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Abstract Phospholipases A2 (PLA2s) are a diverse family
of lipolytic enzymes which hydrolyze the acyl bond at the
sn-2 position of glycerophospholipids to produce free fatty
acids and lysophospholipids. These products are precursors
of bioactive eicosanoids and platelet-activating factor
which have been implicated in pathological states of
numerous acute and chronic neurological disorders. To
date, more than 27 isoforms of PLA2 have been found
in the mammalian system which can be classified into
four major categories: secretory PLA2, cytosolic PLA2,
Ca2+-independent PLA2, and platelet-activating factor
acetylhydrolases. Multiple isoforms of PLA2 are found in
the mammalian spinal cord. Under physiological condi-
tions, PLA2s are involved in diverse cellular responses,
including phospholipid digestion and metabolism, host
defense, and signal transduction. However, under patho-
logical situations, increased PLA2 activity, excessive
production of free fatty acids and their metabolites may
lead to the loss of membrane integrity, inflammation,
oxidative stress, and subsequent neuronal injury. There is
emerging evidence that PLA2 plays a key role in the
secondary injury process after traumatic spinal cord injury.

This review outlines the current knowledge of the PLA2 in
the spinal cord with an emphasis being placed on the
possible roles of PLA2 in mediating the secondary SCI.
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Introduction

Phospholipases A2 (PLA2s) are a diverse family of lipolytic
enzymes which hydrolyze the acyl bond at the sn-2 position
of glycerophospholipids to produce free fatty acids and
lysophospholipids (Fig. 1) [1–3]. These products are
precursors of bioactive eicosanoids and platelet-activating
factor (PAF) which are well-known mediators of inflam-
mation and tissue damage implicated in pathological states
of numerous acute and chronic neurological disorders
including spinal cord injury (SCI) [3–6]. The hydrolysis
of membrane phospholipids by PLA2 is a rate-limiting step
for generation of eicosanoids and PAF [3, 7]. Stimulation of
PLA2 is thought to be an important event in production of
lipid inflammatory mediators. Under physiological condi-
tions, PLA2s are involved in diverse cellular responses,
including phospholipid digestion and metabolism, host
defense, and signal transduction. However, in pathological
situations, increased PLA2 activity and excessive produc-
tion of free fatty acids such as arachidonic acid (AA) and
pro-inflammatory mediators such as eicosanoids and PAF,
may lead to the loss of membrane integrity, inflammation,
oxidative stress, and subsequent neuronal injury [2, 3, 5, 8,
9]. This review outlines the current knowledge of the PLA2

in the spinal cord with an emphasis being placed on the
possible role of PLA2 in mediating the secondary injury
after an initial trauma.
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Classification, Structure, and Properties of PLA2

To date, more than 27 isoforms of PLA2s have been found
in the mammalian system which can be classified into four
major categories: secretory PLA2 (sPLA2), cytosolic PLA2

(cPLA2), Ca2+-independent PLA2 (iPLA2), and platelet-
activating factor acetylhydrolases (PAF-AH; Table 1) [1, 2,
10, 11]. sPLA2s, in which ten isozymes have been
identified, have a low molecular mass of about 14–18 kD
and require the presence of submillimolar to millimolar
concentrations of Ca2+ for effective hydrolysis of a
substrate phospholipid without any fatty acid selectivity
[11–14]. They are synthesized intracellularly and then
secreted into the extracellular space and can act extracellu-
larly [15, 16]. sPLA2 binds to two types of cell surface
receptors, namely the N type, identified in neurons, and the
M type, identified in skeletal muscles, of sPLA2 receptors
although this nomenclature is merely academic since

