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Abstract Delayed vasospasm that develops 3–7 days after
aneurysmal subarachnoid hemorrhage (SAH) has tradition-
ally been considered the most important determinant of
delayed ischemic injury and poor outcome. Consequently,
most therapies against delayed ischemic injury are directed
towards reducing the incidence of vasospasm. The clinical
trials based on this strategy, however, have so far claimed
limited success; the incidence of vasospasm is reduced
without reduction in delayed ischemic injury or improve-
ment in the long-term outcome. This fact has shifted
research interest to the early brain injury (first 72 h) evoked
by SAH. In recent years, several pathological mechanisms
that activate within minutes after the initial bleed and lead
to early brain injury are identified. In addition, it is found
that many of these mechanisms evolve with time and
participate in the pathogenesis of delayed ischemic injury

and poor outcome. Therefore, a therapy or therapies
focused on these early mechanisms may not only prevent
the early brain injury but may also help reduce the intensity
of later developing neurological complications. This man-
uscript reviews the pathological mechanisms of early brain
injury after SAH and summarizes the status of current
therapies.
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Introduction

Aneurysmal subarachnoid hemorrhage (SAH) accounts for
5% of all stroke cases and affects up to 30,000 North
Americans yearly [1]. Early brain injury that occurs at the
time of bleed is the leading cause of mortality (30–70%)
after SAH [1, 2]. SAH survivors are at risk of developing
delayed cerebral vasospasm, delayed cerebral ischemia, or
delayed ischemic neurological deficits during the hospital
course [2]. Delayed vasospasm develops in approximately
70% of patients between 3 and 14 days after SAH [1, 2].
For decades, delayed vasospasm has been considered the
single and the most important cause of delayed cerebral
ischemia and poor outcome [3]. The basic and clinical
research has been focused on finding strategies to prevent
and/or treat delayed vasospasm. However, lack of preven-
tion of delayed cerebral ischemia and improved outcome in
a recent clinical trial (CONSCIOUS-1) that successfully
prevented the development of delayed vasospasm has
raised doubts on the importance of vasospasm in delayed
ischemic injury and the outcome after SAH [4]. Recent
reviews of the experimental and clinical literature indicate
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that the presence of delayed vasospasm is not a pre-
requisite for delayed ischemic injury and poor outcome
after SAH [2, 5]. In fact, 21% of SAH survivors, who do
not develop vasospasm, develop delayed ischemic injury,
and only 20–30% of those, who do develop delayed
vasospasm actually, suffer from delayed ischemic injury
[2]. It maybe that the pathological mechanisms that activate
within minutes after SAH and lead to early brain injury
play an important role in the pathogenesis of delayed
ischemic injury and poor outcome [6]. This manuscript
summarizes the animal and human literature addressing the
mechanisms of early brain injury after SAH and the
importance of its early treatment.

Early Brain Injury by SAH

Early brain injury is the product of pathological mecha-
nisms triggered in the brain during the first 72 h after SAH
(Fig. 1). These mechanisms are activated at aneurysm
rupture and evolve with time affecting the course and the
outcome of SAH (Table 1) [7–9]. Below, we discuss the
pathological mechanisms most pertinent to early brain
injury after SAH.

Mechanical Trauma

The first injury to the brain after the aneurysm rupture is
mechanical. This trauma evokes constriction of the artery
harboring the ruptured aneurysm and its compression by
blood filling in the subarachnoid cisterns [10, 11]. Sudden
rise in intracranial pressure that may reach as high as
2,000 mm H2O (161.8 mmHg) [12] stops further bleed and
compresses cerebral arteries and tissue. Depending upon
the amount released, blood not only stretches the subarach-
noid space, but also flows into the branching channels and

envelops branches of the conducting artery [13]. The
stretching of the subarachnoid space by blood is mechan-
ically transferred to the vessels near the aneurysm leading
to spasm of surrounding arteries [14]. Over the course of its
presence, the subarachnoid blood clot evokes the early
brain injury [15] and the delayed spasm [16].

Altered Cerebral Physiology

Intracranial Pressure

Intracranial pressure (ICP) rises when blood released at the
time of aneurysm rupture fills up the subarachnoid cisterns
displacing the cerebrospinal fluid (CSF). Most awake patients
describe this moment as the onset of “the worst headache of
my life” [12]. Two patterns of ICP rise are recognized and
compress brain tissue by different mechanisms. In the first
pattern, observed in most patients, ICP peaks to a value near
diastolic blood pressure and then falls and settles near but
slightly above the baseline [17]. In this pattern, the volume

Fig. 1 Mechanisms of early
brain injury after SAH: A num-
ber of changes in cerebral envi-
ronment and function occur
during the first 72 h after SAH.
Some of the major changes are
listed. See text for explanation.
ICP intracranial pressure, CPP
cerebral perfusion pressure, CBF
cerebral blood flow, NO nitric
oxide, NOS nitric oxide synthase,
ET-1 endothelin-1

