peroxide and hydroxyl radicals, as
well as its participation in the formation of peroxynitrate,
creates strong oxidants [28].

The proteins of the OXPHOS system and lipids are key
targets of the deleterious effects of ROS, potentially leading
to membrane depolarization and subsequently, impaired mi-
tochondrial function [16,25]. For example, oxidative dam-
age of omega-3 polyunsaturated fatty acids in the inner
mitochondrial membrane has been shown to result in loss
of MMP, representing one early hallmark of apoptosis [29].
Thus, mitochondria play an important role in producing
energy, but also as major source of ROS. Therefore, efforts

to increase mitochondrial function should be accompanied
by equal efforts to limit deleterious ROS generation.

Mitochondria act as signal-integrating organelles in the
onset of the intrinsic apoptotic pathway. Mitochondrial outer
membrane permeabilization and permeability transition re-
sult both in the release of pro-apoptotic proteins, which in
turn activate caspases and cell death mechanisms further
downstream [30,31].

Dysfunction of single mitochondrial enzyme complexes,
ROS production, mitochondrial permeability transition pore
opening (mPTP), elevated apoptosis, as well as structural
alterations and a diminished mitochondrial content, play a
role in brain ageing, and are believed to be crucial for the
onset and progression of neurodegenerative diseases
[32-34].

Ageing—Still an Inevitable Physiological Process

Ageing affects the brain, manifested as decline in several
physiological abilities, including sensory, motor and cogni-
tive functions [35,36]. On the cellular level, impaired func-
tion of signalling mechanisms, altered gene expression and
perturbed energy production have been reported. On the
molecular level, oxidative stress is believed to cause accu-
mulation of damaged proteins, lipids, carbohydrates and
nucleic acids [37,38]. As previously mentioned, mitochon-
dria have been suggested to play a major role in ageing in
view of their central role in energy production, as major
source of ROS and as critical regulators of apoptosis
[16,39,40]. In mice, brain ageing is typically accompanied
by substantial cognitive deficits, beginning in late adulthood
at around 12 months of age [16,41]. Ageing has also been
shown to affect the lipid composition of mitochondria from
rodent brains. Interestingly, among phospholipids, only the
cardiolipin fraction of non-synaptic mitochondria from
brains of aged rats showed a significant decrease, which
was linked to a decrease of linoleic acid [42]. At the same
time, oxidative damage, for instance in the form of enhanced
lipid peroxidation and reduced membrane fluidity in mito-
chondria, has been detected ex vivo [43,44]. Complexes I
and IV of the mitochondrial respiratory chain show signifi-
cantly decreased enzymatic activities in mitochondria iso-
lated from brains of aged rodents [16,40,45-48]. Due to
mitochondrial ROS production, mitochondrial proteins are
particularly vulnerable to oxidation, and there is some evi-
dence that mitochondrial DNA accumulates mutations with
ageing [44,49-51].

Physiological changes that occur during the normal age-
ing of the brain may be exacerbated in vulnerable popula-
tions of neurons, initiating pathological processes that
finally lead to neurodegenerative disorders [36]. Mitochon-
drial dysfunction has also been observed in the brain of
female mice during reproductive senescence, together with
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reduced mitochondrial bioenergetics, a shift to ketogenic
profile, and a significant decline in mitochondrial complex
IV activity and mitochondrial respiratory capacity [52].

Ageing—an Important Risk Factor for Neurodegeneration

To understand the onset and progression of neurodegenera-
tive diseases is one of the major challenges of the twenty-
first century. The United Nations estimate that the number of
people suffering from age-related neurodegeneration, par-
ticularly from AD, will exponentially increase from 25.5
million in 2000 to an estimated 114 million in 2050 [53].
Several meta-analyses have consistently estimated the glo-
bal prevalence of dementia in people aged over 60 at
approximate 4 % [54]. The global annual incidence of
dementia is estimated to be about 8 per 1,000 population
[55], with no substantial variations across continents, except
Africa [56]. The incidence rate of dementia increases expo-
nentially, doubling approximately every 5 to 6 years with
age and incidence rates across regions of dementia are quite
similar [54,56,57]. The largest increase in absolute numbers
of old persons will occur in developing countries [56]. Thus,
the global trend in the phenomenon of population ageing
has dramatic consequences on public health, healthcare
financing and delivery systems in the world, especially in
developing countries [56].

Alzheimer’s Disease—a Devastating Neurodegenerative
Disorder

The clinical symptoms of AD include a progressive loss of
memory and impairment of cognitive abilities. Severe neu-
rodegenerative alterations occur in AD brains, including
loss of synapses and neurons, atrophy, and the selective
depletion of neurotransmitter systems (e.g. acetylcholine)
in the hippocampus and cerebral cortex—two brain regions
involved in learning and memory [58]. Such defects are
mainly observed in the later stage of the disease, and have
also been partially demonstrated using transgenic animal
models of AD [59,60].

AD is considered as a protein aggregation disorder, based
on two key neuropathological hallmarks, namely the hyper-
phosphorylation of the tau protein, resulting in the formation
of neurofibrillary tangles, and the increased formation and
accumulation of amyloid-beta peptide (A3) oligomers and
fibrils derived from amyloid precursor protein (APP) [61].
Although the exact underlying causes initiating the onset of
AD are still unclear, an imbalance in oxidative and nitro-
sative stress, intimately linked to mitochondrial dysfunction,
characterizes early stages of AD pathology [16].