neither receptor is limited to these tissues and the
expression has been shown widely for both types [17].
Members of the cPLA2 have a higher molecular mass (85–
110 kD), selectively hydrolyze phospholipids containing
AA, and require a submicromolar concentration of Ca2+ for
optimal activity [2, 13, 18]. cPLA2s consist of 6 isoforms,
among which cPLA2α plays an essential role in the initiation
of AA metabolism. Intracellular activation of cPLA2α is
tightly regulated by Ca2+ and phosphorylation [11, 18].
iPLA2s, containing seven enzymes, are intracellular enzymes
with higher molecular mass ranging from 28 to 91 kD that
shows no Ca2+ requiring for its activity. iPLA2 is generally
considered as a housekeeping enzyme for the maintenance of
membrane phospholipids [2, 10, 11]. Recent evidence,
however, suggests that iPLA2 may also be involved in the
pathogenesis of childhood neurological disorders [19]. PAF-
AH family represents a unique group of PLA2 that contains
four enzymes exhibiting unusual substrate specificity toward
PAF and/or oxidized phospholipids [2, 10, 11].

PLA2 Isozymes in the Normal Spinal Cord

Multiple isoforms of PLA2s have been found in the
mammalian spinal cord. sPLA2 activity was detected in
the normal rat spinal cord homogenate [20]. Western blot
analysis revealed the presence of sPLA2 IIA and V in the
normal rat spinal cord [20]. mRNAs of sPLA2s IB, IIA,
IIC, and V were also detected in the normal rat spinal cord
[21]. We have recently shown that mRNAs for sPLA2-IB,
IIA, IIC, IIE, V, X, and XIIA were all expressed in the
normal rat spinal cord [22]. Immunohistochemistry and
Western blot analysis confirmed the expression of sPLA2-
IB and IIA in the spinal cord at the protein level [22].
Immunofluorescence double staining revealed that sPLA2-
IB and IIAwere localized to neurons, axons, astrocytes, and
oligodendrocytes [22].

cPLA2 activity was also detected in the cytosolic fraction
of the rat spinal cord [23]. cPLA2 immunoreactivity was
found in the dorsal horn and motor neurons of the rat and
monkey [24] and in the rat spinal cord shown by Western
blot [25]. Lucas et al. [21] reported that cPLA2 activity was
present in the normal rat spinal cord homogenates and
demonstrated that both the mRNA and protein of cPLA2

are expressed in the normal rat spinal cord. Recently, we
confirmed cPLA2 expression in the normal adult rat spinal
cord and defined its cellular localization in neurons and
oligodendrocytes but not in astrocytes [26].

iPLA2 mRNA is constitutively expressed in the human
[27] and rat spinal cords [28]. Recently, Lucas et al. [21]
demonstrated the activity as well as protein and mRNA
expressions of iPLA2 in the normal rat spinal cord using
iPLA2 activity assay, RT-PCR, and Western blot analyses.

Fig. 1 PLA2 mediates the production of lipid mediators. PLA2

hydrolyzes the membrane phospholipids to produce a free fatty acid
such as arachidonic acid (AA) and a lysophospholipid such as
lysophosphatidylcholine (Lyso-PC). AA can give rise to eicosanoids
via cyclooxygenases (COX), 5-lipoxygenase (5-LO), and 15-
lipoxygenase (15-LO) enzymes. Eicosanoids such as thromboxanes
(TX), prostaglandins (PG), and leukotrienes (LT) are potent mediators
of inflammation which can increase vascular permeability and induce
chemotaxis of immune cells. Lipoxin is also an AA-derived lipid
mediator. However, in contrast to above eicosanoids, it has an anti-
inflammatory effect. In addition, platelet-activating factor (PAF) is
biosynthesized from Lyso-PC and acetyl CoA by enzyme Lyso-PC
acetyltransferase. Lyso-PC is a myelinolytic agent and can act as a
chemoattractant for immune cells. PAF is a potent phospholipid
activator and a mediator of many leukocyte functions, including
platelet aggregation, inflammation, and anaphylaxis. 5-HPETE 5-
hydroperoxyeicosatetraenoic acid, PGH2 prostaglandin H2
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PLA2 Isozymes in the Injured Spinal Cord

Acute SCI triggers a secondary injury by multiple biological
processes [29–32]. One such a critical process is the
activation of PLA2 which can result in the hydrolysis of
membrane phospholipids, releasing free fatty acid, genera-
tion of oxygen free radicals, formation of eicosanoids, and
ultimately leading to neuronal death [9, 33, 34].

