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Abstract Acute inflammation is important for tissue repair;
however, chronic inflammation contributes to neurodegen-
eration in Alzheimer's disease (AD) and occurs when glial
cells undergo prolonged activation. In the brain, stress or
damage causes the release of nucleotides and activation of
the Gq protein-coupled P2Y2 nucleotide receptor subtype
(P2Y2R) leading to pro-inflammatory responses that can
protect neurons from injury, including the stimulation and
recruitment of glial cells. P2Y2R activation induces the
phosphorylation of the epidermal growth factor receptor
(EGFR), a response dependent upon the presence of a SH3
binding domain in the intracellular C terminus of the
P2Y2R that promotes Src binding and transactivation of
EGFR, a pathway that regulates the proliferation of cortical
astrocytes. Other studies indicate that P2Y2R activation
increases astrocyte migration. P2Y2R activation by UTP
increases the expression in astrocytes of αVβ3/5 integrins
that bind directly to the P2Y2R via an Arg-Gly-Asp (RGD)
motif in the first extracellular loop of the P2Y2R, an

interaction required for Go and G12 protein-dependent
astrocyte migration. In rat primary cortical neurons (rPCNs)
P2Y2R expression is increased by stimulation with
interleukin-1β (IL-1β), a pro-inflammatory cytokine whose
levels are elevated in AD, in part due to nucleotide-
stimulated release from glial cells. Other results indicate
that oligomeric β-amyloid peptide (Aβ1-42), a contributor
to AD, increases nucleotide release from astrocytes, which
would serve to activate upregulated P2Y2Rs in neurons.
Data with rPCNs suggest that P2Y2R upregulation by IL-
1β and subsequent activation by UTP are neuroprotective,
since this increases the non-amyloidogenic cleavage of
amyloid precursor protein. Furthermore, activation of IL-
1β-upregulated P2Y2Rs in rPCNs increases the phosphor-
ylation of cofilin, a cytoskeletal protein that stabilizes
neurite outgrowths. Thus, activation of pro-inflammatory
P2Y2Rs in glial cells can promote neuroprotective
responses, suggesting that P2Y2Rs represent a novel
pharmacological target in neurodegenerative and other
pro-inflammatory diseases.

Keywords Neurons . Neurodegeneration . Astrocytes .

Growth factor receptors . Inflammation . P2Y2 receptors .

Cofilin . Nucleotides . Proliferation . RGD motif .

SH3 binding domain . Integrins

Introduction

Chronic neuroinflammation, associated with the pathogenesis
and progression of Alzheimer's disease (AD), occurs when
glial cells (i.e., astrocytes and microglia) undergo prolonged
activation in response to oxidative stress. Oxidative stress is
postulated to be an early event in the development of AD
that is due to increased production of reactive oxygen species
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from mitochondria and NADPH oxidase which can modify
lipids, nucleic acids, and proteins [1–9]. Production of
neurotoxic β-amyloid (Aβ) peptides, such as Aβ1-42, also
is a widely accepted contributor to neurodegeneration in AD
[10, 11], and oxidative stress can enhance Aβ production
[12] leading to mitochondrial dysfunction and neuronal
apoptosis [13]. Chronic inflammation occurs around β-
amyloid plaques [14, 15], and has been associated with the
activation by cytokines of receptors in glial cells that
promote neuronal cell death [16–18]. Studies have shown
that inflammation begins as a neuroprotective mechanism,
but becomes neurodegenerative when sustained [19–22].
Chronic neuroinflammation occurs in brain pathologies
including AD, trauma, and stroke and is characterized by
increased glial cell migration and proliferation, and morpho-
logical changes, including extensive cellular hypertrophy,
fiber extension and increased expression of glial fibrillary
acidic protein (GFAP) [23, 24]. In the initial stages, neuro-
inflammation limits brain damage by promoting the clear-
ance of neurotoxic soluble β-amyloid peptide [25, 26].
Activated glial cells migrate to the edge of an injured area
and secrete cytokines, chemokines, and growth factors, and
also upregulate antigens and cell adhesion molecules [27,
28]. Glial cell activation in the central nervous system under
physiological conditions facilitates axonal growth during
development [29]. In adult brain, glial cell activation is
critical for structural plasticity and repair of damaged brain
cells [24]. In the chronic stages, neuroinflammation may
exacerbate neurotoxic effects induced by the formation of
glial-derived amyloid plaques [24–30] that contribute to
neurodegeneration and loss of brain function in AD. Anti-
inflammatory drugs have been shown to alter Aβ deposition
in an animal model of AD [31]. Among the agents that can
contribute to glial cell activation in AD, nucleotides released
from the cytoplasm of oxidatively stressed cells have
garnered little attention despite the fact that multiple
nucleotide receptor subtypes are expressed in glial cells and
neurons. Studies have shown that ATP release due to stretch-
induced injury increases GFAP expression and proliferation
in astrocytes [32], and nucleotides cause responses indicative
of astrogliosis in vivo [33] and in primary rat cortical
astrocyte cultures [34]. Release of nucleotides has been
proposed to occur by exocytosis of ATP/UTP-containing
vesicles, facilitated diffusion by putative ABC transporters,
cytoplasmic leakage, and electrodiffusional movements
through ATP/nucleotide channels [35].

