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Abstract MicroRNAs are endogenous non-coding small
RNAs that have been described as highly conserved
regulators of gene expression. They are involved in cancer
and in the regulation of neural development and stem cell
function. Recent studies suggest that a small subpopulation
of cancer stem cells (CSCs) has the capacity to repopulate
solid tumours such as glioblastoma (GBM), drive malignant
progression and mediate radio- and chemoresistance. GBM-
derived CSCs share the fundamental stem cell properties of
self-renewal and multipotency with neural stem cells
(NSCs) and may be regulated by miRNAs. In this review,
we will summarize the current knowledge regarding the
role of miRNAs in GBM development with a focus on the
regulation of GBM-CSCs. We propose a list of miRNAs
that could serve as molecular classifiers for GBMs and/or
as promising therapeutic targets for such brain tumours.
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Introduction

Glioblastoma multiforme (GBM) is the most malignant and
aggressive brain tumour, with a mean survival time of 9–

12 months. The term “glioblastoma” is synonymous to
“grade IV astrocytoma” using the World Health Organiza-
tion (WHO) classification and grading system. Glioblastoma
is defined by an uncontrolled cellular proliferation, diffuse
infiltration, propensity for necrosis, robust angiogenesis,
intense resistance to apoptosis, and rampant genomic insta-
bility [1]. Primary glioblastoma arises as a de novo process
in the absence of a pre-existing low-grade lesion, whereas
secondary glioblastoma develops progressively from grade II
(astrocytoma) to grade III (anaplastic astrocytoma) and
finally to grade IV (GBM) (Fig. 1) [2]. Lately, on the basis
of mRNA expression profiles, GBMs have been also
classified as proneural, proliferative, classical, and mesen-
chymal [3, 4]. The proneural signature predominates among
low-grade gliomas and secondary GBMs and is characterised
by markers associated with neurogenesis. Instead, the
mesenchymal signature is more often related to primary
GBMs. Although there is some disagreement regarding the
correlation of the novel high-throughput signatures to
patient outcome, the predominant view is that proneural
tumours are associated to longer survival. However, the
greatest response to aggressive therapy was found in the
classical subtype.

The traditional model of gliomagenesis predicts that
gliomas arise stochastically from somatic mutations in
terminally differentiated astrocytes that subsequently un-
dergo a series of transformations to a less differentiated
phenotype. A more recent perspective suggests instead that
gliomas arise from adult neural stem cells (NSCs) or neural
precursors that after transformation behave as cancer stem
cells (CSCs) and maintain the tumour. CSCs are regulated
by microRNAs (miRNAs), which are key players during
normal mammalian development and become altered in
multiple human cancers. In this review we will first
introduce the CSC hypothesis and the classical signalling

P. González-Gómez :H. Mira (*)
Unidad de Neurobiología Molecular, Área de Biología
Celular y del Desarrollo, Instituto de Salud Carlos III,
Ctra. Pozuelo-Majadahonda, km 2,
28220 Madrid, Spain
e-mail: hmira@isciii.es

P. Sánchez
Unidad de Neuro-Oncología, Área de Biología
Celular y del Desarrollo, Instituto de Salud Carlos III,
Ctra. Pozuelo-Majadahonda, km 2,
28220 Madrid, Spain

Mol Neurobiol (2011) 44:235–249
DOI 10.1007/s12035-011-8196-y



pathways that have been linked to primary and secondary
glioblastoma. Next, we will summarize recent findings
regarding a subset of miRNAs that control signalling
pathways critical to glioblastoma biology and we will
discuss their role in the context of neural/CSC-related
programs. The expression profile of some of these micro-
RNAs has allowed us to improve previous GBM classi-
fications. We propose that miRNAs might be involved in
the regulation of both the classical pathway of genetic
alterations found in glioma and the self-renewal capacity of
glioma CSCs.

The Cancer Stem Cell Hypothesis in Glioblastoma

In recent years, the traditional view of glioma progression
has been challenged due to the identification of a distinct
subpopulation of cancer cells with higher tumorigenic
potential [5]. These cells retain the capacity to initiate and
propagate tumours with very high efficiency and have been
named generically as CSCs, due to their similarities with
normal NSCs. CSCs show expression of stem cell markers
(such as CD133, NESTIN, MUSASHI-1 and SOX2), they
have capacity to differentiate into multiple lineages and
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most importantly, they have the ability to self-renew
indefinitely [6, 7]. In the field of brain cancer, they are
also referred to as brain tumour stem-like cells (BTSC) or
brain tumour-initiating cells (BTICs). Glioma CSCs were
among the first solid tumour CSCs described [8, 9]. They
might arise from transformed NSCs/precursors or from
other adult brain cell types that eventually de-differentiate
and reacquire stem cell-like properties. Regardless of their
putative origin, the CSC hypothesis proposes that aggres-
sive gliomas are maintained from a reservoir of self-
sustaining CSCs that self-renew and generate differentiated
progeny. Thus, the concept of CSCs resembles the concept
of normal stem cells, which are capable of generating the
lineage-related cell types of a given tissue.

The CSC hypothesis states that tumour cell populations
have a hierarchical developmental structure. According to
this view, the initiation and progression of the tumour
(including GBM) depends on the presence of a rare
fraction of CSCs. However, the CSC hypothesis has been
challenged by recent findings that propose a different
scenario, in which most GBM cells can behave as BTICs
with different degrees of stemness, and therefore many
cells (not a minority) have the capacity to drive
glioblastoma progression [10]. An open question is
whether the number of BTICs/CSCs reflects cancer
progression, with more tumour cells acquiring the proper-
ties of CSCs in advanced GBM stages. Either way,
subpopulations of cells that satisfy the functional charac-
teristics of stem cells are highly resistant to current GBM
therapies [11], underscoring the importance to elucidate
the molecular mechanisms regulating CSC self-renewal
and differentiation in order to develop potential therapeutic
approaches for aggressive gliomas.