SCI Induces Increases of PLA2 Metabolites including Free
Fatty Acids, Eicosanoids, and Lipid Peroxides

It has been demonstrated in several experimental SCI
models that the degradation of membrane phospholipids,
along with the generation of free fatty acids, eicosanoids,
and lipid peroxides, increased following SCI [35–39],
suggesting that PLA2 activity increased following SCI.
Phospholipids are main components of the cell mem-

brane that play important roles in maintaining the
structure and function of cell membranes. SCI resulted
in an immediate decrease of total phospholipid content
[37]. During the first minute of compression trauma to the
spinal cord, 10% of the plasmenylethanolamine (PlsEtn)
was lost with an overall loss of 18% found at 30 min after
the injury [40].

One of the first pathophysiological events occurring
following SCI is the release of free fatty acids due to the
activation of PLA2. Within the first few minutes after SCI,
the level of free fatty acids has increased in the gray matter
and later in the white matter to a lesser extent [35, 41]. A
time course study showed that there existed biphasic
increases in the free fatty acid level in the spinal cord
following injury [37]. The first increase occurred within
5 min after SCI which was declined at 30 min. The second
increase occurred at 1 h after SCI, peaked at 24 h, and
remained significantly high at 7 days after SCI [37].

Table 1 A summary of mammalian PLA2 enzymes

Family Group Other name Size (kD) Ca2+

requirement
Catalytic site sn-2 FA

Preference
Spinal cord
localization

Human
chromosome

sPLA2 IB Pancreatic PLA2 14 mM His/Asp dyad No + 12q23-24

IIA Synovial PLA2 14 mM His/Asp dyad No + 1p34-36

IIC 15 mM His/Asp dyad No + 1p34-36

IID 14 mM His/Asp dyad No NRA 1p34-36

IIE 14 mM His/Asp dyad No + 1p34-36

IIF 16 mM His/Asp dyad No NRA 1p34-36

III 55 mM His/Asp dyad No NRA 22q

V 14 mM His/Asp dyad No + 1p34-36

X 14 mM His/Asp dyad No + 16p12-13

XII 19 mM His/Asp dyad No + 4q25

cPLA2 IVA cPLA2α 85 µM Ser/Asp dyad AA + 1q25

IVB cPLA2β 110 µM Ser/Asp dyad To be confirmed NRA 15

IVC cPLA2γ 60 None Ser/Asp dyad To be confirmed NRA 19

IVD cPLA2δ 92-93 µM Ser/Asp dyad To be confirmed NRA 15

IVE cPLA2ε 100 µM Ser/Asp dyad To be confirmed NRA 15

IVF cPLA2ξ 96 µM Ser/Asp dyad To be confirmed NRA 15

iPLA2 VIA1 iPLA2 84-85 None Ser/His/Asp triad No + 22q13.1

VIA2 iPLA2β 88-90 None Ser/His/Asp triad No + 22q13.1

VIB iPLA2γ 88-91 None Ser/His/Asp triad No NRA 7q31

VIC iPLA2δ 146 None Ser/His/Asp triad No NRA NRA

VID iPLA2ε 53 None Ser/His/Asp triad No NRA NRA

VIE iPLA2ξ 57 None Ser/His/Asp triad No NRA NRA

VIF iPLA2η 28 None Ser/His/Asp triad No NRA NRA

PAF-AH VIIA Plasma PAF-AH 45 None Ser/His/Asp triad Acetate NRA N.D.