Defective energy metabolism is a fundamental compo-
nent of AD [62—65]. Increasing evidence suggests an im-
portant role of mitochondrial dysfunction and oxidative
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stress in AD [66—68]. Early defects in the expression of
several subunits of respiratory chain complexes [69], de-
creased mitochondrial respiration (mainly mediated by a
decline in complex I and complex IV function), and reduced
MMP and ATP levels have been detected in several AD cell
culture and animal models [68-71]. Direct effects of APP
and A3 on mitochondrial function may induce this early
dysfunction. Accumulation of APP in mitochondria, which
has been found in both transgenic cell lines and animals,
correlates with mitochondrial dysfunction. This may pro-
vide one causal link explaining the impaired energy meta-
bolism and subsequent rise in ROS/RNS in models of AD
[72—74]. Aside from APP, Af3 itself has also been suggested
to affect mitochondrial function. Data show that the pres-
ence of one of the key enzymes in A3 release, namely y-
secretase, pinpoints to a direct production of A3 in these
organelles [75].

Recently, Leuner et al. showed that mitochondria-derived
ROS are sufficient to trigger amyloidogenic APP processing
in vivo, and that Af} itself leads to mitochondrial dysfunc-
tion and increased ROS levels [71]. Finally, increasing
evidence suggests that mitochondrial dysfunction in AD
originates not only from the deleterious impact of APP/
Af3, but also from its interplay with hyperphosphorylated
tau protein on the mitochondrial level [70].

Brain Ageing, Dementia and the Impact of Nutrition

The survival of any organism crucially depends on its nu-
trient intake, which provides all molecules for cell forma-
tion, maintenance and repair, either in the form of ready-
made building blocks or precursors [76]. In the case of
humans, the importance of nutrition becomes obvious in
the form of distinct patterns of clinical symptoms caused
by the inadequate intake of one of the macronutrients,
vitamins or minerals [77]. The increase in life expectancy
observed in the twentieth century in many populations
throughout the world attests to the impact nutrition (in
conjunction with better hygiene and medical practice) exerts
on human health [78]. At the same time, however, human
ageing beyond 50 years of age is typically accompanied by
the occurrence of one, often more, chronic, age-related dis-
eases, such as cancer, CVD and neurodegeneration [79,80].
Due to its physiological characteristics, the brain is particu-
larly prone to damage induced by noxious changes or fluc-
tuations in cellular homeodynamics [81,82]. Thus, the quest
for primary prevention of neurodegeneration is imperative.

As stationary autotrophs, plants have evolved numerous
pathways for the synthesis of secondary plant metabolites.
These phytochemicals act, for example, as free radical sca-
vengers or as defence against infectious microorganisms,
with the aim of increasing a plant’s chances for reproduction
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and survival [83]. Of all secondary plant metabolites, the
group of polyphenols attracted most interest as potential
modulators of human health. The Paquid study, a large
cohort study of cerebral ageing in France, is among the first
nutritional investigations suggesting an inverse relation be-
tween the intake of polyphenols (here flavonoids) and a
slower cognitive decline in subjects aged 65 years and older
[84,85]. A recent publication based on the SU.VL.MAX
studies seems to confirm some of the earlier results that
indicated positive association between polyphenol intakes
and better cognitive and memory performance. However, a
more detailed analysis revealed that the polyphenol sub-
groups of catechins and flavonols exert both positive and
negative effects in individual test paradigms [86].

Although overall encouraging, the neuroprotective pro-
perty of polyphenol intake needs to be carefully assessed. In
the following, we provide the reader with a comprehensive
update of selected polyphenols and polyphenol-rich diets
with regards to their potential in maintaining memory and
cognition in human subjects (Fig. 1). In addition, we discuss
some of the most promising mechanisms of action that
could explain polyphenols’ presumed health-beneficial
effects.

Factors Affecting Polyphenol Brain Bioavailability

In order to reach the brain, orally ingested polyphenols must
cross two barriers, i.e. the enterocytes in the intestine as well
as the blood—brain barrier which separates the CNS from the
body periphery [8,87]. With a few exceptions, only poly-
phenol aglycones can be absorbed in the small intestine
[8,88]. Németh et al. identified polyphenol deglycosylation
by small intestinal epithelial cell 3-glucosidase as a crucial
step in the absorption and metabolism of dietary flavonoids
[89]. In addition, a sodium-dependent glucose transporter 1-
dependent uptake of polyphenol glucosides has been sug-
gested [90], but the extent of this mechanism is still unclear.

Most polyphenols, once they are released from the enter-
ocytes into the lymph and subsequently blood, undergo
substantial biotransformation in the form of methylation,
glucuronidation, sulfation and thiol conjugation reactions
[8,91]. These modifications typically alter the chemical
properties of polyphenol metabolites, resulting in potentially
new biological activities [8,92]. In addition, anthocyanins
may be degraded due to their instability in neutral fluids
[93].

Recently, the colonic microflora emerged as an important
contributor to polyphenol bioavailability and metabolism
[8]. For example, polyphenol metabolites of apple juice or
green tea catechins formed by microbial metabolism in the
small intestine of healthy ileostomy probands have been
identified [94,95]. The microflora is able to extensively
metabolize polyphenols, and their degradation products

have been detected in human plasma and urine. Importantly,
luminal microorganisms are not only affecting polyphenol
breakdown; polyphenols can also significantly alter both
composition and metabolism of the intestinal microbiota,
possibly with subsequent effects on the host’s health status
[96-98].