Table 1 The timeline of pathological alterations leading to early brain
injury after SAH

Seconds Mechanical trauma, ionic and physiological changes

60 min Ionic and physiological, biochemical, molecular, and
vascular changes persist; cell death; oxidative stress;
inflammatory cascade activates

24 h Ionic and physiological, biochemical, molecular, and
vascular changes persist; cell death; oxidative stress;
inflammation

72 h Ionic, biochemical, molecular, and vascular changes;
cell death; oxidative stress; inflammation

Shown is the time-dependent activation of pathological mechanisms
that participate in early brain injury after SAH. These mechanisms
evolve with time and contribute to complications associated with
delayed phase of SAH. See text for details
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of bleed is small but cerebral edema is present [12]. In the
second pattern, observed in some patients, ICP remains
elevated, due to the mass effect from enlarging hematoma or
due to the development of acute hydrocephalus [12, 18]. The
second pattern of ICP rise is associated with high mortality
[12, 19]. The terms “ischemic-edematous lesion” and
“hemorrhagic-compressive lesion” have been used to differ-
entiate the brain compressing forces associated with the two
ICP patterns [12, 19]. The intensity of ICP rise is linked to
hemorrhage volume, obstruction of the CSF outflow, diffuse
vasoparalysis, and distal cerebral arteriolar vasodilation. The
severity of ICP is associated with changes in cerebral
metabolism, inflammation, fall in cerebral blood flow
(CBF), and development of early and delayed cerebral
ischemia [20]. Hence, the extent of ICP rise is often used
to predict outcome of SAH [15, 21] (Fig. 2).

Cerebral Perfusion Pressure

CPP falls profoundly during and immediately after SAH.
Animal studies indicate that CPP fall is not sufficient to
cause perfusion arrest [17]. Similarly, in SAH patients, CPP
reductions are not clearly associated with poor neurological
outcome. Consequently, decreased CPP may contribute to

early ischemic brain injury but is not solely responsible for
it [17, 22].

Cerebral Blood Flow

CBF falls after SAH and may or may not recover depend-
ing upon the severity of the bleed [17]. In animals, CBF
reduction after SAH is accompanied by constriction of large
cerebral blood vessels [23]. By contrast, in humans, little
arteriographic evidence of acute arterial spasm is found [24,
25]. Therefore, initial fall in CBF in humans is often
attributed to the brief period of no-reflow, due to elevated
ICP and decreased CPP [26].

CBF Autoregulation

Autoregulatory mechanisms of CBF are frequently im-
paired after SAH leading to inadequate CBF response to a
change in systemic blood pressure (pressure autoregulation)
or to a change in partial pressure of carbon dioxide
(chemoregulation) [22, 27]. In animals, a severe distur-
bance in autoregulation occurs within 2–3 h and continues
for months after SAH [22]. In patients, this impairment is
most pronounced during the first 72 h and correlates well
with the SAH severity [27].

Altered Ionic Homeostasis

A rapid alteration in ionic homeostasis occurs after SAH and
affects especially sodium, potassium, calcium, and magne-
sium ions. The alteration evokes immediate effects such as
vasoconstriction, an electrical activity disturbance, and slowly
developing effects, such as activation and expression of
proteins, that develop in a delayed fashion but last for a long
time. Both of these effects can be detrimental to the injured
brain. The timeline of SAH-derived alteration in ionic
homeostasis is presented in Table 2.

Cortical Spreading Depolarization

Cortical Spreading Depolarization (CSD) describes a wave
of mass neuronal depolarization associated with net influx
of cations and water [28] and is an effect of breakdown of
ion homeostasis in the cerebral cortex. CSD is associated
with massive neuronal influx of sodium and calcium.
Elevated intracellular calcium is possibly the predominant
mediator of neuronal death from ischemia [29]. Animal and
human studies indicate that CSDs occur early and late after
SAH. In human SAH, CSDs can occur as clusters or as
isolated events [28]. The cooperative study on brain injury
and depolarizations (COSBID group) found that clustered
CSDs occurred in spatial and temporal correlation to the
development of early and delayed brain damage. Electro-

Fig. 2 The timeline of physiological alterations during the first 72 h after
SAH. Within seconds after SAH: ICP rises, CBF and CPP fall, and BP
increases [17]. Five minutes after SAH: ICP declines towards basal value
and CPP and BP recover to the basal value, CBF remains decreased, and
CBF autoregulation is impaired [17, 37]. Sixty minutes after SAH: ICP
stabilizes to a new plateau that is above the basal value, CPP and BP
have recovered, CBF is still decreased, and CBF autoregulation still
impaired [17, 37]. Twenty-four hours after SAH: ICP is still at the 60-
min value, CPP and BP are recovered, CBF is decreased, and CBF
autoregulation is still impaired [140]. Seventy-two hours after SAH: ICP,
CPP, and BP are at baseline [140], CBF is recovered or decreased [140],
and CBF autoregulation is still impaired [141]. Insert: In animals, the
higher the ICP rise at SAH and the lower the 60-min CBF recovery, the
smaller the changes of 24 h survival [142]
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cortical and regional cerebral blood flow recordings provided
evidence of three different neurovascular responses to CSD in
SAH patients, similar to the findings in animals: (1) spreading
hyperemia, (2) spreading ischemia, and (3) neurovascular
uncoupling [28]. Experimental evidence suggests that sub-
arachnoid oxyhemoglobin, elevated extracellular potassium,
decline in NO availability, glutamate, and endothelin-1 are
involved in the development of CSD and spreading ischemia
after SAH [30, 31].

