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Abstract Huntington’s disease (HD) is an autosomal
dominant neurodegenerative disorder characterized by
involuntary body movement, cognitive impairment and
psychiatric disturbance. A polyglutamine expansion in the
amino-terminal region of the huntingtin (htt) protein is the
genetic cause of HD. Htt protein interacts with a wide
variety of proteins, and htt mutation causes cell signaling
alterations in various neurotransmitter systems, including
dopaminergic, glutamatergic, and cannabinoid systems, as
well as trophic factor systems. This review will overview
recent findings concerning htt-promoted alterations in cell
signaling that involve different neurotransmitters and
trophic factor systems, especially involving mGluR1/5, as
glutamate plays a crucial role in neuronal cell death. The
neuronal cell death that takes place in the striatum and
cortex of HD patients is the most important factor
underlying HD progression. Metabotropic glutamate recep-
tors (mGluR1 and mGluR5) have a very controversial role
in neuronal cell death and it is not clear whether mGluR1/5
activation either protects or exacerbates neuronal death.

Thus, understanding how mutant htt protein affects gluta-
matergic receptor signaling will be essential to further
establish a role for glutamate receptors in HD and develop
therapeutic strategies to treat HD.
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GSK-3 Glycogen synthase kinase-3
EC Endocannabinoid
BDNF Brain-derived neurotrophic factor
AEA Anandamide
2-AG 2- arachidonoyl glycerol
TRPV1 Transient receptor potential vanilloid 1

Huntington’s Disease

Huntington’s disease (HD) is a devastating autosomal
dominant inherited neurodegenerative disorder character-
ized by progressive motor, cognitive, and psychiatric
symptoms, leading to death, inevitably [1, 2]. Cognitive
and personality alterations are early symptoms, followed by
chorea and loss of balance. Movement difficulties, which
progressively worsen over time, are associated with both
involuntary and voluntary movement. Among the psychi-
atric disturbances that take place in HD, affective disorders
are the most commonly prevalent, with documented rates of
major depression as high as 50% [3] and mania or
hypomania as high as 12% [3, 4].

A polyglutamine expansion in the amino-terminal region
of the huntingtin (htt) protein is the cause of HD [5]. The
length of the polyglutamine repeat is inversely correlated
with the age of disease onset and directly correlated with
the severity of symptoms [6]. However, patient sex,
environmental factors and genetic modifiers can alter the
variability of clinical expression. Although the htt mutation
is pointed to as the cause of HD, the mechanisms
responsible for mutant htt pathogenicity are still largely
unknown. There is no data explaining why the mutant
protein, which is expressed throughout the body results in
the selective death of medium sized spiny neurons (MSNs).
In addition, it is still unclear whether HD pathology
progresses due to either a lack of function of the htt protein
or to a gain of toxic function of the mutant htt. Normal htt
protein has been shown to be anti-apoptotic [7, 8] and
essential for normal embryonic development [7, 9, 10]. On
the other hand, mutant htt and htt aggregation triggers a
cascade that leads to neuronal dysfunction through oxida-
tive stress, transcriptional dysregulation, glutamate excito-
toxicity, activation of apoptotic cascade, mitochondrial
dysfunction and energy depletion [11–14].

Cleavage of polyglutamine expanded htt leads to the
release of amino-terminal fragments containing the poly-
glutamine repeats, which can aggregate in neurites, cyto-
plasm, and nuclei. Importantly, htt aggregate formation and
loss of striatal neurons strongly correlate with HD symptom
severity [15]. MSNs in the striatum, containing GABA and
enkephalin, are affected early in the disease and are the
primary neurons targeted in HD. Over time, htt aggregates

and inclusions spread to the remainder of the basal ganglia
with subsequent dissemination through the cortex and
substantia nigra. However, it is not known if the accumu-
lation of htt aggregates results in cell death or if the soluble
form of the protein is the toxic one [16–18].