Several publications indicate that orally administered
polyphenols penetrate the blood—brain barrier (e.g.
[99,100]) and reveal different pharmacokinetic profiles in
blood plasma and brain homogenate [101]. However, brain
bioavailability of polyphenols is still a matter of debate and
a substantial number of publications have addressed this
issue (reviewed in [102]). The amount of reliable data on
this aspect is very limited due to the lack of important
control procedures during data acquisition. In particular,
the potentially confounding effect of residual cerebral
microvessels and blood on the quantification of interstitially
and intracellular located polyphenols (or drugs) is often
overlooked [102,103]. Following the administration of
Hypericum performatum or Ginkgo biloba extracts, for ex-
ample, brain concentrations of the biflavone amentoflavone
were below the lower limit of quantification (<0.01 nmol/g;
LC-MS-MYS) after performing the necessary correction for
residual blood [104]. In agreement with these data, oral
supplementation studies in exsanguinated and perfused ani-
mals consistently showed that polyphenol concentrations in
animal brain were usually below 1 nmol/g tissue [105—-108].
Although these data provide evidence that some polyphe-
nols are able to penetrate into the animal brain at measurable
levels, the detected concentrations do not support the con-
cept of significant direct antioxidant effects of polyphenols
in the CNS [102]. Hence, whether polyphenols exert any
direct antioxidant effects in the brain or rather act by evok-
ing alterations in regulatory systems of the brain or even the
body periphery (which then signal to the brain) is still
unclear.

In Vivo Effects of Selected Polyphenols and Polyphenol-
Rich Diets on the Ageing Brain

Mediterranean Diets

After the seminal work of Ancel Keys and colleagues based
on the Seven-Countries Study [109] which associated Me-
diterranean diets and improved cardiovascular health, the
potential of these diets to attenuate the onset and progression
of various chronic diseases has been the subject of many
epidemiological, pre-clinical animal, as well as human, in-
tervention studies.

In general, Mediterranean diets are characterized by a
high intake of fruits, vegetables, legumes and cereals, a
moderate intake of dairy products, fish and alcohol (mainly
wine), and a comparatively low consumption of red meat
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and poultry [110]. Here, it is important to keep in mind that
‘the’ Mediterranean diet does not exist [111]. Originally, the
disease-preventing features of Mediterranean diets have
been linked to the favourable ratio of unsaturated to sa-
turated fatty acids [112]. In particular, a high alimentary
intake of mono-unsaturated fatty acid-rich extra virgin olive
oil (EVOO) has been suggested to account for the observed
better health status of study subjects [113]. Studies con-
ducted since the 1990s provide additional evidence that
phenolic minor components, such as hydroxytyrosol, might
also contribute to the cardiovascular health benefits of
EVOO and Mediterranean diets in general (refer also to
“Olive Oil Polyphenols” section) [114,115]. However, as
people typically consume foods not in isolation but in com-
bination [116], several research groups focused on assessing
cognition, memory performance and AD risk in relation to
differences in dietary patterns.

The prospective, community-based WHICAP study con-
ducted by Scarmeas et al. suggests that a higher adherence
to the Mediterranean diet is associated with a reduced risk
for developing AD (hazard ratio=0.6 at the highest tertile of
Mediterranean diet intake) [117]. However, the link between
Mediterranean diet and AD risk seemed to be unrelated to
vascular co-morbidity [117]. Interestingly, a subsequent
study by the same authors further indicates that a higher
adherence to the Mediterranean diet is not only associated
with a reduced risk for developing mild cognitive impair-
ment (MCI) but might also affect disecase progression, evi-
dent by a lower risk for MCI conversion to AD [118].
Similarly, Tangney et al. concluded in the biracial Chicago
Health and Ageing Project that adherence to a Mediterra-
nean dietary pattern might slow down the age-associated
rate of cognitive decline [119]. In a study population at high
cardiovascular risk drawn from the PREDIMED cohort,
increased consumption of polyphenol-rich Mediterranean
foods was also associated with better cognitive performance
[120].

In contrast, the prospective Three-City cohort study con-
ducted in France, has shown for a sub-set of the participants
that adherence to a higher Mediterranean diet is only asso-
ciated with slightly slower MMSE decline, whereas three
other cognitive tests were unaffected. Moreover, Mediterra-
nean diet adherence did not alter the risk for incident de-
mentia or AD during the 5 years of follow-up [121,122].
However, it is worth mentioning that the baseline analysis of
the Three-City cohort study has indicated a significant as-
sociation between daily fruits and vegetable consumption as
well as weekly fish intake and a reduced risk for all-cause
dementia and AD, respectively, in apolipoprotein E4 non-
carriers [121]. A recent longitudinal investigation of more
than 1,500 participants of the PATH study in Australia also
found no protective effect of adherence to Mediterranean
diet against cognitive decline [123].

@ Springer

Taken together, there is only equivocal evidence that
adherence to a Mediterranean dietary pattern contributes
significantly to the maintenance of memory and cognition
in older people. The conflicting results can, at least partly, be
attributed to differences in study design and assessment
method of dietary adherence, as well as the control of
confounding variables [111,124]. Recent meta-analyses
and commentaries also highlight the difficulty in drawing
final conclusions regarding the disease-preventing potential
of Mediterrancan diets. Whereas some authors suggest a
‘significant and consistent protection provided by adherence
to the Mediterranean diet in relation to the occurrence of
major chronic diseases’, others take a more measured posi-
tion by concluding that ‘for now, it is reasonable to nibble
on these findings and savour them, but not to swallow them
whole’ [125,126].