One such approach is to force the cells to differentiate,
manipulating the signalling pathways that regulate NSCs
during development and through adulthood. Amongst the
pathways controlling embryonic and adult brain stem cells,
the TGF-β/BMP pathway, the canonical WNT pathway, the
NOTCH or the HEDGEHOG pathways have emerged as
critical regulators of NSCs. For some of these pathways,
pro-differentiative actions in the regulation of glioblastoma
CSCs have already been reported. This is the case of the
BMP pathway. BMP ligands belong to the TGF-β
superfamily of cytokines that signal through tetrameric
complexes formed by type II and type I receptors. The
ligand–receptor interaction can trigger several signalling
cascades, including the canonical pathway, in which
activated type I receptors phosphorylate the DNA binding
proteins SMADs, which regulate the expression of target
genes. It has been proven that GBM-CSCs express type I
and II BMP receptors and can respond to BMP ligands
through SMAD-dependent signalling [12]. Following
BMP4 treatment, CD133+ glioblastoma cells differentiate

and this abrogates their stem cell phenotype, decreases the
size and invasive capacity of the tumours in xenograft
models of GBM and prolongs the overall survival of the
treated animals [12]. These results suggest that it is possible
to take advantage of the knowledge on NSC regulation to
manipulate, at least in part, GBM-CSC behaviour.

More recently, it has been reported that other signalling
pathways regulating self-renewal of NSCs, such as the
HEDGEHOG or NOTCH pathways, are also activated in
gliomas and contribute to GBM-CSC self-renewal [13,
14]. In the SONIC HEDGEHOG (SHH) pathway, the
ligand activates a signal-transduction cascade that involves
the action of the membrane proteins PATCHED1 and
SMOOTHENED, and the activity of the GLI1 transcrip-
tion factor. SHH-GLI1 signalling regulates the expression
of stemness genes, the self-renewal of CD133+ GBM-
CSCs, and is required for sustained glioma growth and
survival [13]. Interestingly, interference of SHH-GLI1
signalling inhibits human glioma xenograft growth, indi-
cating that down-regulation of the pathway may be of
therapeutic value [13]. Regarding the NOTCH pathway, it
has been shown that most human gliomas of different
grades express moderate to high levels of NOTCH receptors
(NOTCH 1–4), ligands (i.e., DELTA-like and JAGGED
proteins) and downstream target genes. The NOTCH recep-
tors are cleaved and release the intracellular domain of
NOTCH (NICD), which translocates to the nucleus, asso-
ciates with the DNA-binding protein CSL that is converted
from a transcriptional repressor to an activator. In glioma cell
lines, over-expression of active NICD promotes the acquisi-
tion of a CSC-like identity. Thus, NOTCH signalling plays a
role in CSCs, and it may be possible to target these tumour-
initiating cells by inhibiting the NOTCH pathway (reviewed
by Stockhausen et al. [14]). However, as we will show in the
next section, genetic mutations in stem cell pathways are
very rarely found in gliomas, although changes in the
expression of their components are commonly associated
with high grade tumours (reviewed by Li et al. [15]),
suggesting that epigenetic changes of developmental path-
ways are key drivers of GBM growth.

Classical Signalling Pathways Altered in Glioblastoma

After 20 years of research in gliomas, their main genetic
alterations have been identified, helping to decipher the
heterogeneity of these tumours. For example, distinctions
between the genetic lesions found in primary and secondary
GBMs have been made [1, 16] (Fig. 1). Primary glioblas-
tomas exhibit frequent EGFR amplification, CDK4 ampli-
fication, MDM2 or MDM4 amplification, RB1 mutation/
homozygous deletion, p16INK4A and p14ARF homozygous
deletion, monosomy of chromosome 10 and PTEN muta-
tions [16]. TP53 mutation is found in less than 30% of
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primary glioblastomas. In contrast, secondary glioblastomas
arise from a lower-grade precursor lesion and carry TP53
mutations in more than two thirds of the cases [16, 17].
Also, allelic losses on 19q and 13q, and over-expression of
PDGFRA are more common in secondary glioblastomas
whereas amplification of EGFR or MDM2, PTEN mutation
as well as homozygous p16INK4A or p14ARF deletions are all
rare in secondary glioblastomas [16]. Therefore, malignant
glioma cells frequently have increased EGFR and/or PDGFR
tyrosine kinase signalling, either as a result of amplification
of the gene, expression of a constitutively active variant or
autocrine loops (in the case of the PDGF ligand).

Interestingly, the signalling pathways downstream of
these tyrosine kinase receptors are involved in the regula-
tion of adult NSCs, suggesting they may also operate in the
regulation of GBM-CSCs. For instance, in cell culture
studies, proliferation and neurosphere formation of glioma
CSCs was dependent on EGFR [10, 18]. In the mouse
model, EGFR expression has been proposed as a marker of
activated NSCs [19, 20]. It has also been shown that adult
mouse NSCs depend on EGF signalling for self-renewal
and that EGFR activity, in the absence of PTEN expression,
can transform murine NSCs [21]. Accordingly, glioma
CSCs are responsive to anti-EGFR drugs but PTEN
expression and AKT inhibition seems to be necessary for
such effect [22]. In addition, the activity of adult NSCs is
also regulated by PDGFRA [23]. Excessive PDGF activa-
tion in stem cells is sufficient to initiate tumour formation
and can transform INK4a/ARF-deficient astrocytes [24].

Apart from the alteration in tyrosine kinase receptors,
most GBMs bear mutations in genes encoding components
of one of three pathways, p53, RB1 and PI3K/PTEN/AKT
[16]. These pathways participate in the regulation of NSCs.
For instance, p53 regulates adult NSC behaviour [25–27]
and accumulation of mutant p53 in mouse leads to the
expansion of mutant p53-expressing OLIG2(+) transit-
amplifying progenitor-like cells and initiates glioma forma-
tion [28]. Recently, murine modelling studies, together with
confirmatory transcriptomic/promoter studies in human
primary GBM, have validated an important cooperative
action between p53 and PTEN in the regulation of normal
and malignant stem cell differentiation, self-renewal and
tumorigenic potential, which was unexpected from the
previous genomic analysis on primary and secondary
GBMs. This cooperative action seems to be mediated by
increased MYC activity [29].