Glutamate Receptors and Cell Signaling

Glutamate, the major excitatory neurotransmitter in the
brain, is essential for a wide variety of physiological
processes, such as integrative brain function and neuronal
cell development. However, glutamate is also implicated in
neuronal cell death and has been postulated to play an
important role in the pathogenesis and excitotoxic neuronal
cell loss that takes place in HD [19–22].

Glutamate exerts its actions by interacting with ionotropic
glutamate receptors, which are ligand-gated ion channels that
mediate fast excitatory neurotransmission, and metabotropic
glutamate receptors (mGluRs), which are members of the
family C of G protein-coupled receptor (GPCR) [23–27].
There are at least three different types of ionotropic
glutamate receptor, N-methyl-D-aspartate receptor (NMDA),
alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA), and kainate receptors, and eight distinct
mGluRs, which are divided into three subgroups based
on sequence homology and G protein coupling specific-
ity [22, 23, 28, 29]. Group I mGluRs (mGluR1 and
mGluR5) are predominantly coupled to the activation of
phospholipase C (PLC) via Gαq/11, whereas Group II
(mGluR2 and mGluR3) and Group III (mGluR4, mGluR6,
mGluR7 and mGluR8) mGluRs negatively regulate
adenylyl cyclase via Gαi.

mGluRs are differentially localized in presynaptic and
postsynaptic neuronal regions [30, 31]. Group II and Group
III mGluRs are mainly localized presynaptically and act as
autoreceptors to inhibit glutamate release [32]. Group I
mGluRs can be localized at both presynaptic and postsyn-
aptic sites, although at synapses they are mainly located peri-
synaptically at the postsynaptic neuronal membrane, where
they function to regulate neuronal excitability by modulating
currents mediated by ionotropic glutamate receptors [33–36].

Group I mGluR stimulation can lead to activation of a
wide variety of cell signaling pathways, generating very
complex responses [27] (Fig. 1). Activation of PLC by
mGluR1/5 leads to diacylglycerol and inositol-1,4,5-
triphosphate (InsP3) formation [37]. InsP3 binding to its
receptor leads to release of calcium from intracellular
stores. Both calcium and diacylglycerol lead to the
activation of protein kinase C (PKC), which has been
proposed to activate phospholipase D (PLD), phospholi-
pase A2 (PLA2) and mitogen-activated protein kinase
(MAPK), as well as to modulate a variety of ion channels
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[38]. mGluR1/5 can also modulate calcium channels in a
PLC/PKC-independent and G protein-dependent manner [39,
40]. Moreover, Group I mGluRs can also modulate
potassium channels employing different cell signaling
strategies [41, 42]. Ionotropic glutamate receptors can also
be regulated by mGluRs, as stimulation of mGluR5 leads to
PKC activation, which can activate NMDAR by increasing
its open probability, leading to calcium influx [43]. Interest-
ingly, it has been shown that mGluR5 and NMDAR can be
cross-linked through the interaction with Homer and Shank
proteins [44, 45]. Group I mGluR stimulation also leads to
activation of other signaling pathways important for cell
survival and proliferation, such as extracellular signal-
regulated kinase (ERK) and AKT [46–48]. mGluR1/5
signaling complexity may underlie different responses,
depending on activation context (agonist type and concen-
tration, disease state, neuronal cell type, etc.). Group I
mGluRs signaling can be modified in various disease states
[27, 49] and understanding mGluRs regulation will be
essential for developing efficient pharmacological strategies
to treat such disorders.

Cell Signaling Alterations Caused by Mutant htt

Mutant htt protein has been implicated in a wide variety
of cell signaling alterations that are appearing as
important features underlying the progression of HD
pathology. Mutant htt protein promotes cellular alter-
ations mainly by modifying htt-protein interaction pat-
terns [50] and/or by altering transcription of key cellular
components [51]. Htt interaction with other proteins can
be modified by htt polyglutamine expansion resulting in
altered htt-mediated cellular processes. In particular,
alteration in mutant htt protein interaction can modify htt
functions involved in clathrin-mediated endocytosis, neu-
ronal transport processes, postsynaptic signaling, apopto-
sis and cell survival [52–56].

