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Short-range order of germanium selenide glass
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Abstract. Chalcogenide Ge20Se80 glass was prepared using the melt-quench technique. The radial distribution
function is obtained from X-ray diffraction data in the scattering vector interval 0.28≤K≤ 6.87 Å−1. Reverse Monte
Carlo (RMC) simulations are useful to compute the partial pair distribution functions, gij (r), partial structure fac-
tors, Sij (K), and total structure factor. Values of r1/r2 ratio and bond angle (�) indicate that Ge(Se1/2)4 tetrahedra
units connected by chains of the chalcogen atoms are present. The partial structure factors have shown that homopo-
lar Ge–Ge and Se–Se bonds are behind the appearance of the first sharp diffraction peak (FSDP) in the total
structure factor. Tetrahedral Ge(Se1/2)4 structural units connected by Se–Se chains have been confirmed by the
simulated values of the partial coordination numbers and bond angle distributions. Finally, Raman spectra mea-
surements have strongly supported the conclusions obtained either from the calculated Fourier data or from RMC
simulations.

Keywords. Chalcogenides; X-ray diffraction; short-range order; medium-range order; reverse Monte Carlo
simulation.

1. Introduction

Chalcogenide glasses present a great potential for applica-
tion in technological devices, such as optical fibers, memory
materials and switching devices, but their use is limited due
to several factors. One of them is the difficulty in obtain-
ing information about atomic structures. The structure of
chalcogenide glasses in the short-range order (SRO) or
intermediate-range order (IRO) is an important and contro-
versial subject. The appearance of the first sharp diffraction
peak (FSDP) in the total structure factor indicates the
presence of IRO. Germanium selenides have been inten-
sively studied by several methods like X-ray diffraction,1–4

neutron diffraction,5,6 Raman scattering,7 anomalous
X-ray scattering8 and extended X-ray absorption fine
structure.9 The structure unit in these glasses is Ge(Se1/2)4

tetrahedra connected through Se chains.
As mentioned earlier,10 the addition of germanium into the

polymeric Se matrix produces a cross-linking of selenium
chains, mediated by the formation of Ge(Se1/2)4 tetrahedra.
At low doping (x < 15 at%), the tetrahedra are sparsely
distributed in the background matrix, with rather flexible
interconnections. The feeble Ge–Ge correlations are inade-
quate to give any detectable FSDP, as it was previously con-
cluded from the partial pair structure studies on GeSe2.11

When germanium content reaches 15 at%, the amount of
Ge atoms becomes sufficient to join some of the tetrahedral
pairs by corner sharing.12 X-ray diffraction (XRD) of the
glassy GexSe1−x (with 0 ≤ x ≤ 0.33) systems1,8 have
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demonstrated that besides the well-established SRO informa-
tion, a pre-peak appeared in the total structure factor, S(K),
at a scattering vector K of about 1.1 Å−1. The pre-peak,
being a clear evidence for the existence of the IRO, showed
a systematic decrease in intensity and shift towards higher K

values with the decrease in Ge concentration. A similar result
was observed using the neutron diffraction measurement.5 In
recent times,13 the sorption ability of Ge20Se80 thin films,
applied as active layers of quartz crystal microbalance for
NO2 gas sensing, has been investigated. It was found that the
introduced gas molecules interact electrostatically with the
chalcogen atoms of the host material and initiate some degree
of structural changes in it.

Reverse Monte Carlo (RMC) simulation14,15 represents,
when used carefully, a powerful tool to extract some infor-
mation of intermediate and extended-range scale in glassy
materials. It assembles three-dimensional atomic configura-
tions using the experimental diffraction data implicitly in the
simulation. The intimate connection between computational
and experimental processes means that the better quality and
higher resolution of the experimental data, the more reliable
RMC model of a network structure for vitreous materials.
RMC method is an inverse problem in which the experimen-
tal data are enforced to build atomic configurations that have
the desired structural and electronic properties. The main
point is to set up a generalized function containing as much
information as possible, and then optimize the function for
generating configurations toward exact agreement with the
experimental data.

The present paper aims to get the structural correla-
tions of the investigated Ge20Se80 glass either from Fourier
transformation or from RMC simulations. It is intended to
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confirm the coincidence between the obtained results of both
methods. Finally, Raman spectroscopy analysis could
strengthen the obtained conclusions.

2. Theoretical background

2.1 Conventional (Fourier) method

According to Faber and Ziman,16 the total structure factor,
S(K), is obtained from the normalized coherent scattered
intensity, Ic(K), through

S(K) = Ic(K) − (〈f 2(K)〉 − 〈f (K)〉2)

〈f (K)〉2
, (1)

where K = 4π(sin θ/λ) is the transferred momentum,
〈f 〉2 = ∑

i (cifi)
2 and 〈f 2〉 = ∑

i cif
2
i , where ci is the

atomic fraction of element i and f (K) the atomic scattering
factor.