Anthocyanins and Anthocyanin-Rich Fruits

Emerging evidence gained from animal intervention studies
suggests a beneficial effect of colourful fruits on brain
ageing, especially on age-related cognitive and motor de-
cline. To date, research that has been done on blueberry, and
also blackberry, strawberry, mulberry, Concord grape and
pomegranate have shown them to be neuroprotective. The
characteristic bright colour of these fruits is due to their high
amount of anthocyanins, a flavonoid subgroup with high
antioxidant potential in vitro and in vivo [127]. Early inves-
tigations of James Joseph and colleagues showed that feed-
ing diets high in antioxidant activity might prevent and even
reverse age-related deficits in motor and cognitive behav-
iour in Fischer 344 (F344) rats [128,129]. Diet supplemen-
tation with 1.86 % blueberry extract or 1.48 % strawberry
extract for 8 weeks showed beneficial effects on cognitive
performance in aged rats. Interestingly, although the differ-
ent supplementations were based on equal antioxidant ac-
tivity, only the blueberry-supplemented rats showed an
improvement in motor performance (balance and coordina-
tion), a greater influence on receptor sensitivity (measured
as oxotremorine enhancement of K'-evoked dopamine re-
lease from striatal slices) as well as alterations in signal
transduction events (measured as carbachol-stimulated
GTP-ase activity). Additionally, striatal oxidative stress
markers decreased modestly [129], suggesting that neuro-
protection may not be attributed to simple antioxidant ac-
tivity alone. There is increasing evidence that flavonoids,
such as anthocyanins, do not exert their protective effects
through direct ROS-scavenging (please refer to “Factors
Affecting Polyphenol Brain Bioavailability” section.), but
through indirect antioxidant activity. This assumption is also
supported by the fact that the anthocyanin concentration in
the human body seems to be very low. Often <0.1 % of
ingested anthocyanins is recovered in the urine [130]. In rat
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brain, anthocyanins were detected in a total concentration of
about 0.25 nmol/g of tissue after 15 days of supplementation
with blackberry extract [107]. Moreover, the anthocyanidin
pelargonidin was found in a concentration of 0.16 nmol/g of
rat brain tissue 2 h after oral administration of 50 mg/kg
body weight. No pelargonidin was detected 18 h after ad-
ministration [131]. This is in contrast to studies with
blueberry-supplemented pigs, wherein anthocyanins were
detected in the brain after a fasting period of 18-21 h
[132,133]. In fasted pigs that received a diet supplemented
with 1-4 % blueberries for 4 weeks, anthocyanin concen-
trations in the brain reached about 0.3—0.4 ng/g fresh
weight. Interestingly, no anthocyanins were detected in the
plasma or urine [133]. The data suggest that anthocyanins
might be able to accumulate in animal brains and exert
direct effects within the brain, but concentrations might be
too low for direct ROS scavenging. However, anthocyanins
might be able to alter signalling pathways, responsible for
indirect antioxidant activities. Diet supplementation with
2 % blueberry extract for 4 months has been shown to
significantly lower levels of protein transcription factor nu-
clear factor-kappa B (NF-«B), a highly responsive indicator
of oxidative stress, in different brain regions of aged F344
rats. Normalized NF-«kB levels further correlated negatively
with object recognition memory [134]. Oral administration
of 100 mg/kg purple sweet potato colour (PSPC) composed
of a mixture of anthocyanins for 4 weeks has also been
demonstrated to attenuate D-galactose-induced ageing-
related changes in mouse brain. PSPC improved the spon-
taneous behaviour and cognitive performance, increased the
activity of copper/zinc superoxide dismutase and catalase,
and reduced the content of malondialdehyde as important
indicator of oxidative damage in brain, as well as attenuated
parameters connected to neuroinflammation (e.g. nuclear
translocation of NF-kB) [135].

Besides the direct and indirect antioxidant activity, antho-
cyanins participate in interactions with target proteins of
different signal transduction pathways. Orally administered
PSPC (100 mg/kg for 4 weeks) has been shown to counter-
act the onset of neuronal apoptosis via survival mechanisms
involving extracellular signal-regulated kinase (ERK 1/2),
phosphoinositide 3-kinase (PI3K), Akt and c-Jun NH,-ter-
minal kinase (JNK) in D-galactose-treated old mice [136].
Rodent models of cerebral ischaemia support evidence for
the involvement of survival mechanisms in neuroprotection
of anthocyanins. Pretreatment with isolated anthocyanins
(300 mg/kg p.o.) 24 h and 30 min before middle cerebral
artery occlusion has been shown to reduce brain infarct
volume along with blocking of the JNK and p53 signaling
pathway in rats [137]. In mice, pretreatment with the antho-
cyanin cyanidin-3-O-glucoside (2 mg/kg p.o.) 24 h before
induction of focal cerebral ischaemia attenuated the infarct
volume and led to lower levels of brain superoxide [138].

Besides, a recent study investigated the effect of oral ad-
ministration of PSPC (200 mg/kg for 4 weeks) on cognitive
deficits induced by hippocampal mitochondrial dysfunction
in mice that were treated with the neurotoxin domoic acid.
The study indicates that PSPC might reverse the cognitive
deficits by promoting oestrogen receptor-a-mediated mito-
chondrial biogenesis signalling, restoring mitochondrial
dysfunction, decreasing ROS and protein carbonyl levels,
and suppressing endoplasmic reticulum stress-induced apo-
ptosis, which prevented neuron loss and restored the expres-
sion of memory-related proteins [139]. Additionally,
supplementation with rabbit-eye blueberry extract in drink-
ing water (2.6-3.2 mg anthocyanins/kg for 30 days) im-
proved memory and behaviour in mice and decreased
DNA damage in both hippocampal and cortical tissues in
vitro [140]. Furthermore, there is evidence that the cognitive
improvements in aged F344 rats fed with a 2 % blueberry
extract supplemented diet are, at least partly, mediated by
effects on hippocampal plasticity involving neurogenesis,
neurotrophic factor insulin-like growth factor-1 (IGF-1)
and its receptor, as well as mitogen-activated protein
(MAP) kinase signal transduction cascades [141]. Neuro-
genesis was also observed in brains of 129 S1/SvimJ adult
male mice fed a diet enriched in polyphenols and polyun-
saturated fatty acids (9.27 % in diet for 40 days). Unfortu-
nately, the composition of the diet was not described [142].