Numerous studies in both HD patients and mouse
models have demonstrated that mutant htt protein can alter
neuronal function and cell signaling by disrupting tran-
scriptional pathways and altering striatal gene expression
profiles [57]. The down-regulation of several specific
transcripts, such as preproenkephalin (PPE) [58, 59],

Fig. 1 Cell signalling pathways activation by Group I mGluRs.
Group I mGluRs activate the hydrolysis of PIP2 by phospholipase C
(PLC) following the activation of the heterotrimeric G protein Gαq
resulting in increases in intracellular DAG and InsP3 (IP3) levels.
InsP3 activates the InsP3 receptor (IP3R) resulting in increased
intracellular Ca2+ concentrations which in conjunction with DAG

activate protein kinase C (PKC) PKC activation can lead to the
activation of ERK1/2 phosphorylation and the phosphorylation of the
NMDA receptor. Homer interacts with the C-tails of Group I mGluRs
and can either contribute to the activation of Akt via PI3 kinase (PI3K)
or can directly regulate NMDA receptor activity via its association
with Shank
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dopamine and cyclic AMP-regulated phosphoprotein,
32 kDa (DARPP-32) [60], D1 and D2 dopamine receptors
[61], adenosine A2A receptor [62], and the CB1 cannabi-
noid receptor [63, 64], has been particularly well studied
and quantified. Thus, the htt polyglutamine expansion can
affect its interactions with other proteins and transcriptional
regulation of multiple genes, causing a wide variety of cell
signaling alterations that are crucial for disease progression.

Htt-Mediated Cell Signaling Alterations Involving
the Glutamatergic System

An important cell signaling alteration promoted by the htt
polyglutamine expansion is an increase in intracellular Ca2+

levels, which may contribute to the neuronal cell death that
takes place in HD. Mutant htt leads to NMDAR sensitiza-
tion, increasing Ca2+ influx into the cell [65, 66], as
discussed further in “Role of Glutamate Receptors in
Neuronal Survival in HD”. Moreover, mutant htt protein
can also cause an increase in intracellular Ca2+ levels by
destabilizing mitochondrial Ca2+ regulation [67, 68] and
sensitizing InsP3 receptor-mediated release of Ca2+ from
intracellular stores [69, 70]. As a consequence of InsP3
receptor sensitization, the stimulation of Gαq/11 coupled
receptors (e.g., mGluR1/5) leads to an increase in Ca2+

release from intracellular stores [49, 70].
Mutant htt protein can alter Group I mGluR cell signaling

by a mechanism involving its interaction with optineurin, a
protein that has been demonstrated to contributed to the
attenuation of mGluR1/5 signaling [56]. Although wild-type
htt protein does not enhance optineurin mediated mGluRs
desensitization, mutant htt functions to synergistically
increase optineurin-mediated mGluR desensitization in
HEK 293 cells [56]. New data from our group confirmed
that InsP3 formation stimulated by endogenous mGluR5 is
selectively attenuated in the striatum of a knock-in mouse
model of HD (HdhQ111/Q111 mice), as compared to control
mice (HdhQ20/Q20 mice) [49]. However, InsP formation in
response to activation of muscarinic acetylcholine receptors
remains unaltered in the HdhQ111/Q111 mice. Interestingly, the
attenuation of mGluR5 signaling observed in HdhQ111/Q111

mice is PKC dependent and is only present in young
asymptomatic mice, and is lost in mice that are older than
11 months [49]. PKC-dependent mGluR1/5 attenuation
might be protective, as activation of mGluRs in striatal
neurons and inhibition of PKC lead to increased death of
neurons derived from HdhQ111/Q111 mice without affecting
survival of HdhQ20/Q20 neurons [49]. Despite decreased InsP
formation, DHPG-mediated Ca2+ release is higher in
HdhQ111/Q111 than in HdhQ20/Q20 neurons. Thus, it is possible
that the PKC-mediated mGluR1/5 desensitization is protec-
tive as it avoids further increases in calcium release that
could result in increased cell death.