The stem cell regulator BMI-1 controls proliferation and
RB1 signalling through the repression of p16INK4A [30].
Cyclin/cyclin-dependent kinase (Cyclin/CDK) complexes
phosphorylate RB, inhibit its activity and allow cell cycle
progression. In the absence of BMI-1, the CDK inhibitor
p16INK4A is up-regulated, therefore blocking the cell cycle
and reducing the rate of NSC proliferation. Thus, BMI-1

plays an important role in sustaining the replication-
competent state of normal NSCs. Interestingly, p16INK4A is
also linked to senescence, and deletion of p16INK4A can
partially oppose the age-related decline in the number and
self-renewal potential of neural progenitors [31].

Another cyclin-dependent kinase inhibitor that regulates
the behaviour of NSCs is p21cip1/waf. It has been reported
that the relative quiescence of adult NSCs in vivo depends
on p21cip1/waf, which is necessary for the maintenance of
these cells throughout life [32]. Interestingly, MUSASHI-1,
a marker of CSCs that is enriched in NSCs and in many
brain tumours including gliomas, represses p21cip1/waf

during active NSC proliferation. MUSASHI-1 exerts a
pro-proliferative effect that is mediated through direct
binding of the protein to the p21cip1/waf 3′UTR, which
results in translational inhibition and reduced p21cip1/waf

protein. In addition, it has been recently shown that
MUSASHI-1 converts to an activator during the early
phases of NSC differentiation, possibly inducing p21cip1/waf

expression and cell cycle exit [33]. Thus, deciphering
MUSASHI-mediated mRNA translational regulation in
CSCs may be relevant to understand and control pathological
stem cell proliferation.

We speculate that a subset of pathways may be shared by
NSCs and CSCs, in particular those required for continuous
self-renewal/proliferation of the cells. As we will discuss in
this review, some of these pathways are targets of multiple
microRNAs that become deregulated in GBM.

MicroRNAs in Glioblastoma

Several studies have shown that miRNA expression profiles
are altered in tumours, including GBM. MicroRNAs are
endogenous, single-stranded RNA molecules consisting of
approximately 22 non-coding nucleotides that regulate
target genes [34, 35]. There are approximately 500–1,000
different mammalian miRNA genes, most of which are
transcribed by RNA polymerase II as long primary tran-
scripts (pri-miRNAs) that form a stem–loop structure [34,
35]. In the nucleus, pri-miRNAs are processed into 70–100
nucleotide-long hairpin pre-miRNAs by the RNAse III
Drosha. These pre-miRNAs are then exported into the
cytoplasm by Exportin-5 and are further processed by
another RNAse III, Dicer. The resultant RNA duplexes
contain the mature miRNA and the passenger miRNA
strand. The mature miRNA is incorporated into the RNA-
induced silencing complex (RISC) and is directed to
specific (complementary) binding sites in the 3′-untranslat-
ed region (UTR) of mRNA transcripts. This miRNA–
mRNA interaction blocks translation and only very rarely,
guides endonucleolytic cleavage of the mRNA [36]. In
mammals, microRNAs can guide recruitment of dead-
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enylases that remove the poly(A) tail form the mRNA
leading to exonucleolytic cleavage. It is believed that the
expression of ~30% of all human genes may be regulated
by miRNAs. It is also thought that a single mRNA can be
regulated by several miRNAs, and that one miRNA can
recognize several targets, highlighting the great modulatory
potential of these small non-coding RNA molecules.

Many mammalian miRNAs are tissue-specific and are
expressed in a temporally regulated manner during devel-
opment. In recent years, miRNAs are emerging as impor-
tant regulators of key developmental processes such as cell
differentiation, proliferation and apoptosis. These processes
are altered in tumours. Accordingly, it has been shown that
microRNAs are highly deregulated in a wide variety of
cancers, including brain tumours such as GBM, and their
abnormal expression has been linked to tumour initiation
and progression [37]. Some miRNAs are down-regulated in
tumours (acting as tumour-suppressor genes) whereas
others are over-expressed (acting as oncogenes or onco-
miRs) [38]. In the following sections, we will summarise
the information available on reported miRNA signatures in
GBM and on the role miRs may have in the regulation of
GBM-related signalling pathways and in the regulation of
GBM-CSCs.

MicroRNA Expression Profiles in Glioblastoma

Provided microRNA deregulation appears to be a hallmark
of cancer, several studies have already investigated whether
miRNAs are differentially expressed in glioblastoma versus
normal brain tissue, in low grade versus high grade gliomas
or in anaplastic astrocytomas versus GBM. Although
Northern blot, direct cloning, microarrays and RT-qPCR
are all methods of choice to study miRNA expression
patterns, most of the studies in gliomas have been
microarray-based and are summarized in Table 1 (up-
regulated miR genes in GBM) and Table 2 (down-regulated
miR genes). It is interesting to note that approximately 30%
of these microRNAs have been consistently found as
deregulated in two or more independent studies (i.e., miR-
9/9*, miR-21, miR-124, miR-128, miR-137), whereas
others have been only detected in a single study and will
therefore require further validation. These emerging profiles
may be useful in determining specific miRNA signatures
that might help to classify brain tumours and to define some
miRNA subsets as biomarkers of prognosis and therapeutic
outcome (reviewed in [39, 40]). In addition, miRNA
signatures may be also useful to understand the origin of
the tumour itself. In this regard, recent microRNA
expression profiles from the Cancer Genome Atlas (TCGA)
have allowed for the identification of five glioblastoma
subgroups that refine previous classifications and that
markedly correspond to the expression profiles of neural

precursors at different stages of differentiation. According
to this novel classification, GBM subgroups correlate with
the signatures of multipotent/radial glia precursors, oligon-
dendroglial precursors, neuronal precursors, neuroepithe-
lial/neural crest precursors or astrocyte precursors. This
finding points to different cells of origin for brain tumours
and uncovers a great heterogeneity within previous classi-
fications, which were solely based on genetic alterations or
mRNA profiles, highlighting the enormous potential of
analysing and understanding miRNA expression and
function in GBM [41].