Anthocyanin-rich fruits have also been shown to exert
promising effects in mouse models of AD. In mice trans-
genic for APP/Tg2576 and presenilin-1 (PS1) mutations,
feed supplementation with 2 % blueberry extract from
4 months of age normalized behavioural impairment
(assessed at 12 months of age) to values comparable to
non-transgenic mice. Moreover, the study indicated that this
prevention of behavioural deficits was probably due to
enhancement of memory-associated neuronal signalling
(e.g. ERK 1/2) and alterations in neutral sphingomyelin-
specific phospholipase C activity. Interestingly, no altera-
tions in A3 burden were observed [143]. Conversely, pome-
granate juice concentrate in drinking water (1:80 or 1:160
dilution) for 6.5 months [144] and 0.18 or 0.9 % mulberry
extract supplemented diet for 3 months [145] reduced the
accumulation of soluble A 34, and amyloid deposition in the
hippocampus of APPg,/Tg2576 transgenic mice and the
accumulation of AP in the brain of senescence-accelerated
mouse prone 8§ (SAMPS) mice, respectively. Mulberry
extract-treated SAMPS8 mice further displayed higher anti-
oxidant enzyme activity and less lipid oxidation in the brain
[145].

The different effects on A3 in the AD mouse models may
be explained by the different polyphenolic compositions of
the tested fruits. Different effects on brain function were also
detected in young rats that received either a 2 % blueberry or
strawberry extract-supplemented diet for 8 weeks. After
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whole-body exposure to high energy and charge (irradiation
with 1.5 Gy of 1-GeV/n high-energy *°Fe particles) produc-
ing deficits in neuronal functioning and behaviour similar to
the adverse changes in ageing, the behaviour of rats in the
Morris Water Maze suggested a region selectivity of the
compounds in the berry extracts. The strawberry diet offered
better protection against spatial deficits, as demonstrated by
a better ability to retain place information, which is linked to
a hippocampus-mediated behaviour. On the other hand, the
blueberry diet seemed to improve reversal learning, a be-
haviour more dependent on intact striatal function [146].

Anthocyanins might also act differently depending on the
concentration administered. Administration of 10 % Con-
cord grape juice to aged F344 rats as sole source of liquid
was able to improve receptor sensitivity, measured as oxo-
tremorine enhancement of K -evoked release of dopamine
from striatal slices, as well as cognitive performance. Ad-
ministration of 50 % Concord grape juice (as sole source of
liquid) improved motor function in the aged rats [147].

Interestingly, Concord grape juice and blueberry juice
also showed beneficial effects on cognitive performance in
preliminary investigations in humans. A randomized,
placebo-controlled, double-blind trial with daily Concord
grape juice supplementation (444—621mL/day, depending
on body weight) over a period of 12 weeks led to a signi-
ficant improvement in a measure of verbal learning and non-
significant enhancement of verbal and spatial recall in 12
older adults with memory decline but not dementia [148]. In
addition, daily consumption of wild blueberry juice (444—
621mL, depending on body weight) in a sample of nine
older adults with early memory changes improved paired
associate learning and word list recall [149]. In a recent
study, older adults with MCI consumed Concord grape juice
(355-621mL, depending on body weight) or placebo for
16 weeks. Participants who consumed grape juice showed
reduced semantic interference on memory tasks. Moreover,
a relatively greater activation in anterior and posterior
regions of the right hemisphere was detected using func-
tional magnetic resonance imaging in the grape juice-treated
subjects [150].

Tea polyphenols and Tea Consumption

Tea, made from the leaves of Camellia sinensis, is among
the most frequently consumed beverages worldwide [151].
Depending on the degree of enzymatic oxidation by poly-
phenol oxidase, different tea products are obtained: green
tea (non-fermented), oolong tea (half-fermented) and black
tea (fermented). In addition to caffeine, minerals and amino
acids, tea contains considerable amounts of polyphenolic
flavanols called catechins. Whereas in green tea, 30—40 %
of the leaf dry weight are polyphenols, most flavanols in
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black tea are converted to theaflavins and thearubigens in
the course of the fermentation process [152,153].

In the early 1980s, the SAMP model was established
to better facilitate the study of ageing and age-related
diseases in mice [154]. From the different SAMP strains
available, SAMP8 and SAMPI10 mice drew particular
attention due to their neuropathological changes and
subsequent deficits in learning and memory [155].
SAMP8 mice treated from the age of 6 months with
green tea as the sole drinking fluid for 16 weeks
benefited from reduced brain oxidative damage and
lower cognitive deficits compared to vehicle-treated ani-
mals [156]. Similarly, Unno et al. demonstrated in a
series of experiments in SAMP10 mice supplemented
with green tea catechins a suppressive effect on cogni-
tive dysfunction, reduced brain oxidative damage to
DNA and higher learning ability. Noteworthy, lifespan
was unaffected by flavanol treatment suggesting that
green tea polyphenols might exert healthy- but not
anti-ageing effects [157-159].

