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Abstract It is widely known that new neurons are
continuously generated in the dentate gyrus of the hippo-
campus in the adult mammalian brain. This neurogenesis
has been implicated in depression and antidepressant
treatments. Recent evidence also suggests that the dentate
gyrus is involved in the neuropathology and pathophysiol-
ogy of schizophrenia and other related psychiatric disor-
ders. Especially, abnormal neuronal development in the
dentate gyrus may be a plausible risk factor for the diseases.
The synapse made by the mossy fiber, the output fiber of
the dentate gyrus, plays a critical role in regulating neuronal
activity in its target CA3 area. The mossy fiber synapse is
characterized by remarkable activity-dependent short-term
synaptic plasticity that is established during the postnatal
development and is supposed to be central to the functional
role of the mossy fiber. Any defects, including develop-
mental abnormalities, in the dentate gyrus and drugs acting
on the dentate gyrus can modulate the mossy fiber-CA3
synaptic transmission, which may eventually affect hippo-
campal functions. In this paper, I review recent evidence for
involvement of the dentate gyrus and mossy fiber synapse
in psychiatric disorders and discuss potential importance of
drugs targeting the mossy fiber synapse either directly or
indirectly in the therapeutic treatments of psychiatric
disorders.
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Introduction

The hippocampus has been implicated in the neuropathol-
ogy of psychiatric disorders. Magnetic resonance imaging
(MRI) studies have consistently demonstrated a reduction
in the hippocampus volume in patients with psychiatric
disorders [1–3] and functional MRI studies have shown
changes in the hippocampal activity that are associated with
symptoms of psychiatric disorders [4, 5]. Histological
studies on the postmortem brain have revealed changes in
expression of various genes in the hippocampus of the
patients (see Table 1). These studies in humans have
provided valuable information as to potential molecular
targets for the treatment of the diseases and would also help
develop an objective way to elucidate effects of ongoing
treatments on the hippocampus. However, it is still poorly
understood how functions of the hippocampal neurons are
actually altered in the brain of patients with psychiatric
disorders. In order to investigate cellular mechanisms
underlying a particular disease, detailed studies using
animal models would be indispensable. Despite fundamen-
tal difficulties in modeling abnormalities of human mind
using experimental animals, biological approaches to
psychiatric disorders that utilize animal models are getting
generally accepted. In conventional pharmacological
approaches, psychotropic drugs used in humans are
administered to experimental animals assuming that drug-
induced cellular and/or molecular changes in animal brains
would be comparable to those in human brains. Accumu-
lating evidence suggests that mice with the targeted
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mutation in disease-associated genes would be valuable
models for psychiatric disorders [6]. The validity of the
mutant mouse model is best exemplified by the finding of
association of the gene encoding a subunit of calcineurin
with schizophrenia. In this case, the association was
predicted based on behavioral characterization of calci-
neurin mutant mice [7, 8] and confirmed by human genetic

studies [9–11]. Recent studies using experimental animals
have proposed the critical importance of the dentate gyrus
and its output, the mossy fiber, in the pathophysiology and
treatment for psychiatric disorders. Especially, there is an
emerging possibility that abnormalities in the functional
maturation of the dentate gyrus and mossy fiber synaptic
transmission are critically involved in schizophrenia and

Table 1 Abnormalities in the dentate gyrus and mossy fiber observed in the postmortem brain of patients with schizophrenia

Reference

Abnormalities in dentate gyrus

Morphology Increased frequency of dentate granule cells with basal dendrites [149]

Neurotransmitter receptor
Glutamate Decrease in [3H]kainate binding [115]

Decreases in AMPA receptor subunit GluR1 and GluR2 mRNAs (no significant change in CA1) [116]
Decrease in kainate receptor subunits GluR6 and KA2 mRNAs (no significant change in CA1) [117]
Decrease in NMDAR receptor subunit NR1mRNAs (no significant change in CA1) [118, 120]

Acetylcholine Decrease in [125l]-α-bungarotoxin (nicotinic ligand) binding (no significant change in CA1) [121]
Decrease in [3H]pirenzepine (muscarinic ligand) binding [122]

GABA Increase in [3H]muscimol (GABAA ligand) binding [113]
Decrease in GABAB immunoreactive cells [119]