Decreased Serum Magnesium

Approximately 38% of the patients admitted within 48 h after
SAH have abnormally low serum magnesium [32]. In animals,
decrease in serum and CSF magnesium occurs within minutes
and in humans within hours after SAH [33]. Because
magnesium is a physiological antagonist of calcium and
controls the NMDA receptor-derived calcium influx, its
decrease after SAH contributes to the rise in cellular calcium.
In addition, magnesium dilates blood vessels, inhibits aggre-
gation of platelet, inhibits release of excitatory amino-acids,
and inhibits synthesis of endothelin-1 (ET-1) [34]. Therefore,
decrease in magnesium after SAH exacerbates early brain
injury and promotes mechanisms of delayed brain damage.

Mechanical and Biochemical Alterations

The timeline of SAH-derived mechanical and biochemical
alterations is presented in Fig. 3. These alterations are
described in the next three paragraphs.

Hydrocephalus

Approximately 20% to 30% patients develop acute hydro-
cephalus within the first 3 days after SAH [35]. In most
cases, these patients have larger hemorrhages, poor cerebral
perfusion, and reduced CBF at admission [36]. In animals,
symptoms of hydrocephalus are present within an hour after
initial bleed and are associated with intensity of CBF
reduction and cerebral ischemia [37]. The mechanisms of
acute hydrocephalus include sudden obstruction of cerebrospi-
nal fluid circulation [35], presence of blood in the ventricles,
hemorrhage from a posterior circulation aneurysm, diffused
spread of subarachnoid blood, rebleeding, hypertension, and
increased sympathetic activity [38].

Increase in Extracellular Glutamate

Cerebral glutamate level increases within minutes after
SAH and peaks at approximately 40 min [23]. This
biochemical change is associated with the intensity of
initial insult [39]. An increased interstitial glutamate
concentration after SAH is linked to cellular leakage,
altered synaptic transmission, blood–brain barrier opening,
and inhibited glutamate uptake [39].

Fig. 3 The timeline of biochemical alterations during the first 72 h
after SAH. Sixty minutes after SAH: Glutamate concentration in
cerebral interstitial fluid is increased [23], ventricles swell and brain
water content increases [35], and the status of plasma electrolytes at
this time is not established. Twenty-four hours after SAH: Glutamate
concentration in cerebral interstitial fluid is still increased [143],
hydrocephalus [35, 96] and hyponatremia [40, 96] have set in.
Seventy-two hours after SAH: Glutamate concentration cerebral
interstitial fluid is still increased [143], hydrocephalus [35] and
hyponatremia [41] are still present. Insert: SAH patients with large
bleeds and poor clinical status at admission are more likely to develop
acute hydrocephalus and have poor outcomes [38]

Table 2 The timeline of ionic alterations during the first 72 h after
SAH

Time post-SAH Ionic changes

Within seconds Cortical K2+ ↑ and Ca2+ ↓, EEG amplitude ↓, CSD

5 min Cortical K2+ recovered and Ca2+ recovered or ↑, EEG
amplitude ↓, CSD wave

24 h Cortical K2+ ↓ and Ca2+ ↓, serum Mg2+ ↓, EEG normal,
CSD

72 h CSF and serum K2+ ↓, Ca2+ ↓ and Mg2+ normal, EEG
normal, CSD

Within seconds after SAH: Cortical K2+ concentration increases, Ca2+

decreases, amplitude of brain electrical activity (EEG recording) decreases
[147], and a wave of cortical depolarization spreads appears (CSD) [148].
Five minutes after SAH: Cortical K2+ concentration recovers, Ca2+ either
recovers or increases above the basal level [148], the amplitude of brain
electrical activity remains reduced [147], and the wave of CSD may or may
not be present [148]. Twenty-four hours after SAH: Cerebral concentration
of K2+ and Ca2+ decreases [96], serum Mg2+ concentration decreases
[32], EEG recovers [147], and the wave of CSD may or may not be present
[28]. Seventy-two hours after SAH: CSF and serum K2+ [149] and Ca2+

levels decrease (indicating arterial accumulation) [150], CSF and serum
Mg2+ concentration normalizes [150], EEG recovers [147], and the wave
of CSD may or may not be present [28]
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Hyponatremia

Hyponatremia is either present in 10% to 30% of SAH
patients at admission or develops within 1–2 days from the
initial bleed [40]. Cerebral salt-wasting syndrome and
inappropriate secretion of anti-diuretic hormone are impli-
cated in its development. SAH-related hyponatremia is
difficult to treat and is associated with the risk of
developing cerebral ischemia and infarctions [41].