In addition, the impact of the green tea polyphenol (—)-
epigallocatechin-3-gallate (EGCG) on brain parameters of
genetically modified AD mice has been investigated. The
administration of EGCG (50 mg/kg body weight) in drink-
ing water to an 8-month-old cohort of APPsw transgenic
mice for a duration of 6 months, for example, resulted in
reduced A deposition and tau phosphorylation in the ani-
mals' brain as well as better performance in working me-
mory tests [160]. In preseniline 2 mutant mice, EGCG
(3 mg/kg body weight) administration in drinking water
for 1 week increased not only the activity of brain o-
secretase, but also led to enhanced memory function com-
pared to unsupplemented animals [161]. Likewise, long-
term intake of green tea catechins in rats prevented not only
the age-related accumulation of oxidative stress biomarkers
(here measured as protein carbonyls, levels of malondialde-
hyde and lipofuscin formation) in the brain, but also im-
proved spatial learning and memory abilities of the animals
[162]. Furthermore, green tea flavanol feeding has been
shown to reduce the detrimental effects of AP infused into
the cerebral ventricle of rats [163].

Based on these observations, it is tempting to speculate
whether green tea polyphenols might be an effective pro-
phylaxis against brain ageing and AD. However, caution
regarding the validity of both the SAMP and transgenic
mouse models has been advised by some authors. Although
several contributions to a better understanding of fundamen-
tal mechanisms of age-related learning and memory deficits
can be attributed to SAMP models [154], the question of
whether SAMP mice represent a true (brain) ageing model
or are maybe just sick is still a matter of debate [164].
Likewise, transgenic animal models have been paramount
for developing new hypotheses of AD pathology [165].



Mol Neurobiol (2012) 46:161-178

169

Nonetheless, they need to be critically evaluated due to their
shortcomings, for example in mirroring the temporal se-
quence of neuropathological events in human AD or in their
morphological resemblance of the structure of A3 deposits
[166]. The striking discrepancy in the rate of successful
intervention between AD animal models and human studies
is likely an expression of this problem [167].

To date, only a few studies have assessed the asso-
ciation between tea intakes and cognitive health in later
life. The results from cross-sectional studies are gene-
rally consistent and suggest that drinking tea is associ-
ated with a lower prevalence of cognitive impairment
and better memory performance (reviewed in [152]).
Prospective studies, in contrast, produced mixed results.
Whereas data from the Singapore Longitudinal Ageing
Studies suggest a reduced risk for cognitive decline in
association with black and oolong tea (but not coffee)
consumption [151]; Eskelinen et al. found the reverse
association, i.e. coffee but not tea drinking in midlife
was linked to a reduced risk of dementia in late life
[168]. Interestingly, a recent longitudinal examination of
people participating in the Chinese Longitudinal Healthy
Longevity Survey indicates diverse health benefits for
drinking tea in terms of reduced odds ratios for CVD,
cognitive impairment and general disability in activities
of daily living [169]. Although the outcome of these
studies is promising, it is again important to keep in
mind that so far, only associations between tea drinking
and human health have been found, which do not allow
drawing any conclusions referring to causality.

G. biloba

G. biloba (Coniferae) has been traditionally used for respi-
ratory disorders in China and to improve memory loss
associated with blood circulation abnormalities in Iran
[170,171]. Nowadays, standardized extracts of G. biloba,
particularly EGb761®, are available as herbal drug for the
improvement of cognitive impairments, including dementia
[172]. EGb761® contains 24 % flavonoids and 6 % terpe-
nens [173,174]. While the terpene lactones are mainly re-
sponsible for the improvement of mitochondrial function by
EGb761 (see the chapter by [175]), the flavonoid fraction
seems to be mainly responsible for the free radical scaveng-
ing characteristics.

The flavonoid fraction, primarily composed of quer-
cetin, kaempferol and isorhamnetin [176], is also mainly
responsible for the inhibition of dopamine uptake by
EGb761 (100 mg/kg b.w. p.o. for 14 days) in NMRI
mice [177,178]. Ginkgo flavonols quercetin and kaemp-
ferol (50 mg/kg b.w. p.o.) fed for 4 months stimulated
signalling pathways involving brain-derived neurotrophic
factor (BDNF), phosphorylation of cyclic AMP response

element binding protein (CREB) and postsynaptic den-
sity proteins (PSD95) in brains of (TgAPPsw/PSle)-
mice [179], confirming the effects of EGb761 in diet
(100 mg/kg b.w. for 4 weeks) on BDNF and CREB
levels in TgAPP/PS1mice [180]. Accordingly, a recent
review concluded that EGb761® improves all aspects of
impaired neuroplasticity including reduced long-term po-
tentiation, reduced spine density, impaired neuritogene-
sis and even reduced neurogenesis [181].The clinical
application of EGb761 in dementia has been reviewed
in recent meta-analyses of short-term trials ([182,183];
for further detailed discussion of human trials with G.
biloba, the reader is referred to Eckert et al. this issue
[175])