Noradrenaline Decrease in [125I]iodopindolol (βreceptor ligand) binding [114]

Hormone receptor Decrease in glucocorticoid receptor mRNA [191]
Decrease in estrogen receptor α mRNA (dentate gyrus-specific change) [192]

Presynaptic protein Decrease in synaptophysin immunoreactivity (no significant change in CA1) [123]
Increase in synaptophysin immunoreactivity [124]
Decrease in SNAP-25 immunoreactivity [124]

Neurodevelopment/Plasticity Decrease in PSA-NCAM immunoreactive cell in hilus [193]
Decrease in [3H]forskolin (adenylate cyclase ligand) binding (dentate gyrus-specific change) [194]
Decrease in density of reelin immunoreactive cells [136]
Increase in retinoic acid receptor α immunoreactive granule cells [138]
Decrease in calbindin mRNA (laser captured dentate gyrus) [125]
Decrease in reelin mRNA-expressing molecular layer cells [137]
Decrease in cells with proliferation maker Ki-67 immunoreactivity [75]
Decrease in GAP-43 immunoreactivity in hilus [195]

Other Decrease in dysbindin-1 immunoreactivity [135]
Decreases in proteasome, ubiquitin, and mitochondrial gene expression (laser captured
dentate gyrus)

[125]

Decrease in dysbindin-1 mRNA (no significant change in CA1) [129]

Abnormalities in mossy fiber
Decrease in Timm staining [196]
Decrease in chromogranin B and synapsin I immunoreactivity [128]
Decrease in dysbindin-1 immunoreactivity [135]
Change in synaptic structure [126]
Decrease in density of MF terminals [127]
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other related psychiatric disorders. It should be noted that
this idea is partly based on observations in electrophysio-
logical studies that revealed unique properties of the mossy
fiber synapse and marked dysfunction of this synapse
relevant to psychiatric disorders. In this paper, I review
recent studies addressing the involvement of the dentate
gyrus and mossy fiber in psychiatric disorders, mainly
focusing on evidence derived from experimental animals. I
start with a summary of physiological properties of the
mossy fiber synapse, and discuss why dysfunction of
mossy fiber can substantially affect hippocampal functions
and how pharmacological treatments can modify the mossy
fiber synaptic transmission.

Unique Role for Mossy Fibers in Hippocampal Neuronal
Circuit

The hippocampal neuronal circuit is comprised of anatomi-
cally distinct three major areas connected by glutamatergic
excitatory synapses. The dentate gyrus is positioned at the
entrance of this so-called trisynaptic circuit and has been
implicated in pattern separation or disambiguation of similar
patterns of sensory inputs [12–15]. The principal neurons of
the dentate gyrus, the granule cells, have relatively low in
vivo firing rates [16], which may be at least partly due to
very polarized resting membrane potentials of these cells
[17–20]. The axons of the granule cells, the mossy fibers,
form large synaptic terminals, typically 3 to 5 μm in
diameter, preferentially at the proximal apical dendrite of
pyramidal cells in the CA3 region [21]. Based on the
anatomical feature, the mossy fiber synapse has been
theoretically hypothesized to be a “detonator” or “teacher”
synapse in the CA3 network [22, 23]. This theoretical
prediction was confirmed by later experimental studies, but
in a slightly modified form (see below).

The mossy fiber-CA3 pyramidal cell synapse has unique
physiological properties. The mossy fiber synaptic trans-
mission has a very wide dynamic range and is strongly
dependent on the presynaptic firing rate [24–26]. For
example, a rise in the stimulus frequency from 0.1 or 0.05
to 1 Hz leads to an increase in the synaptic efficacy by
500% to 700% [20, 24, 27]. Activity-dependent short-term
modifications of synaptic efficacy are called short-term
synaptic plasticity and are mostly dependent on presynaptic
mechanisms [28]. Although the short-term plasticity is
generally observed in a form of either facilitation (enhance-
ment) or depression, the magnitude of the mossy fiber
synaptic facilitation, especially, the frequency facilitation
described above, is exceptionally large. Due to this
frequency dependence of the transmission efficacy, the
mossy fiber synapse can work as a high-pass filter. Indeed,
Henze et al. showed that high-frequency stimulation of the
granule cells in vivo reliably evokes spiking in postsynaptic