MicroRNA Regulation of Classical Glioblastoma Genetic
Pathways

Although the distinct miRNA expression profiles observed
in glioma underscore the importance of miRNAs in
glioblastoma pathogenesis, functional studies addressing
the role of miRNAs in GBMs are scarce. From all the
deregulated miRNAs shown in Tables 1 and 2, only a few
have been partially characterized from a functional per-
spective. Functional analysis is often performed in vitro by
manipulating microRNA levels, using synthetic microRNA
precursors or modified oligonucleotides that antagonize
miRNAs (antagomiRs). However, very little information is
available regarding their role in vivo. Some GBM-related
miRNAs can be placed in the scheme of genetic alterations
involved in gliomagenesis according to their predicted and/
or validated targets (Fig. 1). This underscores the many
processes in which miRNAs could be participating and the
increasing complexity of the gliomagenesis network.

Among the miRNAs up-regulated in brain tumours,
miR-21 has emerged as one of the most consistently highly
expressed microRNA in malignant glioma tissue versus
normal tissue, and Kaplan-Meier survival analysis have
revealed that high expression of this microRNA is
significantly associated with poor patient survival [42].
According to the novel miR-based classification of GBM
provided by Kim et al. [41], miR-21 over-expression would
preferentially correlate to GBMs with astrocytic signature.
Most groups suggest that miR-21 acts as an oncogene that
regulates multiple malignancy parameters in GBM. Inhibi-
tion of miR-21 increases apoptosis, decreases growth and
invasion and may decrease chemoresistance. Suppression
of cell death or apoptosis is one of the key roles of miR-21.
It has been shown that inhibition of miR-21 (by locked
nucleic acid (LNA) or 2-O-Me-miR-21 antagomirs) in
glioma cell lines leads to an increase in Caspase-3 and
Caspase-9 dependent apoptosis [43, 44]. Chen et al. [45]
found that inhibition of miR-21 in a number of GBM cell
lines increases endogenous levels of programmed cell-death
4 (PDCD4) and so increases PDCD4-dependent apoptosis.
Silencing of miR-21 not only inhibits apoptosis but also
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stops cell cycle progression in GBM cell lines, by
decreasing EGFR signalling, a crucial pathway in glioma-

genesis [46], possibly through STAT3 inhibition [47]. It is
interesting to note that PTEN, a major tumour suppressor in

Table 1 MicroRNAs up-regulated in human glioblastoma samples

miRNAs up-
regulated in GBM

Function Targets Microarray studies GBM subtypes by
Kim et al. [41]

hsa-miR-9/9* Progression-associated [103],
neuron differentiation [96]

TrkC [104, 105] [62] b; [69] a; [103] c O

hsa-miR-10a [62] b

hsa-miR-10b Invasion through RhoC [106] HOXD10 [106] [67] b; [68] a; [62] b; [106] c O

hsa-miR-15a Progression-associated [103] BCL2 (CLL) [107] [103] c

hsa-miR-15b Cell cycle progression [108] CCNE1 [108] [62] b

hsa-miR-16 Progression-associated [103] BCL2 (CLL) [107] [103] c; [109] [*)

hsa-miR-17 Progression-associated [103] [103] c O

hsa-miR-19a/20a Progression-associated [103] [103] c O

hsa-miR-21 Anti-apoptotic [43], invasion [49],
formation of colonies [109],
drug sensitivity (see text)

PTEN, RECK, MMPs inhibitors [49],
PDCD4 [45], LRRFIP1 [55]

[68] a; [69] a; [103] c; [62] b;
[106] c; [56] c; [109] d

A

hsa-miR-23a [62] b; [109] d A

hsa-miR-25 Progression-associated [103] [69] a; [62] b; [103] c; [109] d O

hsa-miR-26a Facilitates gliomagenesis in
vivo (mouse) [62]

PTEN [62]. [68] a; [69] a; [62] b O

hsa-miR-27a [62] b A

hsa-miR-28 Progression-associated [103] [103] c

hsa-miR-92b [62] b; [106] c

hsa-miR-93 [62] b; [109] d

hsa-miR-106b [62] b; [106] c; [109] b

hsa-miR-123 [69] a

hsa-miR-125b Anti-Hh signalling [110],
differentiation, growth arrest,
inhibit apoptosis [91]

Smo [110], Bmf [91], CDK6 and
CDC25A [90]

[67] b; [69] a M

hsa-miR-130a/b Progression-associated [103] [69] a; [103] c O

hsa-miR-140 Progression-associated [103] [103] c

hsa-miR-142-3p/5p [62] b A

hsa-miR-144 [62] b

hsa-miR-148a [62] b A

hsa-miR-155 [67] b; [109] d A

hsa-miR-182 [62] b O

hsa-miR-183 [62] b O

hsa-miR-199b [62] b

hsa-miR-210 Progression-associated [103] [67] b; [103] c A

hsa-miR-221/222 Regulator of cell cycle [57, 58, 66] p27kip1 [57–59, 66] [69] a; [56] c A

hsa-miR-223 [62] b A

hsa-miR-362 [62] b

hsa-miR-383 [68] a

hsa-miR-503 [62] b

hsa-miR-505 [62] b

hsa-miR-516-3p/5p [68] a

hsa-miR-519 d [68] a

hsa-miR-532 [62] b

hsa-miR-542-3p/5p [62] b

hsa-miR-550 [62] b

Data correspond to microarray studies, except those reported by Malzkorn et al. [103] and Conti et al. [56] that were analysed by RTqPCR.
References are shown in brackets. In the last column, we have included the GBM subgroup in which the microRNA is expressed according to
Kim et al. [41]

Comparison: a GBM versus adjacent tissue, b GBM versus normal control brain, c GBM versus low grade astrocytomas. d GBM versus anaplastic
astrocytoma. N neural, M mesenchymal, A astrocytic, O oligoneural
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GBM, is a miR-21 target. However, although down-
regulation of miR-21 leads to increased PTEN expression,
the GBM suppressor effect of blocking miR-21 was found
in both PTEN mutant and wild-type GBM cells, and is most
likely independent of PTEN regulation [46, 47]. Thus, miR-

21 may serve as a novel therapeutic target for glioblastoma
independent of PTEN status. By performing pathway
analysis of computationally predicted miR-21 targets,
Papagiannakopoulos et al. [48] identified that some miR-
21 regulated genes participated in three key tumour