Olive Oil Polyphenols

Potent antioxidative polyphenols are found in EVOO.
Recent findings suggest that EVOO has beneficial
effects on learning and memory deficits observed in
ageing and diseases [184]. SAMP8 mice, an age-
related learning/memory impairment model associated
with increased brain oxidative damage, that received
EVOO (75 wl/kg p.o. for 6 weeks) showed improve-
ment in cognitive tests and novel object recognition
[184]. In vivo and ex vivo studies provide evidence that
phenolic minor components, such as hydroxytyrosol
(HT), significantly contribute to the health benefits of
EVOO [114,185,186]. HT is attracting distinct attention
because of its ortho-diphenolic structure. HT is bio-
available and its metabolism has been elucidated in
animals and humans [187-190]. One source of HT is
olive mill waste water, currently discarded although rich
in polyphenols that can be recovered by ad hoc techni-
ques [191-193]. Recent data indicate neuroprotective
effects of HT in animal feeding trials [185]. Acute
treatment of mice with HT-rich extract (100 mg/kg
p.o.) did not improve mitochondria-associated parame-
ters, i.e. MMP and ATP levels in dissociated brain cells
(DBC) ex vivo in response to oxidative stress [185]. In
contrast, feeding of HT to mice (100 mg/kg p.o.) for
12 days induced a moderate, though statistically signif-
icant, hyper-polarization of mitochondria in unstressed
DBC, an effect that has been associated with reduced
rate of cell death [194]. Basal ATP levels, however, did
not differ between study groups [185]. Feeding of
HT-rich extract for 12 days did not ameliorate
mitochondria-associated stress parameters in DBC, indi-
cating that prolonged HT intake does not convey mito-
chondrial protection from severe oxidative and
nitrosative stress. However, iron-stimulated lipid perox-
idation ex vivo was reduced, providing first evidence of
neuroprotective effects of oral HT intake [185].
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Hormesis as Potential Mechanism—When and How
It Matters

The term hormesis, coined by Southam and Ehrlich in the
early 1940s, describes a process in which exposure to a low
dose of an agent that is toxic at higher doses stimulates
beneficial effects on the cell or organism [195,196]. Our
knowledge about hormetic effects in vivo originates in large
parts from ageing studies in the nematode Caenorhabditis
elegans [197]. The extended lifespan of worms treated with
the phenolics tannic acid and gallic acid, for example, has
been explained by a hormetic mode of action [198]. How-
ever, not all polyphenols that have been shown to prolong C.
elegans longevity do so by hormesis. Epicatechin, for in-
stance, increases the lifespan of C. elegans, but treated
worms are significantly smaller in body size, a trade-off
phenomenon that argues against a hormetic mechanism
[199]. Recently, the first direct evidence for hormesis induc-
tion in mammals has been reported. Following the induction
of stroke, wild-type mice pre-treated with the polyphenol
epicatechin showed significantly less detrimental symptoms
in contrast to nrf2 knock-out animals [200]. The transcrip-
tion factor Nrf2 is one of the key regulators responsible for
the upregulation of antioxidant and cell protective genes,
such as heme oxygenase-1 and y-glutamylcysteine sythe-
tase, and Nrf2-regulated gene expression has been suggested
as one of the key mechanisms for hormesis induction [201].
In order to modify the expression of cytoprotective proteins
(phase 2 enzymes), Nrf2 needs to bind to the antioxidant
response element (ARE) after translocation to the nucleus
[202]. Many polyphenols and other phytochemicals (also
called ‘vitagenes”) contain Michael acceptor functionalities
which abolish the capacity of the protein Keapl to repress
Nrf2 in the cytoplasm [203]. The importance of Keapl in
this mechanism has been demonstrated in keap! knock-out
mice. Presumably due to constitutive activation of Nrf2,
neurons from these animals showed increased oxidative
stress resistance and survival compared to those of wild-
type mice [204]. Of note, the production of GSH, the most
important antioxidant in the brain with intracellular concen-
trations in the millimolar range, is partly under control of the
transcription factor Nrf2 via its effect on glutamate cysteine
ligase, the rate-limiting enzyme in the de novo GSH syn-
thesis [205-207]. Although GSH is exclusively synthesized
in the cytosol, the uptake of GSH into mitochondria has
been observed in various brain cell types and is particularly
high in neurons, probably due to their increased require-
ments for antioxidant defence [208,209]. A beneficial effect
of flavonoids in the form of liposomal quercetin (30 mg/kg
body weight; i.p.) has been shown with regard to higher
levels of cerebral GSH in striatum and cortex of ischemic
rats [210]. Similarly, 7-month-old SAMPS8 mice consuming
a diet rich in phytochemical antioxidants for 10 months
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showed significantly higher GSH/glutathione disulfide
(GSSQ) ratios in brain mitochondria of both male and
female animals [211]. Interestingly, Shenvi et al. recently
suggested a novel, age-dependent switch in Nrf2 binding to
ARE promoters as one key mechanism for the age-
dependent reduction in GSH synthetic capacity (here in
liver) of male Fisher rats [212]. In light of the promising
impact flavonoids exert on GSH synthesis, one might spec-
ulate whether flavonoids (and other phytochemicals) in-
crease the cellular GSH/GSSG ratio by direct or indirect
interactions with the aforementioned switch in Nrf2-ARE
promoter binding. In addition, other hormetic stressors, in
particular exercise and dietary energy restriction, have been
reported to increase the resistance of neurons to oxidative
stress. Important neuronal signalling and repair pathways,
including CREB, BDNF and APE1, might causally contrib-
ute to the observed hormetic response [213].

Recently, ‘mitohormesis’ (i.e. mitochondrially-mediated
stress resistance) has been proposed as a framework for
explaining how stress stimuli exert their health-beneficial
effect on the cellular level [214]. The dynamic network and
pool of mitochondria is constantly monitored and in the case
of severe damage, dysfunctional mitochondria are separated,
e.g. by the fission and fusion process, and then effectively
eliminated by mitophagy [215]. The observed concomitant
decline in mitochondrial mitogenesis and increase in mito-
chondrial heterogeneity likely contributes significantly to
the functional decline in ageing and the onset of age-
related diseases [215,216]. One mechanism for the activa-
tion of mitochondrial biogenesis is via stimulation of mito-
chondria by mild to moderate amounts of ROS. Increasing
evidence suggests that physical exercise, caloric restriction,
prooxidant phytochemicals (e.g. flavonoids and sulphora-
phanes) and certain drugs (e.g. statins) activate mitohor-
mesis, at least partly, by up-regulating the production of
ROS, and by altering the cellular redox-balance and cell
signalling [216,217]. As an example, resveratrol has been
suggested to improve mitochondrial function and to protect
against metabolic disease by activating SIRT1 and PGC-
lalpha signalling [218].