Our studies have shown that the Gq protein-coupled
P2Y2 receptor subtype is an important mediator of neuro-
inflammatory responses mediated by astrocytes. Nucleo-
tides are present at millimolar concentrations in the
cytoplasm and when released activate a variety of P2
nucleotide receptors in the brain that have nanomolar to
micromolar affinities for nucleotides [36]. Therefore, a

small amount of nucleotide released from damaged or
oxidatively-stressed cells can activate P2 receptors [37]. It
has been demonstrated that ATP released from the leading
edge of the cell surface amplifies chemotactic signals and
directs neutrophil orientation by feedback through P2Y2

nucleotide receptors (P2Y2Rs) [38]. Our previous results
indicate that the pro-inflammatory cytokine IL-1β upregu-
lates P2Y2R expression in neurons [39], which can be
activated by released nucleotides (unpublished data). Thus,
the release of nucleotides in the brain is hypothesized to
stimulate the generation of extracellular pro-inflammatory
cytokines by astrocytes and microglial cells that promote
the upregulation of neuronal P2Y2Rs. This review will
discuss our findings relating to the mechanisms underlying
the pro-inflammatory and neuroprotective effects mediated
by P2Y2Rs in astrocytes and neurons and their potential
relationship to the pathophysiology of AD.

The P2 Receptor Family

In the early 1970 s, it was reported that ATP was released
into the extracellular space by stimulation of nonadrenergic,
noncholinergic nerves to activate responses postulated to be
mediated by P2 purinergic receptors for nucleotides [40,
41]. Over the next few decades, it was recognized that
activation of P2 receptors can modulate a variety of
responses in cells of the mammalian central nervous system
(CNS), including neurotransmission, cell growth, and
apoptosis [42–44]. It is now accepted that nucleotides are
released from excitatory neurons, injured cells, cells
undergoing mechanical or oxidative stress, aggregating
platelets, degranulating macrophages, and astrocytes by
exocytosis from ATP/UTP-containing vesicles, facilitated
diffusion, or cytoplasmic leakage [35–38, 45–50]. Extra-
cellular nucleotides activate cell surface P2 receptors
belonging to two structurally distinct families: the G
protein-coupled P2Y receptors (P2YRs) and P2X receptors
(P2XRs) that are ligand-gated ion channels. Eight P2Y
receptor subtypes have been cloned and characterized to
date, including the Gq-coupled P2Y1, P2Y2, P2Y4, P2Y6,
and P2Y11 receptors, and the Gi-coupled P2Y12, P2Y13, and
P2Y14 receptors [51]. Seven P2X receptors have been
cloned and characterized as ligand-gated ion channels,
including P2X1, P2X2, P2X3, P2X4, P2X5, P2X6, and P2X7