VIIB PAF-AH II 40 None Ser/His/Asp triad Acetate NRA N.D.

VIIIA PAF-AH-Iα1 (Ib) 26 None Ser/His/Asp triad Acetate NRA N.D.

VIIIB PAF-AH-Iα2 (Ib) 26 None Ser/His/Asp triad No NRA 11q23

ND not determined, NRA no report available, SC spinal cord. Adopted from Liu et al. [83] with modifications
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Hydrolysis of membrane phospholipids by PLA2 is a
rate-limiting step for generation of pro-inflammatory
eicosanoids and PAF [3, 7]. Following SCI, eicosanoids
such as thromboxane A2 and prostaglandin E2 (PGE2),
metabolites of PLA2, increased in the injured cord tissue
within a few minutes after SCI, and persisted at signifi-
cantly high levels for 72 h after injury [42, 43]. These
eicosanoids and PAF are key mediators of tissue damage
and cell death following SCI.

SCI Induces Increased PLA2 Activity and Expression

Following a contusive SCI in adult rats, PLA2 activity
increased significantly which was peaked at 4 h post-injury
and remained at a significant high level at 7 days [26]. The
expression of cPLA2, an important PLA2 isotype, was also
increased and peaked at 3 and 7 days post-injury [26].
Immunohistochemical studies revealed that cPLA2 immuno-
reactivity was markedly increased in both the injured gray
and white matter at 7 days after injury [26]. Immunofluo-
rescence double labeling demonstrated that increased level of
cPLA2 was localized in neurons, swollen axons, oligoden-
drocytes, and a subpopulation of microglia [26].

In addition to cPLA2, increased expression of a subset of
sPLA2 was found following SCI [22]. In this study,
expression of ten sPLA2 mRNAs including sPLA2-IB,
IIA, IIC, IID, IIE, IIF, III, V, X, and XIIA at 4 h after SCI
was studied. Among them, seven were detected in naïve
and spinal cord contused animals (sPLA2-IB, IIA, IIC, IIE,
V, X, and XIIA). Among these expressed sPLA2 isoforms,
sPLA2-IIA showed the most dramatic increase after SCI.
Increased expression of sPLA2-IIE mRNA was also found
in the injured cord in a similar pattern. In contrast, sPLA2-X
showed a decrease in signal intensity. No significant
difference was found in expression patterns of sPLA2-IB,
IIC, V, and XIIA mRNAs between the sham and SCI
groups. Real-time qRT-PCR revealed that sPLA2-IIA
mRNA expression had a significant fourfold increase at
1 h following contusion and remained highly elevated at
4 h after SCI [22]. Weston blot confirmed an increase in the
expression of sPLA2-IIA and IIE after SCI [22]. Immuno-
histochemistry showed that significantly more immunore-
activity of IIA and IIE was found in the injured cord at 4 h
after SCI as compared to the sham control [22]. Finally,
immunofluorescence double labeling revealed that sPLA2-
IIA was localized in neurons, axons, oligodendrocytes,
astrocytes, and some myelin rings [22]. Thus, sPLA2

isoforms are differentially expressed following SCI and
are localized in both neurons and glial cells. Localization of
specific sPLA2 isoforms such as sPLA2IIA in neurons and
oligodendrocytes indicate that these molecules may play
important roles in mediating neuronal and oligodendrocyte
cell death following spinal cord injury.

PLA2 Activation is Induced by Several Toxic Factors
including Inflammatory Cytokines, Free Radicals,
and Excitatory Amino Acids Generated in the Injured
Spinal Cord

Although increased activity and expression of PLA2s after
SCI was observed, the mechanism(s) by which they
increase remains unclear. Recent studies showed that
PLA2 activity and/or expression could be induced by
several toxic factors such as inflammatory cytokines [2,
44], free radicals [45, 46], and excitatory amino acids [47–
49]. All of these injury mediators were demonstrated to
increase in the spinal cord following injury. It is therefore
possible that PLA2 may serve as a converging molecule that
mediates the pathogenesis of these different injury mecha-
nisms associated with spinal cord secondary injury [29–31].