Vascular Pathology

Cerebral vasculature constricts in response to SAH [42–45].
In animals, constriction of large and small (≤100 μm)
parenchymal vessels is visible within minutes after the
initial bleed (Table 3) [23, 46]. In humans, vascular
imaging is mostly restricted to large vessels; these imaging
studies reveal that the large vessels constrict with a delay of
3–7 days after the SAH. However, more recently, Uhl et al.
confirmed constriction of small vessels in patients under-
going surgery within the first 72 h after SAH [45]. Thus, it
appears that the response of small vessels to SAH in
humans (constriction) is the same as in animal models.

The morphology and function of small vessels is
assessed in animals and in autopsy samples from patients
who died within the first 72 h after SAH. These studies
show corrugation, disruption, and detachment of the
endothelium from the basement membrane [7, 43]. There-
fore, it is not surprising that therapeutic agents that require
a functional endothelium to elicit response are ineffective
during the early hours after SAH [47, 48]. Another
morphological alteration found in small vessels after SAH
is destruction of the basement membrane [49–51]. Al-
though at present destruction of basement membrane is
established in experimental studies only, its pathological
consequence—increased vessel permeability—is estab-
lished in animals and in humans [50, 52, 53]. In most
cases, an increase in vascular permeability precedes and
correlates well with the development of delayed cerebral
ischemia and poor clinical outcome [50, 52].

Cell Death

Necrosis, apoptosis, and autophagy cell death pathways
activate early in the brain after SAH (Table 3). Cerebral
targets of these cell death pathways include brain cells
(neurons and glia) and cerebral vasculature (smooth muscle
and endothelium) [6, 51, 54]. It appears that more than one
cell death pathway is active at any given time after SAH.
For example; Dreier and colleagues found necrotic and
apoptotic cell death and cerebral infarction in animals 24 h
after SAH [55]. Similarly, Lee et al. report neuronal
apoptosis in the superficial layers of the fronto-basal cortex
and autophagy in deep cortical structures of animals 24 h
after SAH [56]. For how long, after SAH, do these cell
death pathways remain active is not clear at present.
However, animal and human autopsy studies indicate that
apoptotic cell death of neurons increases during the first
7 days and then decreases by 11 days after SAH [9, 57]. In
SAH animals, the early cell death is associated with
neurological deficits [54, 58].

Molecular Alterations

The timeline of SAH-derived molecular alterations is
presented in Fig. 4. These molecular alterations are
described below.

Nitric Oxide/Nitric Oxide Synthase Pathway

A time-dependent alteration in nitric oxide (NO)/nitric
oxide synthase (NOS) pathway occurs during the first
24 h after SAH. In animals, three phases of alteration in
cerebral NO are recognized: a decrease within 10 min,
return to basal value at 3 h [59], and an increase above
basal value at 24 h after SAH [60]. In humans, due to early

Table 3 The timeline of vascular alterations and cell death during the
first 72 h after SAH

Time post-SAH Pathological changes

10 min Vasoconstriction, endothelial corrugation and
detachment from basal lamina, collagen IV
degradation, ↑ permeability, ↓ perfusion,
cell death pathway activates

60 min Vasoconstriction, endothelium function decreased,
collagen IV degradation persists, ↑ permeability,
↓ perfusion, cell death pathway activates

24 h Vasodilation, endothelium detachment, collagen IV
degradation persists, ↑ permeability, perfusion
recovered, cell death in progress

72 h Vasospasm, endothelium degeneration, basal lamina
destruction, ↑ permeability, cell death in progress

Ten minutes after SAH: Large and small vessels are constricted [46],
endothelium of parenchymal vessels is detached from the basal lamina
(BL) [7], collagen IV (the major protein of BL) is degraded [49],
vascular permeability is increased, and perfusion is decreased [53].
Sixty minutes after SAH: Cerebral vessels are still constricted [46],
endothelial function is decreased [7], collagen IV degradation persists
[49], vascular permeability is increased, and perfusion decreased
(Friedrich et al. [53]) and mediators of cell death are activated [151].
Twenty-four hours after SAH: Cerebral vessels are dilated or at
normal diameter [46], endothelium is recovering [7, 46], collagen IV
is recovering but is still decreased [49, 51, 152], vascular permeability
is increased, vascular perfusion is recovered or slightly increased [51,
53], and cell death (apoptotic and necrotic) is in progress [9, 54].
Seventy-two hours after SAH: Large vessels are constricted [153],
endothelial cells are degenerating [153], collagen IV is still decreased
[50], vascular permeability is increased [50], and cell death (autoph-
agy, apoptosis) is in progress [9, 56]
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timing, the first two phases of cerebral NO alteration are
not illustrated; the third phase, presenting an increase in NO
24 h after SAH, however, is established [61].