In addition to the attenuation of mGluR1/5-mediated
InsP3 formation, other Group I mGluRs signaling pathways
that may be protective against cell death are increased in
HD [49]. mGluR5 activation leads to higher levels of
ERK1/2 phosphorylation in HdhQ111/Q111 striatal neurons
than in HdhQ20/Q20 neurons. Moreover, basal levels of Akt
are increased in HdhQ111/Q111 neurons, and inhibition of
either NMDA receptors or mGluR5 decreases phospho-Akt
levels in HdhQ111/Q111 neurons as compared to HdhQ20/Q20

neurons [49, 71]. Phosphorylation of Akt by glutamate
receptors is particularly important because it has been
shown that Akt activation can protect against neuronal
death [72, 73]. The activation of Akt by mGluR5 involves
phosphoinositide 3-kinase (PI3K) and phosphoinositide-
dependent kinase (PDK1) [47, 48]. A PI3K enhancer
(PIKE) couples group I mGluRs to PI3K via Homer
proteins [47]. mGluR activation leads to formation of the
functional complex mGluR-Homer-PIKE, allowing PI3
kinase activation by PIKE, which results in reduced
apoptosis [47]. Thus, mGluR-mediated Akt activation is
independent of InsP3/PLC pathway.

Akt is emerging as a key component to protect against
neuronal cell death in a growing number of neurodegen-
erative disorders. In HD, Akt can promote phosphoryla-
tion of mutant Htt protein, which leads to reduced Htt
aggregate formation and neuronal cell death, providing a
protective pathway in HD [74, 75]. It has also been
demonstrated that a myristoylated form of Akt, which is
constitutively active, has a potent in vivo anti-apoptotic
effect on dopaminergic neurons of the substantia nigra in a
mouse model of Parkinson’s disease [76]. In addition, Akt
also has an important protective role in Alzheimer’s
disease (AD), as Akt activation leads to inhibition of
glycogen synthase kinase-3 (GSK-3) and GSK-3 promotes
phosphorylation of tau leading to neurofibrilary tangle
formation and neuronal cell death [77]. Interestingly,
amyloid-beta can activate GSK-3 by inhibiting PI3K/Akt
pathway and Akt activation can reverse amyloid-beta toxic
effects [78]. Thus, Akt occupies a pivotal role in
Alzheimer’s disease pathology, modulating both amyloid-
beta and tau pathologies, constituting a potential thera-
peutic target to treat AD patients. It is possible that the
observed increase in Akt activation in HdhQ111/Q111 striatal
neurons plays a similar role in HD by protecting neurons
against cell death during the asymptomatic stages of the
disease.

Htt-Mediated Cell Signaling Alterations Involving
the Dopaminergic System

The dopaminergic system appears to play a role in HD,
as a dopamine transporter knock-out mice display both
spontaneous striatal death and behavioural alterations that
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resemble HD [79]. Moreover, exacerbation of HD symp-
toms and augmentation of aggregate formation occur when
these mice are mated to a knock-in HD mice [80]. In vitro
data demonstrate that dopamine stimulation can lead to the
formation of reactive oxygen species and the activation of
pro-apoptotic pathways, as well as aggregate formation
and mitochondria dysfunction via D2 dopamine receptor
activation [81, 82]. Furthermore, D2 antagonist treatment
protects against aggregate formation and striatal dysfunc-
tions induced by mutant htt [81, 83]. D2-mediated
activation of aggregate formation involves a Rho/ROCK
signaling pathway, as inhibition of ROCK activity reverses
D2-promoted aggregate formation, neuritic retraction and
neuronal death induced by mutant htt [84]. Glutamate and
dopamine signaling pathways can also act synergistically
to induce apoptosis of MSNs via elevated Ca2+ signaling
[85, 86]. Moreover, it has been shown that, in cells
expressing mutant htt, NMDAR activation potentiates D1-
induced Cdk5 phosphorylation, which can lead to neuro-
toxicity and apoptosis [86].