Table 2 MicroRNAs down-regulated in human glioblastoma samples

miRNAs up-
regulated in GBM

Function Targets Microarray studies GBM subtypes by
Kim et al. [41]

hsa-miR-7 Cell growth, viability [64] EGFR, AKT, IRS-2 [64] [67] b N

hsa-miR-29b [67] b A

hsa-miR-31 [67] b N

hsa-miR-101 [67] b

hsa-miR-107 [67] b

hsa-miR-124 Inhibit proliferation and induce
neuronal differentiation [67]

CDK6 [111], SLC16A1 [88] [67] b; [68] a N

hsa-miR-128 Anti-self-renewal [68], anti-glioma
growth [57, 66, 73], pro-apoptotic [71]

Bmi-1 [68, 73], E2F3a [66],
ARP5 [70], Bax [71]

[67] a; [68] a; [69] a N

hsa-miR-129 [67] b

hsa-miR-132 [67] b

hsa-miR-133a/133b [67] b

hsa-miR-134 [106] c

hsa-miR-137 Inhibit proliferation and induces
neuronal differentiation [67]

CDK6 [67] [67] b; [68] a N

hsa-miR-138 [67] b

hsa-miR-139 [67] b; [68] a

hsa-miR-149 [67] b O

hsa-miR-153 [67] b

hsa-miR-154d [67] b

hsa-miR-181a/b/c Growth and invasion inhibition,
pro-apoptotic [74]

[69] a; [56] c O

hsa-miR-184 Progression-associated [103] [103] c

hsa-miR-185 [67] b

hsa-miR-187 [67] b

hsa-miR-190 [68] a

hsa-miR-203 [67] b

hsa-miR-218 Inhibit migratory speed and invasion
ability [112], cell proliferation [109]

IKK-β [112] [67] b; [68] a; [109] b N

hsa-miR-219 Cell proliferation and
colony formation [109]

[109] d N

hsa-miR-299 [68] a

hsa-miR-302 [103] c

hsa-miR-323 [67] b; [68] a

hsa-miR-328 Progression-associated [103] [67] b; [103] c

hsa-miR-329 [106] c

hsa-miR-330 [67] b

hsa-miR-369-3p [106] c

hsa-miR-379 [106] c

hsa-miR-511-1 [68] a

Data correspond to microarray studies, except those reported byMalzkorn et al. [103] and Conti et al. [56] that were analysed by RTqPCR. References
are shown in brackets. In the last column we have included the GBM subgroup in which the microRNA is expressed according to Kim et al. [41]

Comparison: a GBM versus adjacent tissue, b GBM versus normal control brain, c GBM versus low grade astrocytomas. d GBM versus anaplastic
astrocytoma. N neural, M mesenchymal, A astrocytic, O oligoneural
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suppressor pathways involved in glioblastoma: p53, TGF-β
and mitochondrial apoptosis. MiR-21 also contributes to the
invasiveness of glioma cells by targeting inhibitors of the
matrix metalloproteinases TIMP3 and RECK [49] or by
disrupting the negative feedback circuit of RAS/MAPK
signalling mediated by SPRY2 [50].

Altogether, these data support an important role for miR-
21 in GBM pathogenesis and some groups have already
considered that targeting miR-21 may be a valid approach
for enhancing the chemotherapeutic effects in glioblastoma
treatment. Corsten et al. [51] revealed that microRNA-21
knockdown disrupts glioma growth in an in vivo glioma
model and displays synergistic cytotoxicity with S-TRAIL
in human gliomas. Ren et al. [52, 53] found an increase of
the chemotherapeutic activity of 5-fluorouracil (5-FU) by
combining this compound with antisense-miR-21 oligonu-
cleotides on in vitro studies with the GBM cell line U251.
Both the apoptosis and the migration ability of the cells
were decreased. In a similar study, the same group has
reported that IC50 values are dramatically decreased in cells
treated with a miR-21 inhibitor combined with taxol,
relative to cells treated with the cytotoxic drug alone.

Temozolamide (TMZ) is an alkylating agent commonly
used as a first line treatment for GBM patients. TMZ
treated cells undergo apoptosis by an increase in Caspase-3
activity and in the BAX/BCL-2 ratio. Acquired chemo-
resistance is a severe limitation to this therapy with more
than 90% of recurrent gliomas showing no response to a
second cycle of chemotherapy. In a recent study, Shi et al.
[54] discovered that miR-21 over-expression protects the
human GBM cell line U87 from TMZ by decreasing both
BAX/BCL-2 ratio and Caspase-3 activity, which points to a
possible role of miR-21 in the clinical resistance to this
drug. In a similar way, suppression of miR-21 in the U373
GBM cell line increases the cytotoxicity of another
chemotherapeutic agent, VM-26 [55], perhaps through the
regulation of a new miR-21 target, LRRFIP1, an inhibitor
of NF-kB signalling.

MiR-221/222 are two other miRNAs over-expressed in
GBM with oncogenic characteristics. MiR-221 is over-
expressed only in high grade astrocytomas (WHO grade III
and IV) [56]. The function of miR-221 and miR-222 has
been explored together since their expression is co-
regulated and they have the same target specificity. MiR-
221/222 have been found to repress the expression of the
cell cycle regulator p27kip1 [57–59]. This protein is an
inhibitor of cyclin-dependent protein kinases (CDK) and
triggers cell cycle arrest in the G1 phase [60]. le Sage et al.
[60] found that U87 glioma cells require high activity of
these two miRNAs to maintain low levels of p27kip1 and to
remain in a proliferative state. Zhang et al. [61] performed a
bioinformatic analysis and found that 16 of the miR-221/22
target genes present a direct or an indirect interaction with

AKT and may co-ordinately regulate the AKT pathway.
Moreover, the authors found that miR-221/222 over-
expression increases glioma cell proliferation and invasion
in vitro and induces glioma growth in a subcutaneous
xenograft mouse model. Importantly, the effects correlate
with increased phosphorylation of AKT and therefore with
the activation of AKT signalling [61].