Increased PLA2 Results in Spinal Cord Tissue Damage
and Behavioral Impairment

Increasing evidence suggests that PLA2 and their metabolites
may mediate inflammation, oxidation, and neurotoxicity
following SCI. In vitro experiments showed that both
PLA2 and melittin, an activator of endogenous PLA2,
induced spinal neuronal death in a dose-dependent manner,
an effect that could be substantially reversed by mepacrine, a
PLA2 inhibitor [26]. When PLA2 was directly microinjected
into the normal rat spinal cord, it induced tissue damage,
demyelination, and sustained impairment in motor function.
Such PLA2-induced demyelination, however, could be
effectively attenuated with mepacrine, a PLA2 inhibitor
[26]. Injections of PLA2 also induced the expression of
inflammatory cytokines TNF-α and IL-1β, as well as 4-
HNE, a product of lipid peroxidation and a marker for
oxygen free radical-mediated membrane injury [26]. PLA2

has also been reported to mediate myelin breakdown and
axonal degeneration [50].

In vitro experiments also showed that sPLA2 induced
spinal oligodendrocyte death in a dose-dependent manner
[22]. Low levels of exogenously added sPLA2-IIA (0.01
and 0.1 µM) result in a loss of processes extending from the
soma and at higher dose (2 µM) triggers a complete loss of
process and cell death. In contrast, 2 µM of sPLA2-IIA had
no effect on cultured Schwann cells and astrocytes,
suggesting a specific sensitivity of oligodendrocytes to
sPLA2-IIA. In addition, sPLA2-IIA mediates H2O2, IL-1β,
and TNFα-induced oligodendrocyte cell death [22].

Annexin A1 (ANXA1) is an endogenous nonselective
inhibitor of PLA2. Our experiment showed that administra-
tion of ANXA1 inhibited SCI-induced increases in PLA2

and myeloperoxidase activities [51]. In addition, ANXA1
administration reduced the expression of interleukin-1β and
activated caspase-3 at 24 h post-injury and glial fibrillary
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acidic protein at 4 weeks post-injury [51]. Furthermore,
ANXA1 administration significantly reversed PLA2-induced
spinal cord neuronal death in vitro and reduced tissue
damage and increased white matter sparing in vivo,
compared to the vehicle-treated controls [51]. Fluoro-Gold
retrograde tracing showed that ANXA1 administration
protected axons of long descending pathways at 6 weeks
post-SCI [51]. ANXA1 administration also significantly
increased the number of animals that responded to trans-
cranial magnetic motor-evoked potentials [51].

A recent study showed that intravenous administration of
arachidonyl trifluoromethyl ketone (AACOCF3; 7.13 mg/kg),
a cPLA2 inhibitor, at 30 min after SCI significantly
increased the number of surviving neurons and oligoden-
drocytes at 7 days post-SCI as well as improved behavior
recovery [52]. This finding suggests that PLA2 activation
plays a critical role in mediating secondary SCI.

Increased Metabolites of PLA2 Result in Neurotoxicity
and Demyelination

Metabolism of free fatty acid represents a source of reactive
oxygen species (ROS). Generation of free fatty acids in SCI
is closely associated with increases in free radical formation
observed in the lesioned region of injured spinal cord [53,
54]. Several studies showed that free fatty acids activated
NADPH oxidase, a key enzyme mediating ROS production
[46, 55–57]. Application of pathophysiological concentra-
tions of free fatty acids has been demonstrated in vitro to
induce oxidative injury to spinal cord cell cultures [58].
Low concentrations of free fatty acid, AA, support cultured
neurons to survive whereas higher concentrations are
neurotoxic [59]. Neurotoxic effects of AA have also been
observed in hippocampal neurons and cortical neurons [59,
60] as well as oligodendrocytes [61].