CA3 neurons, but single spikes or low-frequency stimulation
is much less effective [29]. Importantly, high-frequency
activation of even single granule cells is sufficient for firing
postsynaptic cells [29]. Furthermore, in slice preparations,
activation of putative single granule cells in high-frequency
bursts provides effective postsynaptic activity for the
induction of long-term potentiation (LTP) at converging
non-mossy fiber inputs [30]. Therefore, the mossy fiber
input can serve as a “conditional detonator” that has strong
impact on activity of postsynaptic cells only during high-
frequency transmission [29]. Collaterals of the mossy fibers
make synaptic contacts on neurons in the hilar region [31,
32]. The hilar neurons include inhibitory interneurons and
the excitatory mossy cells, which innervate the granule cells
and interneurons [33, 34]. The mossy fiber-mossy cell
synapse also shows large frequency facilitation and is
generally similar to the mossy fiber-CA3 pyramidal cell
synapse [35]. The magnitude of the frequency facilitation at
the mossy fiber-CA3 synapse increases with postnatal
development and reaches the adult level in 3 to 4 weeks
[27]. The somatic properties of the granule cells also
change with development. Immature granule cells are more
easily excited by somatic current injection than mature
granule cells. However, repetitive spiking can be evoked in
mature granule cell, but not in immature cells [18, 19].
Therefore, the dentate-to-CA3 neuronal system develops
into the mature state that is suitable for transmitting high-
frequency signaling (Fig. 1).

Long-term plasticity has also been demonstrated at the
mossy fiber synapse. In most excitatory synapses in the
hippocampus, the induction of long-term synaptic plasticity
requires coincident pre- and postsynaptic activities and the

Fig. 1 Developmental changes in physiological properties of the
granule cell soma and mossy fiber synapse. Immature granule cells are
more easily excited than mature cells by somatic current injection
(top). However, sustained current injection can evoke repetitive action
potentials in mature granule cell, but not in immature cells (middle).
The frequency facilitation of the mossy fiber synaptic transmission
increases with development (bottom). Therefore, mature granule cells
can much more effectively transmit high-frequency signaling than
immature granule cells
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resultant activation of N-methyl-D-aspartate (NMDA) sub-
types of glutamate receptors [36]. However, at the mossy
fiber synapse, neither NMDA receptors nor postsynaptic
depolarization is required for LTP [37–40; but see 41–43]
or long-term depression [24, 44; but see 45]. Therefore,
presynaptic firing patterns primarily regulate the efficacy of
the mossy fiber synapse in both short and long terms.

The mossy fiber synaptic transmission is also regulated
by various neurotransmitters. Glutamate autoreceptors play
a variety of roles in both short- and long-term plasticity
[46–48; reviewed by 49]. Endogenous opioids can be
released from mossy fiber terminals during high-frequency
firing and regulate the induction of mossy fiber LTP [50].
This opioid-mediated modulation is impaired after chronic
morphine treatments [51]. Ambient adenosine has been
shown to continuously and strongly inhibit the mossy fiber
synaptic transmission. In the absence of the adenosine-
mediated tonic inhibition, the synaptic efficacy is greatly
increased and the short-term plasticity is suppressed [52;
but see 53]. Therefore, a change in extracellular adenosine
concentrations in pathological conditions such as ischemia
and epilepsy [54] would substantially affect the mossy fiber
synaptic transmission and the CA3 circuit activity. The
mossy fibers transmit sub-threshold “analog” signals as
well as action potentials [55]. Since the sub-threshold
depolarization in the granule cell soma can enhance the
action potential-mediated transmitter release from the
mossy fiber terminals [55], modulations of the somatoden-
dritic membrane conductance, such as tonic inhibition by
γ-aminobutylic acid [56], would be also important in
regulating the mossy fiber synaptic transmission. Recently,
it has been demonstrated that the mossy fiber synaptic
transmission is potentiated by dopamine [57, 58] and
serotonin [59]. Noradrenaline has been shown to modulate
the induction of LTP without affecting the basal transmis-
sion [60]. The serotonergic modulation of the mossy fiber
synapse is a plausible target for antidepressant drugs (see
below). It should be noted that all these monoaminergic
modulations of the mossy fiber synapse are mediated by
activation of Gs-coupled receptors. The mossy fiber
synapse is highly sensitive to intracellular cAMP concen-
trations. An adenylate cyclase activator, forskolin, induces
marked potentiation of the synaptic transmission [58, 59,
61], and an inhibitor of phosphodiesterase that catalyzes
cAMP hydrolysis augments the synaptic transmission and
the monoaminergic modulations [58, 59]. Cyclic AMP
signaling pathways have been implicated in antidepressant
and ntipsychotic effects. Phosphodiesterase inhibitors have
been shown to have antidepressant-like [62] and antipsy-
chotic-like effects [63, 64]. The intracellular pathways as
well as the receptors involved in the mossy fiber synaptic
modulations would be potential targets for treatments of
psychiatric disorders.