The NO/NOS pathway plays a major role in regulating
the cerebral hemodynamic. Therefore, any alteration in this
pathway can have pathological consequences. For example,
NO regulates CBF and blood pressure by dilating blood
vessels and by inhibiting platelet aggregation and leukocyte
adherence to the vascular endothelium. After SAH, as
cerebral NO level falls, CBF falls, cerebral vessels
constrict, platelets aggregate, and neutrophils adhere to the
vascular endothelium [59, 62, 63]. Similarly, the patholog-
ical rise in cerebral NO, 24 h after SAH, can exacerbate the
brain injury. For example, NO as a free radical itself and in
the form of peroxynitrite (powerful oxidant) can attack cell
membrane; cause damage to the mitochondria, vascular
endothelium, and smooth muscle cells [64]l; and activate
cell death [65]. The initial fall and later rise in cerebral NO

are linked to pathogenesis of delayed vasospasm and poor
clinical outcome after SAH [61, 66, 67]. Consequently,
alterations in NO occurring during the first 24 h after SAH
carry acute, delayed, and prolonged consequences.

Endothelin-1

ET-1 is a potent vasoconstrictor released by astrocytes and
leukocytes in response to inflammation and early ischemia
after SAH [68, 69]. ET-1 is implicated in early brain injury
and in the pathogenesis of delayed vasospasm and delayed
ischemic deficits after SAH [70–72]. A number of
observations support this concept: (1) ET-1 level increases
in serum and plasma within minutes after SAH and
expression of its receptors increases 24 to 48 h later [73–
75]; (2) ET-1 has the capacity to produce long-lasting
constriction [73]; (3) ET-1 level is increased at the time that
cerebral NO is reduced (see above) and thus has a perfect
unopposed opportunity to elicit a sustained contraction in
cerebral vessels after SAH; and (4) ET-1 creates the
degenerative morphological changes in the vascular wall
similar to those that occur after SAH [76]. Therefore, ET-1
provides yet another mechanism that activates minutes after
SAH and has early, delayed, and prolonged consequences.

Oxidative and Nitrosative Stress

Animal and human studies indicate that oxygen-free
radicals (ROS) are generated early after SAH and consume
enzymatic and non-enzymatic antioxidant defense systems
[77–79]. ROS are mostly generated during lipid peroxida-
tion and hemoglobin auto oxidation and induce oxidative
stress that contributes to rapidly developing early and more
slowly developing delayed ischemic injury after SAH [77,
78]. The mechanisms of ROS-induced brain injury after
SAH include: (1) damage of vascular smooth muscle and
endothelium, (2) disruption of blood–brain barrier, (3)
production of strong spasmogens, and (4) induction of
pro-apoptosis enzymes [6, 77]. Accordingly, mice that
overexpress superoxide dismutase exhibit ameliorated
delayed vasospasm and significantly reduced 24-h mortality
[80, 81].

Inflammation

Substantial amount of data supports early activation of
inflammatory cascade after SAH. Components especially
important in post-SAH inflammation and injury include
adhesion molecules, cytokines, leukocytes, and comple-
ment. Adhesion molecules (such as vascular cell adhesion
molecule-1 (VCAM-1), intercellular adhesion molecule-1
(ICAM-1), and E-selectin) are required for leukocyte
migration and represent inflammation. In animals, endothe-

Fig. 4 The timeline of molecular alterations during the first 72h after
SAH. Ten minutes after SAH: Cerebral NO level is decreased [59] and
platelet aggregates are present in parenchymal vessels [62]. Sixty
minutes after SAH: cerebral NO level remains decreased [59], platelet
aggregates persist in parenchymal vessels [62], plasma ET-1 level
increases [74], oxidative stress is in progress [77, 78], and inflamma-
tory cytokines are expressed [144]. Three hours after SAH: Cerebral
NO level is increasing towards recovery [59], platelet aggregates are
still present in the cerebral vessels [62], oxidative stress persists [77,
78], and inflammatory cytokines are expressed. Twenty-four hours
after SAH: Cerebral NO level increases above basal value [60, 61],
platelet aggregation in parenchymal vessels continues [62], plasma
ET-1 level remains increased [73], oxidative stress persists [145],
expression of inflammatory cytokine persists [144], and their markers
appear in serum and CSF [88]. Seventy-four hours after SAH: CSF
level of NO [61] and of ET-1 is increased [73], oxidative stress
persists [145], CSF inflammatory cytokine level remains increased
[88], and blood platelet count remains decreased indicating activation,
sequestration/aggregation in the brain [146]. Insert: Antioxidant
system activity is decreased and lipid peroxidation products accumu-
late within 72 h after SAH and correlate well with poor clinical
conditions and outcome [79, 145]

32 Mol Neurobiol (2011) 43:27–40



lial expression of adhesion molecules and their serum levels
increase within 24 h after SAH and their selective inhibition
improves outcome [82, 83]. Similarly, in SAH patients,
serum ICAM-1 and VCAM-1 concentration increases at the
day of hemorrhage, remains high for 6–8 days, and
associates with delayed ischemic injury [84–86].