The bioactive eicosanoids such as thromboxanes, pros-
taglandins, and leukotrienes from AA, induced by PLA2,
have been implicated as mediators of secondary injury via a
host of mechanisms [62, 63]. For example, thromboxane A2

stimulates platelet aggregation and vasoconstriction. PGE2

and leukotrienes B4 (LTB4) increases vascular permeability.
LTB4 also is a potent stimulator of polymorphonuclear
leukocyte chemokinesis and chemotaxis.

In contrast to the above-mentioned eicosanoids, another
AA-derived lipid mediator, lipoxin, has been shown to
have an anti-inflammatory effect through modulating key
steps in leukocyte trafficking [64]. However, changes of
lipoxins and its possible role following SCI remain to be
determined.

Lysophosphatidylcholine (Lyso-PC) and PAF are also
metabolic products mediated by PLA2. Injection of Lyso-
PC into the spinal cord causes demyelination as well as
expression of a number of chemokines and cytokines [65,

66], which occurred in the injured cord after SCI. PAF
levels have been shown to increase 20-fold after spinal cord
injury induced by stroke [67]. Intrathecal administration of
PAF leads to reduced spinal cord blood flow and motor
deficits, an effect which can be blocked by the PAF
receptor antagonist, WEB 2170 [68]. Treatment with
WEB 2170 after acute spinal cord contusion resulted in
significant increases in white matter sparing as well as
decreases in pro-inflammatory cytokine mRNA levels
within the lesion epicenter [69, 70]. Treatment of a PAF
receptor antagonist BN52021 also improves behavioral
recovery after SCI [71]. In vitro experiments showed that
low concentrations of PAF resulted in neuronal differenti-
ation and sprouting, while higher concentrations were
neurotoxic [72]. PAF not only induced neuronal death in a
dose-dependent manner in vitro [73, 74] but also death of
oligodendrocytes and astrocytes [69].

PLA2 Mediates Excytotoxic Neuronal Death and Tissue
Damage

It has been shown that the release of high levels of
excitatory amino acids (EAA) such as glutamate and
aspartate in experimental SCI is an important mechanism
of secondary injury [30]. Growing evidence suggests that
PLA2 mediates EAA-induced neuronal death and tissue
damage. Marked increases in PLA2 activity and AA release
have been reported after treatments of neuronal cultures
with glutamate, N-methyl-D-aspartate (NMDA), and kainic
acid (KA) [47, 75, 76]. This increased PLA2 activity can be
inhibited by a PLA2 inhibitor, mepacrine as well as a KA/
AMPA receptor antagonist, CNQX [76]. Recently, phos-
phorylated cPLA2 expression and AA release have been
reported to increase in cultured primary neurons after
NMDA stimulation [77]. The NMDA-induced AA release
was inhibited by a cPLA2 inhibitor methyl arachidonyl
fluorophosphonate and a NADPH oxidase-ROS pathway
has been demonstrated to mediate NMDA-induced cPLA2

phosphorylation [77]. It has been hypothesized that the
glutamate release triggers a sequence of events including
NMDA receptor activation, increases of intracellular Ca2+,
activation of PLA2, and eventually neuronal death [49]. It
has been shown that glutamate release in the spinal cord
can be suppressed by PLA2 inhibitors such as indomethacin
by 40%, AACOCF3 by 45%, and 4-bromophenacyl
bromide by 36%, suggesting that PLA2-induced EAA
release mediates the pathogenesis of secondary injury in a
positive feedback manner [78]. Thus, excessive stimulation
of NMDA receptors, as occurs in the spinal cord trauma,
may result in stimulation of PLA2 activity leading to
alterations in membrane composition, permeability, and
fluidity which could cause neuronal and glial death. Indeed,
in vivo and in vitro experiments showed that exogenous
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administration of PLA2 induced neuronal death and tissue
damage [79–81].