Effects of Antidepressants on Dentate Gyrus and Mossy
Fiber Synapse

It is generally accepted that new neurons are continuously
generated in the dentate gyrus of the adult brain. The adult
neurogenesis has been demonstrated in various mammalian
species including humans [reviewed by 65]. Newly
generated neurons can be functionally integrated into the
existing neuronal circuits [66–68]. In experimental animals,
the adult neurogenesis in the dentate gyrus is increased by
chronic administration of antidepressant drugs including
tricyclic antidepressant drugs, selective serotonin reuptake
inhibitors (SSRIs), and monoamine oxidase inhibitors [69–
71]. Electroconvulsive stimulation (ECS), an experimental
model of electroconvulsive therapy for depression, also
increases the adult neurogenesis [69]. Chronic treatment
with fluoxetine, a widely used SSRI, can stimulate the
maturation of newly generated neurons [72]. Since various
forms of stress can depress the adult neurogenesis, it has
been hypothesized that the adult neurogenesis is involved
both in the pathogenesis of depression and in antidepressant
effects [reviewed by 73]. Indeed, ablation of the prolifer-
ation of neuronal progenitor cells in the adult hippocampus
by x-irradiation prevents behavioral effects of antidepres-
sant drugs [70, 71, 74]. However, x-irradiation itself neither
increased depression-related behaviors nor affected stress-
induced changes in behaviors. Furthermore, x-irradiation
does not prevent antidepressant-like effects of a corticotro-
pin-releasing factor 1 antagonist or a vasopressin 1b
antagonist [74]. Therefore, the intact cytogenesis in the
dentate gyrus does not seem to be essential for depression-
related behaviors themselves, but is likely required for
some of the behavioral effects of antidepressant drugs.
Although the facilitatory effects of antidepressants on the
adult neurogenesis have been consistently demonstrated in
animal studies, so far there has been no clear evidence for
the involvement of the neurogenesis in either depression or
antidepressant actions in humans [75].

Antidepressant treatments generally increase mRNA
levels of brain-derived neurotrophic factor (BDNF) in the
hippocampus [reviewed by 76]. BDNF is abundantly
expressed in the dentate gyrus and along the mossy fiber
pathway [77, 78]. A recent study demonstrated that the
selective deletion of BDNF in the dentate gyrus suppresses
behavioral effects of subchronic antidepressant treatments
[79], further supporting the importance of the dentate gyrus
in antidepressant effects. In the postmortem human brain,
an increase in BDNF protein levels was found in the
dentate gyrus of subjects treated with antidepressant
medications at the time of death, compared with antide-
pressant-untreated subjects [80]. In experimental animals,
ECS consistently increases BDNF protein as well as mRNA
levels [81–83]. However, after pharmacological antidepres-
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sant treatments, hippocampal BDNF protein levels are not
significantly changed [81, 83, 84], decreased [82], or
increased only in the hippocampus proper, but not in the
dentate gyrus [85]. Interpretation of these results are further
complicated by the fact that proBDNF, from which mature
BDNF was processed, can also be secreted and work as a
signaling molecule with distinct actions [86–88]. In order to
understand a role for BDNF in antidepressant actions,
changes in protein levels of both mature and proBDNF
after antidepressant treatments have to be elucidated.