Htt-Mediated Cell Signaling Alterations Involving
the Cannabinoid System

Cannabis sativa, popularly known as marijuana, has been
used as recreational drug for the past 4,000 years by
numerous cultures. In 1964, Gaoni and Mechoulam [87]
identified Δ9-tetrahidrocanabinol (Δ9-THC) as the major
psychoactive constituent of the plant. The effects of Δ9-
THC are mediated mainly by two cannabinoid receptors
named CB1 and CB2 which were cloned and characterized
in the early 1990s [88, 89] and one of the most surprising
findings was that these receptors could bind endogenous
ligands recently known as endocannabinoids (ECs). Five
ECs have been identified thus far, including anandamide
(AEA) and 2-arachidonoyl glycerol (2-AG), which are the
two most studied ECs [90, 91]. The ECs are released by
post-synaptic neurons and act predominantly at pre-
synaptic neurons [92]. This retrograde signaling pathway
has emerged as being important in synaptic plasticity and,
recently, neurobiologists have increasingly turned their
attention to EC system as it has been implicated in
numerous neurophysiologic functions such as pain, appe-
tite, learning and memory, and motor functions [93–96]. It
has been shown that AEA can also act as a full agonist of
transient receptor potential vanilloid 1 (TRPV1) and, since
these receptors are expressed both in the periphery and in
the CNS, this AEA endovanilloid activity may influence
many physiological brain functions [97]. A role for ECs in
a variety of CNS disorders, especially neurodegenerative
diseases, is suggested by the high levels of expression of
CB1 receptors in brain regions involved in cognition and
motor activity [98].

The activation of EC signaling by direct receptor
agonists and/or inhibition of EC metabolism has powerful
effects on the control of movement, mostly inhibitory [99,
100]. The motor effects of the EC system are related to the
capacity of this system to modulate the activity of
glutamate, GABA and dopamine which participate in the
control of basal ganglia function [101, 102]. The presence
of CB1 receptors at GABAergic and glutamatergic synap-
ses within the basal ganglia, as well as the presence of
TRPV1 receptors in nigrostriatal dopaminergic neurons,
enables ECs to directly control the function of these key
neurotransmitters [102]. Thus, the main function of canna-
binoid system within the basal ganglia is to modulate
GABAergic and glutamatergic synapses through a retro-
grade signaling mechanism [101].

The first evidence linking EC signaling with HD was
provided by Glass et al. [103]. They demonstrated a loss of
approximately 97% of CB1 receptors in the subtantia nigra
of human HD brains [103]. This loss of CB1 receptors
preceded the loss of D1 and D2 dopamine receptors and
occurred even before the onset of major HD symptoms
[104]. Thus, CB1 receptors may play a central role in either
the pathogenesis and/or progression of the neurodegenera-
tion in HD patients. These findings are consistent with the
observation that medium spiny-GABAergic neurons, which
specifically express CB1 receptors, are the predominant
neuronal population lost in the basal ganglia in HD [98].

The EC system has also been studied in a variety of
animal models of HD [105–108]. These mouse models
develop many HD features such as striatal atrophy, intra-
neuronal aggregates and progressive dystonia and also
exhibit decreased CB1 mRNA levels and activity in basal
ganglia. This reduction CB1 mRNA expression occurs
prior to the development of motor symptoms and neuronal
degeneration. TRPV1 also seems to be involved in HD as
the stimulation of this receptor subtype, located at nigros-
triatal dopaminergic neurons of basal ganglia, reduces
hyperkinesia in HD animal models [109, 110].