receptors [52]. Activation of P2 receptors in neurons and
glia under normal and pathological conditions regulates
pro-inflammatory responses, ion transport, neurotransmis-
sion and cell apoptosis, proliferation, and migration [42–44,
52–54]. Therefore, P2 receptors in the CNS represent
potential targets for pharmaceutical approaches to treat
neurological disorders. Among these P2 receptor subtypes,
our research has focused on the P2Y2R and its signaling
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pathways in the regulation of pro-inflammatory responses
in astrocytes associated with reactive astrogliosis, and
neuroprotective responses associated with neurite growth
and stability and the non-amyloidogenic processing of
amyloid precursor protein (APP).

The P2Y2 Nucleotide Receptor

Activation of the Gq-coupled P2Y2R stimulates phospholi-
pase C (PLC) and leads to the production of inositol 1,4,5-
trisphosphate (IP3) and diacylglycerol (DAG) [54, 55],
second messengers for calcium release from intracellular
storage sites and protein kinase C (PKC) activation,
respectively. Interestingly, we have found that the P2Y2R
by virtue of a Arg-Gly-Asp (RGD) motif in its first
extracellular loop (Fig. 1) can bind to αVβ3/5 integrins

and enable UTP to stimulate Go and G12 proteins leading to
the activation the small GTPases Rac and Rho, respectively
(Fig. 2) [56, 57]. Mutation of the RGD sequence to Arg-
Gly-Glu (RGE), prevents both integrin binding and UTP-
induced activation of Go, G12, Rac and Rho by the mutant
P2Y2R expressed in human 1321N1 astrocytoma cells that
lack endogenous P2Y receptors. In 1321N1 astrocytoma
cells, activation of the wild-type P2Y2R, but not the RGE-
mutant P2Y2R, leads to cytoskeletal rearrangements and
increases in cell migration, suggesting that association with
αVβ3/5 is required for these P2Y2R-mediated responses.
The P2Y2R also contains 2 PXXP motifs in the intracellular
C-terminal domain that represent consensus Src-homology-
3 (SH3) binding sequences (Fig. 1). Activation of the wild
type P2Y2R expressed in 1321N1 astrocytoma cells
induces the phosphorylation of Src and EGFR, responses
that are attenuated for a mutant P2Y2R in which the SH3
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Fig. 1 P2Y2R structure and domains: the P2Y2R is a seven pass
transmembrane G protein-coupled extracellular nucleotide receptor. It
is activated equipotently by ATP and UTP and has been shown to be
upregulated in response to stress or injury in various cell types.
Highlighted features include the consensus RGD integrin-binding

domain (in pink), positively-charged amino acid residues known to be
involved in ATP/UTP binding (in orange), two consensus PXXP SH3
domain binding sites (in yellow), the FLNa binding site, the
intracellular loops that regulate Gq protein binding, and two
glycosylation sites
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binding domains for Src in the intracellular C-terminus of
the P2Y2R have been deleted [58]. Since the activated
P2Y2R co-localizes with EGFR in the plasma membrane
[58], these findings suggest that the previously reported
ability of the P2Y2R to regulate EGFR phosphorylation
[59, 60] is due to Src-dependent recruitment of the P2Y2R
to a signaling complex containing EGFR, thereby inducing
EGFR phosphorylation in response to P2Y2R ligands.
These studies used kinase inhibitors to demonstrate that
P2Y2R-mediated activation of the mitogen-activated pro-
tein kinases ERK1/2, is dependent on the kinase activities
of Src [58] and EGFR [59]. Whereas the activities of
ERK1/2 are important for P2Y2R-mediated cell/astrocyte
proliferation [61], the activity of another MAP kinase, p38,
is important for P2Y2R-mediated upregulation of adhesion
molecules, such as vascular cell adhesion molecule-1
(VCAM-1), which is involved in tight binding of mono-
cytes to endothelial cells [62] and lymphocytes to epithelial
cells [63]. In astrocytic cells, the p38 signaling pathway is
also required for the P2Y2R to inhibit trauma-induced cell
death [64]. Other studies indicate that EGFR signaling
regulates neuronal survival by promoting cortical but not