However, the application of hormesis in practice faces
several difficulties which have to be taken into conside-
ration. Certain health conditions, such as stroke, are associ-
ated with alterations in the permeability of the blood—brain
barrier which may change the penetration efficiency of
nutrients or drugs into the brain [219], and subsequently
lead to an improvement or worsening in the therapeutic
outcome. Furthermore, there is evidence for a strong age-
dependent effect on the hormetic response [220], suggesting
that hormetic doses with established health-modifying
effects in a population sub-set likely need to be adjusted
across other population age- and health-groups. Finally,
trade-offs (such as increased lifespan at the expense of
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fecundity) need to carefully considered in the interpretation
of the hormetic dose-response phenomena [221]. Thus, it
may not come as a surprise that the public health implica-
tions of hormesis are controversially debated [222,223].

Conclusion and Future Perspective

Since Szent-Gyorgyi’s discovery of ‘vitamin P’ in 1936,
more than 10,000 articles have been published on the chem-
ical nature and biological activities of flavonoids and other
polyphenols (based on a PubMed search, March 2012).
Today, there is little doubt that a balanced diet rich in fruits
and vegetables helps to maintain human health by delaying
or preventing the onset of chronic, age-related diseases
[224,225]. However, similar to the vast number of polyphe-
nols present in plant foods, a plethora of mechanisms have
been proposed for explaining polyphenols’ mode of action
in vivo. One of the early and most popular paradigms, i.e.
the direct antioxidant activity of polyphenols, is now heavily
disputed and slowly replaced by other theories such as the
induction of a hormetic dose response (Fig. 2) [102].
Concentrations of polyphenols in animal brains follow-
ing oral administration have been consistently reported to be
very low, thus eliciting controversial discussion on their

Fig. 2 Simplified model for the protective action of phytochemicals,
especially polyphenols (PPs) and its metabolites (PPM) against mito-
chondrial dysfunction in brain ageing and Alzheimer's disease. Mito-
chondrial dysfunction is characterized by failure of the respiration
complex activities (/~V), a drop in mitochondrial membrane potential
(Awm), enhanced levels of reactive oxidative species (ROS) and a drop
in ATP-levels. Insufficient penetration of the blood brain barrier (BBB)
is one problem of the preventive consumption of supplements or food
enriched in secondary plant products. Nutrigenomic activity is mainly
mediated by the antioxidant response element, which activates endog-
enous protective mechanisms such as antioxidant enzymes or proteins.
Nutrigenomic activity is also responsible for induction of transcrip-
tional co-activators such as PGC-1« and thus induces mitogenesis

neuroprotective effects and potential mechanisms. However,
as mentioned above, polyphenols are subject to various
biotransformation and degradation processes in the human
body (refer to “Factors Affecting Polyphenol Brain Bio-
availability” section). It is therefore possible that poly-
phenolic metabolites from the fermentation and
biotransformation process reach the brain and contribute to
neuroprotection, or might even be similarly or more effec-
tive than their parent compounds. For example, protocate-
chuic acid, a well-known metabolite of the anthocyanidin
cyanidin, has been detected in the bloodstream of humans
[226] and rats [227] after consumption of cyanidin-
glucoside/cyanidin-glucoside-rich foods. In PC12 cells that
have been widely used for neurobiological and neuroche-
mical studies, protocatechuic acid has been shown to reduce
mitochondrial dysfunction and apoptotic cell death induced
by rotenone [228] and 1-methyl-4-phenylpyridinium ion
[229]. Thus, phenolic acids and further metabolites may
account, at least partly, for the beneficial effects of
polyphenol-rich foods, such as colourful fruits, on brain
function. An overall understanding of the biotransformation
of polyphenols and identification of the various metabolites
arising in the human body is therefore imperative in order to
shed light on the mechanisms behind the protective activi-
ties of polyphenol-rich foods. Research on the effects of
polyphenols on brain function must be based primarily on
in vivo models, with artefact-free cell culture experiments
being more suitable for investigating specific mechanisms
[230]. Thus, animal models are indispensible until non-
invasive imaging techniques emerge, allowing studies of
mitochondrial function in the human brain.

Furthermore, the exposure to plant and animal foods is a
lifelong event (in contrast to most drugs) and both the
exclusion of potential confounders as well as the identifica-
tion of robust biomarkers in human nutrition still pose a
major challenge [77]. Moreover, bioavailability of polyphe-
nol compounds has to be considered in nutrition-based and
brain-directed strategies to improve mitochondrial function,
and may include new formulations such as micro-
encapsulation or liposomes [231,232]. Finally, future inves-
tigations also need to elucidate whether synergies between
orally consumed polyphenols that are known to specifically
modify metabolic and transport processes enhance polyphe-
nols’ bioavailability [233].

In conclusion, there is considerable evidence from animal
and initial evidence from first human studies that suggest
neuroprotective actions of polyphenols, promising the abil-
ity to prevent or even reverse changes in cognitive and
motor functions in normal ageing and AD. Currently, it is
not clear if the different compounds in plant based foods act
in an independent, synergistic, additive or even antagonistic
manner. However, recommendations of a daily intake of
polyphenols need to consider functional active doses and
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the issue of polyphenol bioavailability. Since mitochondrial
dysfunction probably represents an early pathological event,
human studies on the efficacy of polyphenols will likely
need to be initiated early in the course of AD or even before
the disease onset.
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