Htt-Mediated Cell Signaling Alterations Involving Trophic
Factors

Trophic factors, such as brain-derived neurotrophic factor
(BDNF), largely influence neuronal survival and function
[111]. Wild-type, but not mutant, huntingtin promotes the
transcription and vesicular transport of BDNF [112–114].
Polyglutamine expansion of the htt protein results in the
reduction of BDNF transcription and axonal transport,
which may affect the survival of both striatal and cortical
neurons [112, 113]. It has also been shown that BDNF is
able to prevent the death of striatal projection neurons in a
quinolinic acid model of HD and in a 3-NP-induced
toxicity mouse model, which causes abnormal movement,
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cognitive deficits and neuronal degeneration similar to that
seen in HD patients [115–117]. Most of BDNF neuro-
protective effects are mediated by TrkB receptor-induced
activation of pro-survival signaling pathways, including:
PLC-γ, Ras/MEK/MAPK and PI3K/Akt pathways [118].
BDNF also protects cortical neurons from 3-NP toxicity
through the activation of PI3K and ERK1/2 intracellular
signaling pathways resulting in decreased mitochondrial
abnormalities and apoptosis [119]. These data highlight the
importance of altered BDNF signaling in HD pathology.

Research on BDNF and HD has focused on drugs that
could boost BDNF production, as this trophic factor does
not cross the blood–brain barrier. Recent data have
demonstrated that ampakine, a positive modulator of
AMPA glutamate receptors, can up-regulate endogenous
BDNF levels, rescuing plasticity and reducing learning
problems in a HD mouse model [120]. However, ampakine
treatment has no measurable effect on decreased locomotor
activity. Nevertheless, as ampakines are well tolerated by
patients, they may represent a novel strategy for treatment
of the cognitive difficulties that occur in HD, as well as for
preventing neuronal cell death [120].

Role of Glutamate Receptors in Neuronal Survival
in HD

Glutamate receptors are appearing as important pharmaco-
logical targets in HD. It is well known that glutamate plays
an important role in neuronal excitotoxicity through the
activation of ionotropic receptors [11, 19, 121]. Excitotox-
icity is one of the most extensively studied processes of
neuronal cell death, and plays an important role in many
CNS disorders, including ischemia, trauma, and neurode-
generative disorders, such as AD, HD, Parkinson’s disease,
and amyotrophic lateral sclerosis [122–128]. Excitotoxicity
is characterized by an excessive synaptic release of
glutamate, leading to glutamate receptor over-stimulation
and Ca2+ overload, compromising mitochondria function
and leading to cell death [129, 130]. Elevation of
intracellular Ca2+ by glutamate is mainly achieved by
activation of the ionotropic NMDAR via calcium influx
and, to a lesser degree, Group I mGluRs (mGluR1 and
mGluR5), which are coupled to Ca2+ release from
intracellular stores [25, 29].

Several studies have implicated NMDAR signaling in
excitotoxic neuronal loss in HD [11, 19, 121]. Radioligand
binding studies, using post-mortem brain tissue from HD
patients in the early symptomatic phase, showed a loss of
striatal NMDARs suggesting that striatal neurons with high
NMDAR expression are more vulnerable and are lost early
during disease progression [131, 132]. Moreover, a mouse
model of HD was created by injecting the NMDAR agonist

quinolinic acid into the striatum [133, 134]. This HD mouse
model exhibits many of the HD-like lesions and symptoms
[133, 134]. Furthermore, NMDAR-mediated excitotoxicity
may explain why MSNs are more vulnerable in HD.
NMDARs that are comprised of the NR1A/NR2B, but not
NR1A/NR2A subunit combination, can be sensitized by
mutant htt [65, 135]. Interestingly, MSNs mainly express
the NR1A and NR2B subunits [136], whereas other brain
regions express combinations of both NR2A and NR2B
with a variety of NR1 splice variants [137, 138]. Thus,
NMDAR-specific subunit expression might underlie the
preferential death of MSNs in the striatum. Group I
mGluRs may also play a role in the selective loss of MSNs
in the striatum as DHPG stimulation strongly enhances
membrane depolarization and intracellular calcium accu-
mulation induced by NMDAR in MSNs, but not in
cholinergic striatal interneurons, which are spared in HD
[20].