midbrain astrocyte apoptosis [65], which suggests an
endpoint for P2Y2R activation in the CNS. Additionally,
it has been shown that the P2Y2R interacts directly with
filamin A (FLNa) [66], a crosslinking cytoskeletal mainte-
nance protein [66].

The ability of the P2Y2R to regulate signal transduction
via activation of integrins and growth factor receptors, in
addition to PLC, suggests that P2Y2R activation could have
significant physiological and pathophysiological conse-
quences in a variety of cell types that express the P2Y2R.
P2Y2Rs are expressed in epithelial cells, smooth muscle
cells, endothelial cells, monocytes, macrophages, neutro-
phils, and cardiomyocytes and in brain, heart, kidney, liver,
spleen, placenta, and skeletal muscle tissue [35, 36, 55, 67–
70]. In cells derived from the peripheral and central nervous
systems, P2Y2Rs also are expressed in immortalized
astrocytes, NG108-15 neuroblastoma × glioma hybrid cells,
Schwann cells, dorsal horn and cortical astrocytes, astrocy-
toma cells, rat cortical neurons, microglia and oligoden-
drocytes [37, 54, 71–74]. The P2Y2R subtype is
upregulated in activated thymocytes, in response to pro-
inflammatory cytokines including IL-1β, interferon-γ, and
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Fig. 2 P2Y2 receptor-mediated signal transduction: activation of the
P2Y2 receptor (P2Y2R) is coupled to several intracellular signal
transduction pathways including: a Gq‹-dependent activation of
phospholipase C (PLC) that generates inositol 1,4,5 trisphosphate
(IP3) and diacylglycerol (DAG), second messengers for intracellular
calcium mobilization and protein kinase C activation, respectively; b
Src-mediated transactivation of growth factor receptor phosphoryla-

tion that stimulates mitogen-activated protein kinase cascades to
regulate gene transcription; c association with and activation of αvβ3/
5 integrins that stimulates Rho kinase leading to cofilin phosphory-
lation; and d activation of metalloproteases (i.e., ADAM10/17) to
stimulate the non-amyloidogenic processing of amyloid precursor
protein (APP). Other abbreviations: AA arachidonic acid, PGE2
prostaglandin E2, VCAM-1 vascular cell adhesion molecule-1
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tumor necrosis factor-α, and in animal models of injury or
disease of the salivary gland epithelium or the vasculature
[63, 67, 75–77] and nucleotides have been reported to
activate pro-monocytic cells [78]. For example, placement
of a silicone collar around a rabbit carotid artery upregu-
lates P2Y2R expression in smooth muscle and endothelium
and upon activation of the P2Y2R in vivo promotes intimal
thickening and monocyte infiltration due to increased
smooth muscle cell proliferation and VEGF receptor-2-
dependent upregulation of VCAM-1, respectively [62, 67].
P2Y2R-mediated VCAM-1 expression also promotes lym-
phocyte adherence to salivary epithelial cell monolayers, a
potential consequence of P2Y2R upregulation detected in a
mouse model of Sjögren's syndrome, an autoimmune
exocrinopathy that leads to salivary gland dysfunction
[63, 77]. The P2Y2R agonists ATP and UTP have been
shown to stimulate the adherence of monocytes and
neutrophils to endothelial cell monolayers [62, 79].
P2Y2R activation also regulates the synthesis of superox-
ide, prostaglandins, nitric oxide, and cytokines in response
to the elicitors IFN-γ and LPS [34, 37, 38, 55, 80, 81].