Given the importance of the dentate gyrus in antide-
pressants actions, one might expect that antidepressant
treatments also affect the mossy fiber system. However, so
far only a few studies have addressed this issue. Repeated
ECS induces sprouting of mossy fibers [89–91], but
antidepressant drug treatments do not [91]. The ability of
ECS to induce mossy fiber sprouting might be related to the
superiority of the electroconvulsive therapy in effectiveness
against depression as compared with antidepressant drugs
[92]. However, the clinical significance of the ECS-induced
sprouting remains to be elucidated. Recently, Kobayashi et
al. showed that chronic administration of fluoxetine causes
robust changes in the serotonergic modulation of the mossy
fiber synaptic transmission in mice [59]. Serotonin (5-
hydroxytriptamine (5-HT)) potentiates the mossy fiber
synaptic transmission via activation of 5-HT4 receptors.
Chronic fluoxetine reduced the synaptic potentiation in-
duced by higher concentrations of 5-HT but enhanced that
induced at lower concentrations, which represents the
stabilization of the serotonergic modulation (see Fig. 2).
The reduction and enhancement of the serotonergic mod-
ulation by chronic fluoxetine could be explained by
downregulation of the 5-HT transporter and by desensiti-
zation/downregulation of 5-HT4 receptors or downstream

effectors, respectively. Chronic antidepressant treatments
reduce effects of a synthetic 5-HT4 agonist on excitability
of hippocampal pyramidal cells [93, 94]. The desensitiza-
tion or downregulation of 5-HT receptors by antidepressant
treatments has been demonstrated in other brain regions
both in experimental animals and humans [reviewed by 95,
96]. The downregulation of the serotonin transporter after
chronic SSRI treatments can be seen in whole brain regions
[97, 98]. Therefore, it is possible that the bidirectional
modulation or stabilization of the serotonergic modulation
can be generally induced by chronic SSRI treatments.
While the clinical significance of the stabilizing action is
unknown, the effect of chronic fluoxetine on the mossy
fiber synapse is associated with reduced locomotor activity
of mice in novel environments [59], suggesting that the
stabilization can contribute to the suppression of excess
reactivity to external stimuli.

The serotonergic stabilizing effects of chronic fluox-
etine described above may not be due to either facilitation
of the adult neurogenesis or changes in BDNF expression.
The facilitation of the adult neurogenesis may increase the
proportion and the number of young granule cells, which
could then change functions of the dentate gyrus. Chronic
SSRI treatments have been shown to reduce expression of
calbindin, a marker for mature granule cells, in the
hippocampus [99, 100]. Newly generated granule cells
exhibit enhanced LTP only between 1 and 1.5 months of
the cell age [101]. The chronic fluoxetine treatment indeed
causes the enhancement of LTP at the perforant path-
granule cell synapse that is blocked by x-irradiation [72; but
see 102]. The enhanced neurogenesis may also affect the
mossy fiber synaptic transmission, since the functional
properties of the mossy fiber synapse change with
development [26, 27]. BDNF is required for the develop-

Fig. 2 Possible mechanisms un-
derlying stabilizing effects of
chronic fluoxetine on serotoner-
gic modulations. Assume that 5-
HT facilitates glutamate release
by activating presynaptic 5-HT
receptors. Downregulation and/
or block of 5-HT transporter by
fluoxetine increase extracellular
5-HT concentrations. Downre-
gulation of 5-HT receptors and/
or modulation of downstream
signaling reduce effects of 5-HT
on the glutamate release. These
changes can lead to stabilization
of the serotonergic modulation
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ment of the dentate gyrus [103] and has been shown to
acutely affect CA3 population spikes evoked by mossy
fiber stimulation [104]. Therefore, chronic antidepressant
treatments may also affect intrinsic properties of the mossy
fiber synaptic transmission in addition to the serotonergic
modulation. A preliminary study suggests that chronic
fluoxetine at relatively high doses reduces the mossy fiber
synaptic facilitation in adult mice [105]. Although this
result is consistent with the idea that chronic fluoxetine
increases the proportion of young granule cells, this issue
largely remains to be elucidated.