The prominent role of NMDARs in neuronal excitotox-
icity and cell death has led to a concerted effort to design
and assess NMDAR antagonists such as ketamine, phen-
cyclidine, and MK-801 for the treatment of neurological
disorders involving cell death. However, although iono-
tropic glutamate receptors are likely to be essential for the
neuronal cell loss that occurs in HD, pharmacological
approaches targeting these receptors is not an ideal strategy.
This is because the blockage of ionotropic receptors leads
to many toxic effects, including psychosis, nausea, memory
impairment, and neurotoxicity, which have led to their
failure in clinical trials and a search for alternative
therapeutic targets [139, 140]. Group I mGluRs have a
modulatory rather than excitatory role in neurotransmission,
making these receptors exciting targets for new therapeutic
strategies for a number of neurological disorders, including
HD.

It is not clear yet whether Group I mGluRs have a role in
HD. However, a direct link between htt and Group I
mGluRs has been established by our group, as we have
shown that mGluR1/5 interact with both Htt and optineurin,
which is also a Htt-interacting protein [50, 56]. Neverthe-
less, the role of mGluR5 in HD and neuronal cell death is
very controversial. Treatment of an HD transgenic mouse
model with a mGluR5 antagonist increases survival,
indicating that mGluR5 activation can accelerate HD
progression [141]. In addition, disturbed calcium signaling
and apoptosis observed in primary cultured MSNs of an
HD mouse model has been attributed to activation of
mGluR1/5 and NMDA receptors containing the NR2B
subunit [69, 70]. Treatment with mGluR1 antagonists
results in a decrease in the tissue infarct size and cell death
in an in vivo animal models of ischemic stroke [142–146].
On the other hand, it has been reported that mGluR1 knock-
out mice do not show any difference in infarct size when
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compared to control mice [147]. Moreover, other studies
have provided evidence that Group I mGluRs activation
may be protective. For example, when cortical neuronal
cultures are consecutively incubated two times with DHPG
(3,5-dihydroxyphenylglycine), an agonist for group I
mGluRs, NMDA excitotoxicity is attenuated [148]. In rat
hippocampal organotypic slices, DHPG stimulation protects
CA1 hippocampal cells and this effect is lost when mGluR1
antagonists are applied [149]. As outlined in “Glutamate
Receptors and Cell Signaling”, data from our group suggest
that mGluR1/5 signaling is modified in a mouse model of HD
during the presymptomatic phase of the disease and we
suggest that these alterations have a protective role [49, 56].
Thus, depending on the context of activation, group I mGluR
stimulation is found to be either neurotoxic or neuro-
protective and this may be related to the precise molecular
mechanism by which mGluR signaling is achieved.

Concluding Remarks

Polyglutamine expansion of the htt protein results in altered
htt protein interactions and gene transcript that results in
perturbations in cell signaling that affect neuronal homeo-
stasis. It is possible that several of these alterations in htt
function occur in the pre-symptomatic phase of the disease
and might be crucial to determine the rate of HD
progression. Understanding these early changes in cell
signaling caused by mutant htt will be essential for the
development of pharmacological therapies to prevent
neuronal cell death in HD and slow disease progression.
Mutant htt can induce alterations of the dopaminergic and
cannabinoid system and these alterations can also influence
the glutamatergic system. Moreover, mutant htt-induced
decrease in BDNF function may also contribute to neuronal
cell loss and motor alterations. In addition, Htt mutation
promotes several alterations in the glutamatergic system,
involving both ionotropic and metabotropic glutamate
receptors. NMDARs are sensitized by mutant htt and
Group I mGluRs signaling is significantly altered in mouse
models of HD. The glutamatergic system is closely linked
to the regulation of neuronal cell death. However, glutamate
receptor activation may be either excitotoxic or protective
depending upon the context of activation. In particular, it is
possible that pharmaceutical agents may be developed that
selectively activate mGluR-stimulated pro-survival path-
ways as opposed to activating mGluR signaling that leads
to neuronal cell death.
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