Very few studies have investigated the consequences of
P2Y2R expression in the brain. We utilized in situ
hybridization and reverse transcriptase–polymerase chain
reaction to identify P2Y2R messenger RNA (mRNA)
expression in normal rodent (i.e., rat, mouse, and gerbil)
brain slices, where expression levels were highest in the
hippocampus (i.e., dentate gyrus) and cerebellum [34].
P2Y2R mRNA expression was also detected in rat primary
astrocytes and microglial cells, although rat primary
neurons express very low levels of P2Y2R mRNA [37,
39]. Under non-inflammatory conditions, P2Y2R expres-
sion in neurons and oligodendrocytes is low, therefore,
these cells are unresponsive to UTP [82], unless the
presence of the pro-inflammatory cytokine IL-1β increases
functional expression of the P2Y2R in neurons [39].

P2Y2 Receptors Regulate Neuroinflammatory
Responses

It is well accepted that nucleotides can be released into the
extracellular milieu from aggregating platelets, degranulat-
ing macrophages, excitatory neurons, and injured cells [35,
49, 50]. Under pathophysiological conditions in the brain
and other tissues, extracellular nucleotides can be released
in response to oxidative stress, ischemia, hypoxia or
mechanical stretch [45–50], consistent with the ability of
released ATP and UTP to induce migration [67, 68, 83, 84]
and chemotaxis of microglial cells [85] and primary rat
cortical astrocytes [86]. We have also determined that the
amyloidogenic peptide, oligomeric Aβ42, whose levels are
elevated in Alzheimer’s brain, induces the release of ATP

from mouse primary cortical astrocytes (Fig. 3). Primary rat
cortical astrocytes were isolated from postnatal 2- to 3-day
old rat pups. Briefly, cerebral cortices were cut into very
small pieces and incubated with trypsin-EDTA at 37°C for
7 min. The suspension was filtered through 85 μm nylon
mesh and centrifuged at ∼250 g for 5 min. The cell pellet
was resuspended in DMEM with 10% FBS, 100 IU/ml
penicillin, 100 μg/ml streptomycin and 7.5 μg/ml fungi-
zone, and transferred to T75 culture flasks. Cells were
maintained in an incubator with 5% CO2 at 37°C and the
medium was changed every two days. When cells reach
∼80-90% confluence, flasks were shaken at 225 rpm for 6 h
at room temperature to remove microglial cells. Then, 106

cells were seeded into 12-well plates and cultured for
2 days when ATP release assays were performed. Our
results showed that oligomeric Aβ42 induces the release of
endogenous ATP from rat primary cortical astrocytes
(Fig. 3). The basal release of ATP, determined after
incubation of cells in HEPES buffer supplemented with
200 μM AOPCP, an inhibitor of 5’-nucleotidase, was 7.9,
7.8, 4.2 and 5.9 nmoles/well for 1, 2, 4 and 10 min,
respectively. After stimulation of the cells with oligomeric
Aβ, the endogenous ATP release was14.2, 28.7, 21 and
29.2 nmoles/well, for 1, 2, 4 and 10 min, respectively, and
results compared with controls were significantly different
at 4 and 10 min (p<0.01). Thus, pro-inflammatory
conditions in AD that include oxidative stress and the
increased production of Aβ42 [4–14], are likely to induce
the release of P2Y2R agonists. Once released, these
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agonists will activate P2Y2Rs expressed in astrocytes and
microglial cells to induce integrin-dependent activation of
Rho and Rac to promote glial cell migration, and trans-
activation of growth factor receptors to increase glial cell
proliferation, responses associated with neuroinflammation,
[34, 37, 43, 56–58] (Fig. 4), although nucleotides have been
suggested to exert anti-inflammatory effects in LPS-treated
microglial cells [74].