An early increase in pro-inflammatory cytokines (such
as interlukin-6, interleukin-1 receptor antagonist, and tumor
necrosis factor-alpha) is also noted in the serum and CSF of
SAH patients and relates to early and delayed ischemia and
poor outcome [87, 88]. Similarly, systemic complement,
another promoter of inflammation, activates within the first
48 h in SAH patients and associates with delayed
neurological complications [89]. In animals, early inhibi-
tion of complement prevents pathogenesis of delayed
vasospasm [90].

Platelets

Platelets activate within minutes after SAH. A reduction in
venous jugular platelet count and shape change indicating
sequestration and activation is observed 5 min after SAH in
animals and 48 h after ictus in SAH patients [91, 92].
Furthermore, platelet aggregates in the lumen of small
cerebral vessels are found within 10 min after SAH in
animals [62] and within 2 days after SAH in human
autopsy studies [8].

The presence of platelets in the small arteries leads to “no-
reflow” phenomenon: the absence of vascular filling after a
period of global cerebral ischemia [93]. In addition, luminal
platelet aggregates activate and promote mechanisms that
cause structural injury and functional deficits in small vessels
and devastate the already compromised brain. For example,
they (1) mechanically obstruct and biochemically constrict
(via releasing platelet-derived serotonin, ADP and PDGF)
the vessel lumen to promote hypoperfusion [53, 94], (2)
injure the vascular endothelium to promote further aggrega-
tion [7, 95], and (3) digest the major protein, collagen IV of
the vascular basement membrane (via releasing collagenases
such as matrix metalloproteinases-2 and 9) to increase
vascular permeability and gain access to the brain parenchy-
ma [7]. In brain parenchyma, platelets may activate
additional inflammatory mechanisms to further aggravate
brain injury after SAH.

Therapeutic Options

Animal studies demonstrate that treatment of early brain
injury improves outcome after SAH. Human data support-
ing these finding, however, are lacking as delayed vaso-
spasm and delayed ischemic injury remain the focus of
treatment in clinics and clinical trials. The success of these

clinical trials unfortunately has been limited. It is time that a
new strategy for treating SAH, aimed at reducing the
progression of early activated injurious mechanisms,
identified in the section “Early Brain Injury by SAH”, is
considered. As explained earlier, these mechanisms activate
within minutes after aneurysm rupture and may evolve with
time and contribute to poor outcome.

Treatment under this new strategy will begin soon after
SAH patient is stabilized and will use pharmacological
agents that decrease the progression of the mechanisms
identified in the section “Early Brain Injury by SAH”.
Pharmacological agents may include a vasodilator (such as
NO donors, calcium channel blockers, magnesium or ET-1
antagonists) to prevent further constriction, improve CBF,
and reduce the intensity of spreading cerebral ischemia and
progressing brain injury. Similarly, an antioxidant, anti-
inflammatory, or antiplatelet agent may also be used to
reduce ongoing inflammation and oxidation stress. In some
cases, inhibition of a single mechanism may not provide
substantial protection, and an agent or a combination of
agents that inhibit multiple injurious mechanisms may be
needed. In such a scenario, nitric oxide donors may be of
special interest; they dilate cerebral arteries, recover CBF,
and inhibit platelet aggregation. Care, off course, will need
to be taken not to exacerbate the brain injury. Consequently,
stabilization of the patient and continuous monitoring of
vital signs, including ICP, CBF, BP, and heart rate, will be
of crucial importance for an early treatment to begin and
continue. Nevertheless, given the failure of current thera-
peutic focus in improving outcome, it is clear that the new
strategy aimed at prevention of early brain injury to
improve SAH outcome needs be considered. The following
section discusses the therapies that are found successful in
preventing early brain injury in animals and the clinical
trials that have used similar treatments against delayed
developing complications (Fig. 5).

Calcium Channel Blockers

Blockade of dihydropyridine-type calcium channel is found
beneficial against SAH. Nimodipine is the most common
agent used for this purpose. Animal studies show that
nimodipine used 30 min to 6 h after SAH attenuates
constriction and improves cerebral blood supply [96]. In
SAH patients, nimodipine reduces the incidence of ischemic
complications and the risk of poor outcome. Nimodipine is
approved for use in SAH patients in the USA [1]. Current
clinical practices call for oral administration within 4 days
after SAH ictus for 21 days [97, 98].

The mechanisms underlying the beneficial effects of
nimodipine in SAH patients are not clear. However, it is
clear that reversal of delayed vasospasm is not one of them,
as little reduction in angiographic vasospasm in patients on
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nimodipine is found [1]. Recovery of CBF and vasodila-
tion, leading to cerebral protection, observed in animals,
may explain nimodipine’s benefits, but remains to be
established in SAH patients.