Involvement of Dentate Gyrus and Mossy Fiber
in Neuropathology and Pathophysiology of Schizophrenia

The hippocampus has been implicated in schizophrenia
[reviewed by 106, 107]. MRI studies have shown reduced
hippocampal size in patients with schizophrenia [1, 3].
Since the hippocampus plays an important role in working
memory [13] and prepulse inhibition [108], which are
impaired in patients with schizophrenia [109, 110], it is
highly likely that hippocampal dysfunction can cause some
of symptoms seen in schizophrenia. In experimental
animals, selective lesions of the dentate gyrus by colchicine
have been shown to impair working memory [111, 112].
Studies on the postmortem brain revealed substantial
abnormalities in the dentate gyrus in patients with schizo-
phrenia (Table 1). Those include changes in expression of
various transmitter receptors [113–122], other synaptic
proteins [123, 124], and proteasome, ubiquitin, and mito-
chondrial genes [125], suggesting profound functional
defects of the dentate gyrus in schizophrenia. The mossy
fiber system also has some abnormalities in synaptic
structure [126], density of synaptic terminals [127], and
expression of presynaptic proteins [128]. It is worth noting
that some of these changes are relatively specific to the
dentate gyrus, but not observed in CA1 (see Table 1), as
represented by a decease in expression of the dysbindin-1
(DTNBP1) gene [129]. DTNBP1 is one of the most
promising schizophrenia susceptibility genes [130] and
mice with a deletion in the DTNBP1 gene show impairment
in working memory [131]. Dysbindin-1 has been shown to
regulate release of glutamate neurotransmitter [132, 133].
Intense dysbindin-1-like immunoreactivity is seen in the
mossy fiber terminal area and the dentate inner molecular
layer in humans [134, 135]. This dysbindin-1-like immu-
noreactivity is strongly reduced in schizophrenia [135],
raising the possibility that the mossy fiber synaptic
transmission is impaired in patients with schizophrenia. It
should also be noted that there are abnormalities related to
neuronal development and maturation such as reduced
neural progenitor cell proliferation [75], reduced density
of reelin positive cells [136, 137], increased expression of

retinoic acid receptor α [138], and reduced expression of
the mature granule cell marker calbindin [125]. Abnormal
neurodevelopment has been implicated in the pathogenesis
of schizophrenia [139]. Therefore, it is possible that the
dentate gyrus of schizophrenic patients fails to develop
into the proper mature state.

Studies in experimental animals support this hypothesis.
The NPAS3 (neuronal PAS domain protein 3) gene has been
shown to be disrupted by chromosomal translocation in a
family with schizophrenia [140]. Mice lacking NPAS3
exhibit hyperactivity [141] and greatly reduced adult
neurogenesis in the dentate gyrus [142]. Disrupted-in-
Schizophrenia 1 (DISC1) is one of the most plausible
schizophrenia susceptibility genes [130]. DISC1 is abun-
dantly expressed in the hippocampus throughout the
embryonic and postnatal development [143, 144]. In the
adult forebrain, DISC1 expression is more localized than in
embryo, with the most prominent expression in the dentate
granule cells [143–146]. DISC1 is also strongly expressed
in the dentate granule cells of the adult human brain [147].
Virus-mediated knockdown of DISC1 in newly generated
granule cells in adult mice causes mispositioning of the
cell, accelerated dendritic development, and formation of
basal dendrites that are not usually seen in rodents [148].
The formation of basal dendrites resembles morphological
changes observed in patients with schizophrenia [149]. The
DISC1 knockdown also impairs targeting of the mossy
fibers, accelerates the development of mossy fiber synaptic
boutons, and hampers full morphological maturation in
some boutons [150]. Furthermore, a mutation in DISC1 that
models a schizophrenic risk allele impairs dendritic growth
during the postnatal development of the granule cells [151].
These results are consistent with the hypothesis that the
development or maturation of the dentate gyrus is impaired
in schizophrenia. As described above, the remarkable
frequency facilitation at the mossy fiber synapse is
established during the postnatal development [27] and
somatic properties of the granule cells also strongly depend
on the developmental stage of the cell [17–19] (see Fig. 1).
Therefore, these synaptic and somatic properties are
supposed to be altered in the dentate gyrus with abnormal-
ities in development and possibly in the brain of patients
with schizophrenia. A recent study on mice heterozygous
for alpha-calcium and calmodulin-dependent protein kinase
II (alpha-CaMKII +/− mice) provided a strong support for this
idea [20]. Alpha-CaMKII +/− mice show profound behavioral
abnormalities including hyperactivity, a severe working
memory deficit, and an exaggerated infradian rhythm,
which are related to symptoms in schizophrenia and other
psychiatric disorders. In the dentate gyrus of the mutant
mice, the granule cells have less developed dendritic
arborization. The expression of calbindin is largely sup-
pressed, while markers for immature granule cells are
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increased. As expected, the physiological properties of the
mutant granule cells are strikingly similar to those of
immature granule cells. Thus, the magnitude of mossy fiber
synaptic facilitation is strongly reduced, and somatic spikes
are easily evoked, but reduced in number during sustained
depolarization. Analysis of the gene expression of the
postmortem human hippocampus using biomarkers that
characterize the mutant hippocampus suggested similarities
in gene expression patterns between alpha-CaMKII +/− mice
and patients with schizophrenia, which include the reduc-
tion of calbindin expression [20]. Another piece of
evidence for the present hypothesis was provided by studies
on mice lacking the kainite receptor subunit GluR6. GluR6
is essential for the large facilitation of the mature mossy
fiber synapse [27, 152, 153]. The GluR6-deficient mice
show severe behavioral abnormalities including hyperac-
tivity and increased responsiveness to psychostimulants,
which are related to mania or psychosis [154]. Consistently,
in the postmortem brain of schizophrenic patients, the
expression of GluR6 mRNA is reduced in the dentate gyrus
and CA3 region [117]. Taken together, these lines of
evidence suggest that dysfunction of the mossy fiber
synapse associated with abnormalities in the granule cell
maturation is involved in the pathophysiology of schizo-
phrenia and/or other related psychiatric disorders. The
abnormalities in the dentate gyrus and mossy fiber may
be part of the neuropathology of schizophrenia. However,
the dentate gyrus may be particularly susceptible to
developmental problems due to the continuous postnatal
neurogenesis, and the developmental defects of the dentate
gyrus could be functionally expressed in an exaggerated
form as changes in the large synaptic facilitation at the
mossy fiber synapse, thereby substantially contributing to
the pathophysiology of schizophrenia.