P2 receptor activation in vascular smooth muscle and
glial cells also has been shown to increase the release of
pro-inflammatory cytokines, including IL-1β and IFNγ
[76, 87, 88]. Since cytokine release is dependent on
metalloprotease activation, we postulate that IL-1β release
from astrocytes is dependent upon P2Y2R-mediated metal-
loprotease activation (see Fig. 2). Consistent with this
hypothesis, P2Y2R activation has been shown to activate

the metalloproteases ADAM10 and ADAM17 in astrocy-
toma cells, primary neurons and salivary epithelial cells
[39, 89].

P2Y2Rs Mediate Neuroprotective APP Processing

The inflammatory cytokine IL-1β whose levels are elevated
in AD [90] has been shown to upregulate functional
expression of the P2Y2R in rat primary cortical neurons
[39]. IL-1β release from astrocytes and microglia has been
shown to be induced by exogenous ATP acting through the
P2X7 receptor, however, the contribution of other P2
purinergic receptors was not excluded [91]. In primary rat
and mouse neuronal cultures, the P2Y2R is expressed at
very low levels (39, unpublished data). However, Il-1β
induces an increase in P2Y2R expression by activating the
NF-κB signaling pathway, since Bay-11-7085, an irrevers-
ible inhibitor of IκB-α phosphorylation and thus NF-κB
activation, decreases IL-1β-induced P2Y2R expression
levels in rat primary cortical neurons [39]. These results
are consistent with the finding that the P2Y2R promoter
contains an NF-κB binding site that regulates P2Y2R
transcription in intestinal epithelial cells [92]. Since the
pro-inflammatory cytokine IL-1β upregulates P2Y2R ex-
pression in neurons, it was somewhat surprising to find that
the P2Y2R serves a potential neuroprotective role by
stimulating the non-amyloidogenic processing of APP
[89] and the activation of cofilin [56], a cytoskeletal actin-
binding protein that is known to promote dendritic spine
growth and stabilization [26, 93–95] (Fig. 5).

Our findings indicate that P2Y2R activation stimulates the
α- and γ-secretase-dependent proteolytic processing of APP
to generate the non-amyloidogenic peptide soluble amyloid
precursor-α (sAPPα) in both astrocytoma cells expressing the
wild type P2Y2R [89] and in primary rat cortical neurons
treated overnight with IL-1β [39]. Production of sAPPα from
APP would be anticipated to decrease the production of
amyloidogenic Aβ peptide, the main component of senile
plaques in the AD brain [96, 97]. APP is either proteolytically
processed by β- and γ-secretases to release Aβ, or by α- and
γ-secretases to produce sAPPα. APP is a transmembrane
glycoprotein that is present in a variety of tissues, but
predominantly in the brain [98]. APP contains an extracellu-
lar N terminus and a short C-terminal region that lies in the
cytoplasm. Within APP, a single membrane-spanning region
of 39-42 amino acids represents Aβ [99, 100]. Proteolytic
cleavage of APP in vivo can occur at the amino terminus of
the Aβ domain (by β-secretase), within the Aβ domain (by
α-secretase), and at the C-terminus of the Aβ domain (by
γ-secretase) [101]. Thus, the ability of the P2Y2R to activate
α-secretase and generate sAPPα, the soluble, non-
amyloidogenic N-terminal fragment (∼100–140 kD) of APP,
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precludes the potential release of amyloidogenic Aβ1-42 from
the same APP molecule. Although not determined in our
studies, it has been reported that the membrane-retained
fragment resulting from sAPPα release undergoes further
cleavage and endocytotic processing [102–104]. The released
sAPPα fragment has been shown to have both neurotrophic
[105] and neuroprotective [106–109] activities, suggesting
that the pro-inflammatory upregulation of P2Y2Rs in neurons
may be beneficial.