Huse et al. [62] found that miR-26a is a regulator of
PTEN expression. The phosphatase PTEN is a molecular
antagonist of the AKT pathway that has a central role in
glioma biology. Mutations in the PTEN gene have been
found in 40% and 10% of primary and secondary GBM,
respectively. MiR-26 is frequently amplified and over-
expressed in GBM samples and this amplification correlates
with monoallelic PTEN loss and decreased patient survival.
Additionally, this group has demonstrated that PTEN
repression by miR-26a increases de novo tumour formation
in a mouse model of high grade glioma, demonstrating that
this miR enhances gliomagenesis in vivo [63]. According to
the miR-based classification of GBM, miR-26a over-
expression would correlate to GBMs with oligodendroglial
signature [41].

On the other hand miR-7, miR-128, miR-124, miR-137
and miR-181 are down-regulated in GBM. Kefas et al. [64]
identified miR-7 down-regulation in GBM tissue compared
to the surrounding brain. MiR-7 is a potential tumour
suppressor in GBM because it targets the signalling
pathway activated by EGFR, a receptor over-expressed in
60% of primary GBM patients [16]. Since miR-7 directly
represses EGFR by binding to its 3′UTR in GBM cells, it is
possible that increased EGFR levels/AKT signalling in
some patients may be related to decreased miR-7 expression.
The AKT pathway can also be activated independently of
the EGF receptor, one example is through signalling
downstream of IRS-1 and IRS-2. Interestingly, IRS-2 is also
a direct target of miR-7 and over-expression of miR-7
reduces viability and invasiveness of GBM cells [64].

MiR-128 belongs to the class of brain specific miRNAs
[65] and is down-regulated in glioma tissues [66–69] and,
to a lesser extent, in lower grade gliomas [66]. Three
independent groups have found that over-expression of
miR-128 in glioma cells inhibits their proliferation in vitro
by decreasing the S-phase population without inducing
apoptosis [66, 68, 70]. However it has been recently
demonstrated in other cellular systems that miR-128
down-regulates BAX and induces apoptosis [71]. An in
silico analysis has revealed a conserved miR-128 target site
in the 3′-UTR of the transcription factor E2F3a, which is
essential for cell cycle progression [66]. In vitro studies
have confirmed that miR-128 inhibits proliferation of brain
cells by direct negative regulation of E2F3. Another direct
target of miR-128 is the oncogene BMI-1 [68, 70], that
functions in epigenetic silencing of certain gliomagenesis
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genes, such as the tumour suppressors TP53 and p16INK4a

[72]. A study in medulloblastoma reported that miR-128a
targets BMI-1 and as a consequence the intracellular redox
state of the tumour cells is altered and tumour cell growth is
inhibited by promoting senescence [73].

The expression levels of miR-124 and miR-137 are also
down-regulated in glioblastomas and/or anaplastic astrocy-
tomas [67, 68]. Silber et al. [67] found that miR-124 and
miR-137 promote G0/G1 cell cycle arrest in glioblastoma
cell lines. The cyclin-dependent kinase 6 (CDK6) is an
important regulator of the G1 to S phase transition, and
both miRs directly target CDK6 and inhibit its expression.

On the other hand miR-181a/b down-regulation has a
functional significance in GBM development [56, 69, 74].
Shi et al. [74] have demonstrated an association between
diminished miR-181a and glioma grade, and Zhi et al. [42]
have shown that miR-181b low expression is significantly
associated with poor patient survival. Recently, Slaby et al.
[75] have published that miR-181b and miR-181c can serve
as predictive markers of response to TMZ since expression
of these miRs in patients who respond to this therapy was
significantly down-regulated in comparison to patients with
progressive disease. Radiotherapy is also widely used in
GBM patients. Transient over-expression of miR-181a in
the U87 GBM cell line significantly sensitized the cells to
radiation treatment concurrent with the down-regulation of
the BCL-2 protein, suggesting that this miR can be used for
enhancing the effect of radiation treatment on GBM
patients [76].

Finally, microRNAs also regulate angiogenesis, which is
a hallmark of glioma and is a major therapeutic target. A
recent study used expression-profiling to examine the levels
of microRNA in tumour associated endothelial cells. They
found that miR-296 levels are up-regulated in cultured
primary human microvascular endothelial cells exposed to
pro-angiogenic factors, and also in primary tumour endo-
thelial cells isolated from human brain tumours compared
to normal brain endothelial cells. Interestingly these authors
have shown that inhibition of miR-296 with antagomiRs
reduces angiogenesis in tumour xenografts in vivo [77].

Altogether, these results underscore the relevance of
miRNAs as multilevel regulators of gliomagenesis. They
modulate proliferation (miR-7, miR-124, miR128, miR-
137, miR-221), apoptosis (miR-7 and miR-21), angiogen-
esis (miR-296), tumour invasion (miR-7 and miR-21) and
chemo and radiotherapy resistance (miR-21, miR-181a).
Amongst the targets of several miRs up-regulated in GBM
(putative oncomiRs), we encounter a fistful of genes that
undergo loss of function in GBM, suggesting that these
miRs further contribute to the repression of certain
signalling pathways. For instance, the genes PTEN and
TP53 are often mutated or epigenetically silenced in GBM
and miR-21/miR-26, which are over-expressed in GBM,

target the mRNA of these genes, reinforcing their functional
silencing. On the contrary, amongst the targets of the miRs
that are down-regulated in GBM (putative tumour suppres-
sor miRs) we find targets that are amplified or undergo gain
of function in GBM. This is the case of miR-7 and its target
gene, EGFR.

In sum, the data so far reviewed evidence the impact that
microRNAs may have in the regulation of the fundamental
signalling pathways altered in glioblastoma. In addition, the
recent microRNA expression profiles from the Cancer
Genome Atlas underlines the necessity to revise the
microarray-based data that consider GBMs as a unique
group. For instance, some of the tumour suppressor miRs,
like miR-7, miR-128 and miR-124, are over-represented in
the neuronal precursor microRNA cluster defined by Kim
et al. [41], suggesting that they could have a different action
(even as onco-miRs) in this subtype of GBMs.