Most of the animal studies described above have been
carried out using rodents. In addition to difficulties in
modeling psychiatric disorders using experimental animals
in general, marked differences in the brain anatomy, such as
the relative hippocampal size, between rodents and pri-
mates would pose a problem in extrapolating results of
rodent studies to humans. There are some important
differences in the anatomy of the dentate gyrus between
rodents and primates. A subpopulation of the mature
granule cells has basal dendrites in primates, but not in
rodents [155]. The distribution of the mossy fibers is
significantly different among species [156]. It is not known
whether these anatomical differences are accompanied by
functional differences. Mossy fiber LTP in cynomolgus
monkeys has been shown to be independent of NMDA
receptors as in rodents [157]. Some other studies also report
similarities in synaptic and somatic membrane properties of
the granule cells between rodents and nonhuman primates
[158, 159]. Further cellular physiological studies in

nonhuman primates would be important to clarify the
involvement of the dentate gyrus and mossy fibers in
psychiatric disorders.

Effects of Antipsychotic Drugs on Dentate Gyrus
and Mossy Fiber Synapse

In contrast to a lot of literature regarding antidepressant
effects, effects of antipsychotic drugs on the dentate gyrus
in experimental animals have not been addressed in detail.
Typical and atypical antipsychotic drugs cause a decrease
and increase in BDNF mRNA levels, respectively [160].
Typical antipsychotic drugs increase levels of the presyn-
aptic protein SNAP-25 in hippocampal synaptic regions
with the strongest effect at the mossy fiber pathway [161].
Some antipsychotic drugs can increase cell proliferation in the
dentate gyrus [reviewed by 162]. Atypical antipsychotic
drugs have been shown to facilitate the adult neurogenesis
in the dentate gyrus in some studies [163, 164] but have no
significant effects in others [165–168]. The discrepancies in
reported effects might be due to methodological differences.
Haloperidol, a typical antipsychotic drug, has no effects on
the neurogenesis in rats [69, 163, 165, 167–169] but
facilitates the neurogenesis in gerbil [170]. Thus, the adult
neurogenesis in the dentate gyrus might be involved in some
actions of antipsychotic drugs. Since the adult neurogenesis
is modulated by atypical, but not by typical, antipsychotic
drugs in rats, it may be associated with negative symptoms
of schizophrenia, on which atypical antipsychotic drugs
generally have superior therapeutic effects as compared with
typical antipsychotics [171]. Ameliorating effects of antipsy-
chotic drugs on positive or psychotic symptoms have been
ascribed to their antagonistic actions on dopamine D2 or D3