PKC-dependent and -independent pathways stimulated
by several G protein-coupled receptors (GPCRs) have been
reported to induce sAPPα release [110–112]. Over-
expression of the human M1 and M3 muscarinic receptors
in HEK293 cells stimulates sAPPα secretion [113].
Subsequently, thrombin, bradykinin, glutamate, and seroto-
nin (5-HT) receptors have been shown to regulate sAPPα
release [114–118]. Other studies indicate that reduction in
Aβ42 is associated with receptor-mediated activation of
sAPPα release [119–121]. We have found that P2Y2R
activation stimulated α-secretase by the furin-dependent

activation of two members of the ADAM (for a disintegrin
and metalloprotease) family [39, 89], ADAM10, the Kuz
enzyme [122] and ADAM17/TACE (tumor necrosis
factor-α converting enzyme), the protease responsible for
releasing TNF-α from the plasma membrane [123]. The
cleavage of pro-IL-1β into mature IL-1β is achieved by a
cysteine protease belonging to the caspase family, the IL-
1β-converting enzyme (ICE), known to be activated by
ATP [124].

P2Y2R-mediated Cytoskeletal Signaling in Primary Rat
Neurons

It has been demonstrated that ATP released from the
leading edge of the neutrophil surface amplifies chemotac-
tic signals and directs cell orientation by activation of the
P2Y2R [38]. Our previous studies indicate that P2Y2R
activation in astrocytoma cells promotes the formation of
actin stress fibers and induces cell migration [56, 57],
although little is known about the effect of P2Y2R
activation on cytoskeletal functions in neurons. We found
that treatment of primary cortical neurons from mice and
rats with IL-1β induced P2Y2R upregulation (39, unpub-
lished data). Subsequent P2Y2R activation with UTP
induces Rho and LIM kinase activation that increases the
phosphorylation of the actin-depolymerization factor cofilin
[56], a response known to promote localized F-actin
expansion and the stabilization of dendritic spines [56, 94,
95, 125, 126]. Since we have found that P2Y2R interaction
with αvβ3/5 integrins mediates cytoskeletal rearrangements
and cell migration in astrocytoma cells via activation of
Rho kinase, we postulate that a similar pathway regulates
cofilin phosphorylation in neurons (Fig. 5). Previous
studies have shown that inhibition of cofilin activation by
expressing a phosphomimetic mutant of cofilin (cof-S3D)
prevented Aβ-induced spine loss [26]. Activation of the
P2Y2R causes dynamic reorganization of the actin cytoskel-
eton in migratory cell types, and our results indicate that the
P2Y2R directly binds FLNa, activates focal adhesion
molecules, and induces the phosphorylation of cofilin,
suggesting that P2Y2Rs utilize these signaling pathways to
regulate actin cytoskeletal rearrangements that promote
dendritic spine growth and stabilization in neurons.

Conclusion

The neuroprotective mechanisms underlying acute inflam-
matory responses in the brain become neurodegenerative
when sustained [19–21], as occurs in brain pathologies
including AD, trauma, and stroke [22]. The ATP and UTP-
activated Gq protein-coupled P2Y2R is expressed in glial
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Fig. 5 P2Y2Rs in neurons: nucleotides released from oxidatively
stressed brain cells activate P2Y2Rs on neurons. P2Y2R activation
induces release of cytokines, which upregulate the expression of the
P2Y2R. Additionally, extracellular nucleotides activate matrix metal-
loproteases to increase production of the non-amyloidogenic APP
fragment, sAPP-α. Activation of the P2Y2R also promotes binding of
FLNa to the C-terminal domain of the receptor and phosphorylation of
cofilin
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cells and regulates a variety of intracellular signal trans-
duction pathways via activation of integrins, growth factor
receptors, and PLC to promote cytoskeletal rearrangements,
cell migration and proliferation, associated with reactive
astrogliosis in the AD brain. In neurons, upregulation of
P2Y2Rs by IL-1β promotes the nucleotide-induced non-
amyloidogenic processing of APP and the phosphorylation
of cofilin, responses that are neuroprotective. Thus, the
P2Y2R may represent a novel target for the prevention of
neuronal damage in AD and related neuroinflammatory
diseases.
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