Possible Mechanisms of PLA2 Action after Spinal Cord
Injury

To date, mechanisms underlying PLA2-mediated SCI
remain unclear. Several hypotheses, however, have been
proposed to interpret PLA2-mediated injury. These
possible mechanisms include the effect of PLA2 on
membrane damage, release of pro-inflammatory media-
tors, generation of free radicals, release of excitotoxic
neurotransmitters, and enhancement of apoptosis (Fig. 2)
[3, 49, 63, 82, 83].

Injury to the neural membrane can be a result of PLA2’s
direct action. Phospholipids are the main components of a
neural cell bi-layer membrane. They not only constitute the
backbone of neural membrane, but also provide the
membrane with suitable environment, fluidity, and ion
permeability, which are required for the proper function of
integral membrane proteins, receptors, and ion channels.
PLA2 activation induces phospholipid degradation and
membrane breakdown directly through hydrolysis of neural
membrane phospholipids, resulting in alteration of mem-
brane function such as fluidity and permeability, behavior
of transporters and receptors, ion homeostasis, and eventu-
ally leading to functional failure of excitable membranes [3,
49, 84]. Once the neural membranes are destroyed, the
functional loss may become irreversible.

Induction of abnormally high levels of PLA2 metabolites
could be another indirect mechanism of PLA2-mediated
injury. PLA2 metabolites mediate inflammation, oxidation,
and neurotoxicity following SCI. For example, metabolism
of free fatty acids represents a source of ROS. A number of
studies showed that free fatty acids activated NADPH
oxidase, a key enzyme of ROS production [46, 55–57].
Application of pathophysiological concentrations of free
fatty acids has been demonstrated to induce oxidative injury
to spinal cord cell cultures [58]. In addition, several well-
known bioactive mediators of inflammation such as
eicosanoids (prostaglandins, thromboxanes, leukotrienes,
and lipoxins) and PAF induced by PLA2 have been
implicated as mediators of secondary injury [62, 63, 68–
71].

PLA2 could also mediate damage induced by EAA.
Application of PLA2 to the rat ischemic cerebral cortex
resulted in a significant increase in EAA levels and a PLA2

inhibitor mepacrine significantly decreased the ischemia-
evoked efflux of EAA into cortical superfusates, suggesting
the involvement of PLA2 in EAA release [82]. The release
of high levels of EAAs is an important mechanism of
secondary injury after acute SCI [30].

Increasing evidence suggests the involvement of multiple
isoforms of PLA2 in apoptosis, which has been identified as
an important mechanism of cell death in many neurological
disorders including SCI [85–87]

In summary, PLA2 can be activated by several key injury
mediators such as inflammatory cytokines, free radicals,
and excitatory amino acids that have been shown to
increase following traumatic SCI. Increased PLA2 activity
can in turn hydrolyze neural membrane and further increase
inflammation, oxidation, and excitatory amino acid release.
This indicates that PLA2 activation may play a central role
in this positive feedback loop triggered by traumatic SCI.
Such activation may eventually lead to neuronal and glial
cell death, tissue damage, and electrophysiological and
behavioral impairments. Thus, PLA2 may act as a conver-
gence molecule that mediates multiple injury mechanisms
after SCI and blocking PLA2 action may represent a novel
and efficient strategy to block multiple injury pathways that
occur following SCI.

Fig. 2 Possible mechanisms underlying PLA2-mediated secondary
spinal cord injury. Acute traumatic SCI triggers a secondary injury
process mediated by multiple injury inducers including inflammatory
cytokines, free radicals, and excitatory amino acids; all these inducers
may activate PLA2. Over-activation of PLA2 may enhance membrane
phospholipid hydrolysis, arachidonic acid release, oxygen free radical
generation, eicosanoids production, and ultimately lead to neuronal death
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