receptors [172]. Activation of D2-like receptors by exoge-
nous agonists increases the adult neurogenesis in the
hippocampus [173, 174], which may be mediated by ciliary
neurotrophic factor released from astrocytes [174]. The lack
of effects of the highly potent D2 antagonist haloperidol on
the neurogenesis suggests that endogenous dopamine does
not activate this D2-dependent pathway for the regulation of
the adult neurogenesis in a normal condition. Since over-
activation of astrocytes has been suggested in schizophrenia
[175], this pathway might be endogenously activated in the
pathological condition. In the postmortem brain of patients
with schizophrenia, the neural progenitor cell proliferation in
the dentate gyrus has been shown to be reduced [75].
However, most subjects in this study received antipsychotic
drugs, which may complicate interpretation of the results.

Although effects of currently utilized antipsychotic drugs
on the mossy fiber synapse have not been well investigated,
this synapse can be a potential target of recently developed
candidate antipsychotic drugs. A metabotropic glutamate 2/
3 receptor (mGluR2/3) agonist has been shown to have
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antipsychotic actions both in animal studies [176] and in a
clinical trial [177]. Activation of mGluR2/3 strongly
suppresses the mossy fiber synaptic transmission via
presynaptic mechanisms [46, 178], but other hippocampal
synapses are either insensitive or less sensitive to mGluR2/
3 agonists [178, 179]. Therefore, mGluR2/3 agonists at
optimal doses would preferentially inhibit signaling via the
dentate gyrus-mossy fiber pathway in the hippocampal
circuit. The synaptic facilitation increases along with the
synaptic inhibition caused by mGluR2/3 activation [178].
Therefore, mGluR2/3 agonists may be effective in treating
the reduced mossy fiber synaptic facilitation associated
with abnormalities in the dentate gyrus maturation.

A partial agonist of α7 neuronal nicotinic acetylcholine
receptors has also been shown to ameliorate some symp-
toms of schizophrenia [180, 181]. The α7 nicotinic receptor
gene, CHRNA7, is one of the candidate genes for
schizophrenia [182]. Alpha7 nicotinic receptors are highly
expressed in the hippocampus, especially in the hilar region
[183]. In the dentate gyrus of patients with schizophrenia,
binding of α-bungarotoxin, a blocker of α7 neuronal
nicotinic receptors, is reduced [121]. Mice lacking α7
nicotinic receptors exhibit impairment in attention [184]
and working or episodic-like memory [185]. Application of
nicotine induces a rise in calcium concentrations in the
mossy fiber terminals and increases action potential-
independent release of neurotransmitter probably via
activation of α7 nicotinic receptors [186–188; but see
189]. It is possible that modulation of mossy fiber synaptic
transmission by α7 agonists can contribute to improvement
of cognitive functions.

Conclusions: Mossy Fiber Synapse as a Target
for Treatments of Psychiatric Disorders

Since the mossy fiber synapse plays critical roles in
regulating excitability and plasticity in the CA3 circuit,
dysfunction of this synapse would substantially affect
functions of the hippocampus. Various neurotransmitter
receptors at the mossy fiber synapse can be potential targets
for pharmacological treatments of psychiatric disorders.
Abnormal development or maturation of the dentate granule
cells likely contributes to the pathophysiology of schizo-
phrenia and other related psychiatric disorders. Dysfunction
of the mossy fiber synaptic transmission could be secondary
to the abnormalities in the granule cells maturation. In this
case, drugs that directly act on the mossy fiber synapse may
ameliorate or control a part of symptoms but may not afford a
complete cure of the disorder. Instead, drugs that are expected
to affect neuronal maturation or differentiation such as retinoic
acid analogs might be effective in treating such defects [190].
It would also be important to reevaluate currently utilized
antipsychotic drugs with respect to possible efficacy in

alleviating the dysfunction associated with maturational or
developmental defects of the dentate gyrus, thereby indirectly
modulating the mossy fiber synaptic transmission. Genetically
manipulated mice such as alpha-CaMKII +/− mice as well as
conventional schizophrenia model animals would be valuable
tools for re-evaluation of current psychotropic drugs and
screening of candidate drugs.
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