Endothelin-1 Antagonism

At least four approaches that block ET-1-mediated con-
striction of cerebral arteries are studied after SAH. These
include: (1) blocking ET-1 biosynthesis [99, 100], (2)
reducing extracellular ET-1 levels [101], (3) blocking ET-1
receptors [102, 103], and (4) inhibiting upregulation of
endothelin receptors [104]. ET-1 receptor blockade has
provided the most promising results. In animal studies, ET-
1 receptor antagonists recover CBF when used 60 and
120 min after SAH [102]. In clinical trials, ET antagonist,
Clazosentan, prevents vasospasm but does not improve the
quality of life, supporting dissociation between the two
measures [103]. As ET-1-mediated constriction contributes
to brain injury beginning minutes after SAH, perhaps, a
treatment strategy that prevents this contribution is war-
ranted to maximize the benefits, improved quality of life, of
ET-1 antagonism.

Magnesium Sulfate

A number of investigators have studied the effect of
increasing cerebral magnesium against brain injury after
SAH. Animal studies find that magnesium pretreatment
decreases the duration of ischemic depolarization and
reduces ischemic brain lesions upon acute SAH [105].
Clinical studies have so far examined the safety of
magnesium treatment within the first 72 h after SAH.
These small pilot studies report that continuous intravenous
infusion of magnesium to obtain serum magnesium levels
of 1.6–2.3 mmol/L or a rise of CSF magnesium level to

11% to 21% for 10 or 14 days is well tolerated [106].
Encouraged by the results of pilot studies, a large
randomized, placebo-controlled, double-blind, multicenter
phase III clinical trial (IMASH) was conducted [107]. The
results could not confirm clinical benefits of intravenous
magnesium infusion over placebo in SAH patients [108].
This failure may have resulted from the low CSF
penetration of peripherally infused magnesium or a require-
ment of an even earlier administration to protect brain
against injury.

Antioxidants

Antioxidants successfully prevent oxidative stress and
decrease early brain injury in animals after SAH [109,
110]. However, clinical studies with the focus on delayed
brain injury have not found these compounds effective
[111, 112].

Methylprednisolone (a synthetic glucocorticoid) and
tirilazad mesylate (a 21-aminosteroid) are the most studied
antioxidants. In animals, methylprednisolone used early
(immediately or 30 min) after SAH attenuates CBF
reduction and a rise in cerebral resistance [113]. In addition,
it prevents vasoactive prostanoid and ecosinoid release
[109], reduces lipid peroxidation, and preserves an antiox-
idant enzyme system [114]. In a recent clinical study,
methylprednisolone used within 24 to 48 h after SAH for
3 days improved 1-year functional outcome [111]. This
study supports the idea that treating early brain injury after
SAH improves outcome.

Similarly, tirilazad, when used in animals within 3 h after
SAH prevents CBF and CPP changes [110], protects
microvascular endothelium and blood–brain barrier [115].
In clinical trials, tirilazad therapy that began within 34–48 h
after SAH and continued for 10 days showed improved
outcome and decreased mortality in poor grade (grades IV

Fig. 5 Therapeutic strategies
against early brain injury after
SAH: A battery of compounds
working via different pathways
has been examined against early
brain injury after experimental
SAH. Many of them have also
been tested against delayed vaso-
spasm and DIC. See text for
explanation. ECE endothelin-
converting enzyme, PKC protein
kinase C, ERK1/2 extracellular
signal-regulated kinase, ET-1
endothelin-1, NO nitric oxide,
NOS nitric oxide synthase, GSNO
S-nitrosoglutathione, SNP sodium
nitroprusside, GTN nitroglycerin,
eNOS endothelial nitric oxide
synthase
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and V) male patients only [116]. However, these results
could not be reproduced and a meta-analysis that included
five randomized placebo-controlled trials found no evi-
dence that tirilazad reduces the risk of death or disability
after SAH [112].

Free radical scavengers—ebselen and edaravone—are
also examined against vasospasm in SAH patients. Little
preclinical data exist on the efficacy of ebselen during the
early phase of SAH. Experimental data on edaravone (MCI-
186) show that its use within 24 h after SAH decreases lipid
peroxidation (decreases malondialdehyde and increases
SOD activity), decreases caspase-3 activation, increases
48 h survival, and improves neurological outcome [117]. In
humans, ebselen and edaravone treatment beginning 4 days
after SAH is associated with a trend towards lower
incidence of vasospasm, cerebral infarction, and delayed
ischemic injury [118].