MicroRNA Regulation of Glioblastoma Stem Cell
Proliferation and Differentiation

The parallelism pointed out between brain CSCs and NSCs
raises the hypothesis that they may share common
regulatory networks, which may be modulated by micro-
RNAs. It has been reported that normal NSCs, and other
stem cell types as well, express certain miR genes that are
involved in the maintenance of the undifferentiated and
self-renewing state of the cells (see below). It is conceiv-
able that a subset of these microRNAs might be also
expressed in GBM-CSCs, perhaps playing a similar role in
the regulation of the stem-like properties of these tumour
initiating cells. Thus, NSCs and CSCs possibly display
partially overlapping miRNA profiles, with high levels of
oncomiRs regulating self-renewal/proliferation of the cells.
As shown in Fig. 2, this model would predict a decrease in
oncomiR expression and an increase the expression of
tumour suppressor microRNAs upon differentiation.

Chen et al. were the first to point out that stem cells have
a less complex miRNA profile than mature somatic tissues
and suggested that the degree of cellular differentiation can
be characterized by a particular miRNA signature [78–80].
In mammals, several miRNAs such as miR-124, miR-125
and miR-137 are specifically enriched in the central
nervous system (CNS), and changes in the pattern of miR
expression during CNS development suggest that these
microRNAs play a role in neural differentiation [81, 82].
The most significant changes in miRNA expression have
been reported in the transition from neural stem/precursors
to differentiated neurons.

Some microRNAs such as miR-124, miR-9, miR-125b
and miR-22 are absent in undifferentiated cells but are
highly up-regulated as differentiation proceeds. The role of
these microRNAs has been partially elucidated in normal
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NSCs. More recently, Lavon et al. [83] have reported the
results from a microarray assay comparing neural precursor
cells with glioma samples, showing that 71 microRNAs in
glioma had a distinct expression pattern relative to normal
brain, and that those miRs were remarkably reminiscent of
the expression pattern observed in embryonic stem cells
and neural progenitor cells. About half of them were
clustered in seven genomic regions: miR-17-92, miR106b-25,
miR-106a-363, miR-183-96-182, miR-367-302, miR-371-373
and the large miRNA cluster in the Dlk1-Dio3 region [83].
Although the role of these miR clusters in NSCs/CSCs
remains to be explored, it is interesting to note that members
of these clusters are enriched in the oligoneural precursor
GBM subclass defined by Kim et al. [41]. Of note, the
oncogenic miR-17-92 is induced by MYC in many cancers
and the MYC oncogene is specifically amplified in the
oligoneural precursor GBM subclass [41], suggesting that
miR-17-92 could function as a component of the MYC
oncogenic program in GBM.

From a mechanistic point of view, miR-124 appears to
ensure that progenitor genes like Laminin-1 and Integrin-1
are post-transcriptionally inhibited in mouse neurons [84].

MiR-124 also impacts the transition towards neuronal
differentiation by directly targeting PTBP1, a protein
involved in alternative splicing patterns related to neuronal
development [85]. Moreover, miR-124 represses Sox-9 in
adult NSCs from the mouse subventricular zone, and has
the capacity to promote differentiation of dividing precur-
sors into neurons [86]. Interestingly, miR-124 is one of the
most abundant miRs in the adult brain, accounting for more
than 25% of the total miR content of the brain [87]. As
shown in Table 2, its down-regulation in high grade gliomas
is remarkable, and also it has been frequently down-
regulated in medulloblastoma [88] suggesting that over-
expression of miR-124 could potentially cause the inhibi-
tion of CSC proliferation by promoting differentiation. In
this regard, Silber et al. have found that miR-124 (and also
miR-137) promote G0/G1 cell cycle arrest and induce
neuronal-like differentiation of GBM-derived stem cells in
the absence of growth factor signalling [67].

MiR-125b is other microRNA that promotes neuronal
differentiation [89] and as many other miRs its expression
levels are altered in gliomas but its function still remains
obscure. Intriguingly, miR-125b has been reported as either
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Fig. 2 Regulation of GBM cancer stem cells and normal neural stem
cells by miRNAs. Due to their common undifferentiated, multipotent
status and their self-renewal property, it has been suggested that NSCs
and CSCs share common regulatory networks. Therefore, we
hypothesise that there must be a set of common miRs expressed by

both cell types. Differentiation would be characterised by a particular
miRNA signature that would reflect the down-regulation of Stem-miRs
and Onco-miRs and the up-regulation of Pro-differentiation miRs and
Tumour suppressor miRs
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up-regulated or unchanged in independent studies, suggest-
ing it may function as an oncogene only in a subset of
tumours. Accordingly, Kim et al. reported that miR-125b is
over-expressed only in the multipotent precursor class of
GBM [41]. Shi et al. have recently found that miR-125b is
down-regulated in human U251 glioma stem cells. Its up-
regulation in vitro leads to growth inhibition by decreased
CDK6 and CDC25A cell cycle regulators [90]. However,
one report seemed to contradict previous findings and
reported that over-expression of miR-125b suppresses
ATRA (all-trans retinoic acid)-induced apoptosis of human
glioma cells and that low expression of miR-125b decreases
proliferation and enhances the sensitivity of the cells to
ATRA, by blocking the translation of the mRNA that codes
for the cell apoptosis-related protein BCL-2 modifying
factor (BMF) [91].

Gal et al. [92] demonstrated that transfection of GBM-
CSCs with miR-451 inhibited their growth and their
capacity to form clonal aggregates/spheres in vitro. But as
with miR-125b, the in vitro results for miR-451 are
controversial. Godlewski et al. [93] have shown that in
glioblastoma patients, elevated miR-451 is associated with
shorter survival. Abundant glucose allows relatively high
miR-451 expression, promoting cell growth whereas low
glucose levels decrease miR-451 expression, slowing
proliferation but enhancing migration and survival [93,
94]. On the other hand, Nan et al. [95] have published that
miR-451 plays a role as tumour suppressor in three human
glioblastoma cell lines because increased expression of this
miR inhibits cell growth, inducing G0/G1 phase arrest,
increasing cell apoptosis and diminishing the invasive
capacity through matrigel. Consequently, future studies are
needed to elucidate the function of this microRNA in
gliomagenesis. Provided miR-451 expression correlated
with the neuromesenchymal GBM subgroup in the classi-
fication reported by Kim et al. [41], which was heteroge-
neous and contained a mixture of tumours from all
previously reported mRNA-based GBM classes, it is
possible that the functional role of miR-451 may be greatly
dependent on the GBM subtype.

For some miRs, no apparent correlation is found
between the expression in glioma samples and the role in
stem cell self-renewal/differentiation. For instance, miR9/9*
are over-expressed specifically in brain primary tumours as
compared to primary tumours in other tissues and brain
metastasis, and have been pointed out as valuable biomarkers
[96]. Previous reports have found that over-expression of
miR-9 promotes premature differentiation of neural progen-
itor cells. Amongst other genes, miR-9 targets TLX, a
nuclear receptor that is involved in NSC self-renewal
(reviewed by Fineberg et al. [97]). More recently, Kim et
al. have found that miR-9 is enriched in the GBM subclass
related to oligoneural precursors. In their hands, miR-9

down-regulates JAK kinases and inhibits the activation of
STAT3, decreases the expression of mesenchymal/astrocytic
markers, promotes the expression of neuronal markers and
increases CD133+ GBM-CSC proliferation [41]. However, it
remains to be assessed if miR-9 expression is enriched in the
bulk of the tumour cells, which may be differentiated
progeny of CSCs, but remains down-regulated in the CSC
subpopulation.

Another interesting microRNA that regulates CSCs is
miR-128, which represses the oncogene BMI-1, an impor-
tant self-renewal factor for several types of stem cells.
Indeed, it has been demonstrated that miR-128 inhibits
glioma proliferation by targeting BMI-1 [68], providing the
first link between a microRNA that acts specifically on a
self-renewal factor and the regulation of glioma CSCs.
Upon miR-128 over-expression, BMI-1 levels are reduced,
and a significant decrease in the number and volume of
glioma spheres is observed [68]. In mouse NSCs, the loss
of Bmi-1 is associated with the up-regulation of p21cip1/waf,
raising the possibility that BMI-1 not only has a critical role
in normal NSCs, but that it may also be key for glioma stem
cell proliferation and self-renewal [98]. Recently, Cui et al.
have found another miR-128 target, ARP5, a transcription
suppressor that promotes stem cell renewal and inhibits the
expression of known tumour suppressor genes involved in
senescence and differentiation [70]. Finally, it is important
to note that miR-128 over-expression also limited glioma
xenograft growth in vivo [98].

Two microRNAs have been recently found to regulate
the NOTCH pathway, which plays critical roles in glioma
cell and stem cell survival and proliferation [14]. MiR-34a
was described as tumour suppressor in glioma cells as it
was found to be a direct target of p53 [99]. This miR is
down-regulated in human glioma samples and its over-
expression leads to the inhibition of cell proliferation, cell
migration and cell invasion and also induces glioma stem
cell differentiation. Mir-34a acts by targeting multiple
oncogenes such as c-MET, CDK6, NOTCH-1 and
NOTCH-2 [100, 101]. Forced NOTCH1/2 expression
partially rescued the effects of miR-34a on cell death in
glioma stem cells. On the other hand, Purow et al. have
reported that miR-326 is also down-regulated in glioma
samples. This neuronally expressed microRNA is up-
regulated following NOTCH-1 knockdown and inhibited
by NOTCH over-expression. In addition this miR inhibited
the activity of NOTCH proteins, establishing a novel
regulatory feedback loop in this important pathway in
glioma [102].

Taken together, increasing data suggest that down- or up-
regulation of certain miRNA species has great potential in
the modulation of CSCs. However, most of the studies
resumed here are based on whole tumour microarray data
and on assays using glioma cell lines that represent a
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mixture of CSCs and their differentiated progeny. Consid-
ering that CSCs represent only a sub-population in the
glioma tissue and in the cultured cell lines, it is possible
that miRNAs with important CSC regulatory capacities are
not being pulled out in microarray-based approaches.
Another limitation of this approach is the heterogeneity of
glioblastomas and the fact that CSC could be very different
entities in the proneural and the mesenchymal subtype (e.g.,
[1, 2, 41]), and therefore they could be modulated by a
distinct set of miRNAs. One alternative to circumvent these
limitations would be to study the function in gliomas of
those miRNAs that have been described to modulate CSC-
related pathways in other systems (BMPs, SHH, NOTCH).
Moreover, it would be interesting to perform comparative
studies between CSCs and their differentiated progeny in
the different GBM subtypes. In any case, the development
of miRNA-based therapies that promote glioma CSC
differentiation and/or limit glioma CSC self-renewal may
be of great interest for diagnosis, prognosis and therapeutic
purposes.

Conclusions

The discovery of miRNAs has given us a deeper insight
into regulation of gene expression. Recent data demonstrate
that deregulation of miRNA expression may be part of the
basic process of cancer pathogenesis. In gliomas, some
over-expressed miRNAs behave as potent oncogenes that
down-regulate multiple targets. The emergence of miRNAs
as important cancer related genes is likely to have a large
impact on therapies designed to block tumour progression.
In the future, techniques to over-express miRNAs that
function as tumour suppressors, or the administration of
synthetic antisense oligonucleotides that repress mature
oncogenic miRNAs might effectively slow tumour growth.
The sensitivity of glioma CSCs to the regulation by certain
miRNAs is also very promising. Considering the proven
resistance of these cells to traditional therapies, miRNA
approaches could be of great help to improve current
clinical trials against malignant gliomas.

We believe that functional studies will open the door to
the use of microRNA-based strategies of potential clinical
relevance, and that miRNA expression profiling of GBM-
CSCs and of human gliomas will lead to the identification
of useful signatures correlating with tumour diagnosis and
response to treatment. It is important, however, to realise
that we still ignore which are the defects underlying the
imbalance of miRNAs in glioma cells. Chromosome and
genetic alterations and/or failure of post-transcriptional
control might cause the deregulation of miRNAs subsets,
but epigenetic alterations may also be playing a role.
Overall, although for long it has been believed that non-

coding RNA may be transcriptional noise, new evidence
suggest a role for miRNA in the cancer and stem cell fields
that may be of major relevance in the nearby future.
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