Antiplatelet Agents

Surprisingly, only little animal and more clinical data are
available on the use of antiplatelet agents after SAH. Acetyl
salicylic acid (aspirin) and ticlopidine are the most common
antiplatelet agents studied after SAH. In vitro and in vivo
experimental studies demonstrate that Aspirin prevents
prolonged vasoconstriction produced by blood [119].
Meta-analysis of the published data shows a trend towards
better outcome in patients treated with antiplatelet agents
compared with patients who received no antiplatelet agent
[120]. In a small study, ticlopidine, used after cisternal
drainage, reduced platelet aggregation and improved func-
tional outcome [121]. At least two studies have examined
the outcome in patients who used aspirin prior to or soon
after SAH. The results are contradictory. One study found
increased hemorrhage size and poor outcome in women
who consumed more than 15 adult aspirin tablets per month
prior to SAH [122]; the other study found a significantly
reduced risk of cerebral infarction in patients with significant
urinary salicylate level 48 h after SAH [123]. Clearly, a
larger study is needed to ascertain the effect of dose and
timing of aspirin intake on the outcome after SAH.

Nitric Oxide

The effect of increasing NO bioavailability or prolonging the
duration of NO-mediated mechanisms against early brain
injury is examined. Methods used to increase NO bioavail-
ability include intracarotid infusion of NO-saturated saline
[124], administration of an NO donor [23, 124–127], and
increase eNOS expression and/or activity [128]. S-
nitrosoglutathione and nitroglycerin, NONOate, glyceroltri-
nitrate, and diazeniumdiolate are some of the NO donors
studied after SAH [23, 125, 126]. Studies with NO donor

find that its early use recovers CBF, dilates large and small
cerebral vessels, and prevents excitotoxic glutamate release
after SAH [23, 46]. Approaches used to increase eNOS
expression and activity such as pre-SAH statin use [129]
have also produced beneficial effects—reduction in the
intensity of arterial spasm 2 days after SAH [129]. Similarly,
patients who were taking statin before SAH exhibit decrease
risk of symptomatic vasospasm and significantly lower
incidence of cerebral infarctions [130, 131].

Another approach that prolongs NO-mediated mecha-
nisms is inhibition of cyclic guanosine 3′,5′-monophosphate
(cGMP) degradation by phosphodiesterase [132]. cGMP is
a mediator of many of NO-induced effects. In animals,
inhibition of phosphodiesterase activity improves NO-
mediated vasodilatation [132]. In SAH patients, papaverine,
a non-specific phosphodiesterase inhibitor, is routinely used
to dilate constricted arteries during aneurysm surgery and
for the treatment of cerebral vasospasm [1]. The short half-
life and risks associated with this agent, however, outweigh
its benefits [133].

Overall, it appears that increasing NO level at the
vascular bed is beneficial after SAH, and the sooner this
is done the better the outcome is. These experimental
findings remain to be duplicated in a clinical setting.

Statins—Acute Treatment

Statins are hydroxymethylglutaryl coenzyme A reductase
inhibitors and potent inhibitors of cholesterol synthesis. In
addition, statins inhibit platelet aggregation, reduce excito-
toxic effects of glutamate, prevent endothelial and neuronal
apoptosis, reduce inflammation, enhance angiogenesis, and
upregulate and activate endothelial nitric oxidase synthase
and nitric oxide production.

The effect of acute (within minutes from ictus for
animals and within 3 days for humans) statin treatment
against early and delayed brain injury after SAH has been
examined. In animals, simvastatin injected at 30 min and 24
and 48 h after SAH reduced perivascular granulocyte
migration and basilar artery vasospasm [134]. Animal
studies also show that the protective effects of statin are
rapidly lost upon its withdrawal [135]. In contrast to
animals, some clinical studies do [136] and others do not
[137] find acute statin treatment beneficial in SAH patients.
In most of these studies, therapy began within 72 h after
SAH and continued for 14 days, and delayed outcomes
such as vasospasm and delayed ischemic injury were
evaluated. Recently, two separate groups conducted a
meta-analysis on the effect of statin on SAH outcome
[138, 139]. The results are inconsistent. One study found
that post-SAH statin use decreases the overall incidences of
delayed vasospasm, delayed ischemic injury, and mortality
[139] , while the other found that this treatment does not
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improve neurological outcomes [138]. Consequently, at
present, the effect of post-SAH statin use on outcome
remains unresolved. Perhaps a large randomized trial that
studies the effect on early brain injury in addition to the
delayed complications as an outcome is warranted before a
decision on acute statin use after SAH can be made.

Summary

Therapies against SAH are designed to treat vasospasm
with the ultimate goal of preventing delayed ischemic
injury and improving outcome. The success of these
therapies in reducing incidence of delayed vasospasm
without reduction in delayed ischemic injury and improved
quality of life indicates that treating vasospasm alone may
not achieve this goal. The results of animal and human
studies indicate that mechanisms leading to brain injury
activate minutes after SAH and may contribute to the
pathogenesis of delayed ischemic injury. Therefore, a
therapy that is directed towards inhibiting early brain injury
may prove more beneficial in preventing delayed ischemic
injury and improving quality of life in this setting.
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