Fourier transformation of the S(K) data into real space17

gives the reduced distribution function, G(r), as follows:

G(r) = 4πr[ρ(r) − ρo] = (2/π)

∞∫

0

K[S(K) − 1]

× M(K) sin(Kr) dK, (2)

where ρ(r) is the local atomic density at a distance r , ρo

the bulk atomic density and M(K) is called the damping
factor.17,18 At short distances (r ≤ 2 Å), see Equation (2),
G(r) should follow the density line (−4πrρo) which is used
as a quality check of the data. The radial distribution func-
tion, defined as the number of atoms lying at distances
between r , r+ dr from center of an arbitrary origin atom, is
given by

RDF(r) = 4πr2ρ(r) = rG(r) + 4πr2ρo. (3)

The positions of the first and the second peak in the RDF(r)
represent the average values of the first- and second-nearest-
neighbor distances r1 and r2, respectively. A knowledge
of both distances yields a value for the bond angle � =
2 sin−1(r2/2r1).5 The area under each peak gives the corre-
sponding coordination number.

2.2 Reverse Monte Carlo method

In the structural analysis using Fourier transformations,17,19

a modification factor was suggested to reduce the effect of
termination data at a finite Kmax. This factor in turn, while
reduces the spurious oscillations, leads to a broadening of
the genuine peaks in g(r). The broadening is wide enough to
cause an overlap between the first and second peaks, and con-
sequently introduces significant errors in the obtained struc-
tural parameters. One of the main difficulties in the study
of glasses and other disordered materials is the production
of structural models that agree quantitatively with diffraction
data. In normal Monte Carlo simulation, an initial structure

is allowed to rearrange in such a way that its energy is min-
imized. The RMC does not need the inter-atomic potentials
and the structural configuration is adjusted so as to mini-
mize instead the difference between the calculated diffraction
pattern and that measured experimentally.20

Three-dimensional arrangement of N atoms is placed into
a cubic cell with periodic boundary conditions. The atomic
number density (ρ) should be the same as the experimental
value. The positions of the atoms are chosen randomly. The
partial pair distribution function15,21 can be calculated from
the initial configuration by

gCo
ij (r) = nij (r)

4πr2drρci

, (4)

where the superscripts C and o mean ‘calculated’ and ‘old’,
respectively, ci is the concentration of atoms type i and nij (r)

is the average number of atoms type j located at distance
between r and r+ dr from a central atom of type i. Fourier
transform of gCo

ij (r) to reciprocal space yields the partial
static structure factor

SCo
ij (K) = ρ

∞∫

0

4πr2(gCo
ij (r) − 1)

sin Kr

Kr
dr, (5)

where K (= 4πsin θ /λ) is the momentum transfer. The total
structure factor is calculated as follows:

SCo(K) =
∑

i,j

cicjfi(K)fj (K)(SCo
ij (K) − 1), (6)

where fi(K) is the atomic scattering factor of atom type
i. The difference between the experimental total structure
factor, SE(K), and that calculated from the configuration is
given by

χ2
o =

m∑

i=i

(SCo(Ki) − SE(Ki))
2/σ 2(Ki), (7)

where the sum is taken over the m experimental points and
σ represents the experimental error. One atom moves at ran-
dom but if it approaches another atom closer than the cut-off
distance, the move is rejected. Otherwise, a new atom is cho-
sen with acceptable move. Then, the new values of the par-
tial pair distribution functions, partial structure factors and
the total structure factor can be calculated. The new value of
SCn(K) gives a new difference

χ2
n =

m∑

i=i

(SCn(Ki) − SE(Ki))
2/σ 2(Ki), (8)

where n means ‘new’. If χ2
n < χ2

o , the move is accepted
and the new configuration becomes the old one. If χ2

n > χ2
o ,

it is accepted with probability exp(−(χ2
n − χ2

o )/2). Other-
wise it is rejected. As the number of accepted atom moves
increases, χ2 will initially decrease until it reaches an equi-
librium value. Thus, the atomic configuration corresponding
to the equilibrium should be consistent with the experimental
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total structure factor within the experimental error. From the
equilibrium values of the partial pair distribution function,
one can calculate the partial coordination number, partial
inter-atomic distance and the bond angle distribution.

3. Experimental

Bulk Ge20Se80 chalcogenide was prepared using the
melt-quench technique. High-purity Ge and Se elements
(99.999%) were, weighed according to their atomic percent-
ages, charged into chemically cleaned silica tube and then
sealed under vacuum of ≈1.33×10−3 Pa. The ampoule was
inserted into a furnace where the temperature was raised
gradually by rate of 3–4 K min−1 up to 1300 K and kept
constant for 24 h. To get homogeneous melt, the ampoule
was frequently rocked inside the furnace at the highest tem-
perature. The quenching was made in ice cold water. The
glassy state of the quenched alloy was checked using a
Philips (PW-1710) X-ray diffractometer. XRD patterns are
recorded at scanning speed of 2.4 deg min−1 using CuKα line
(λ = 1.5418 Å). The experiment was carried out in the
scattering angle range 4◦ ≤ 2θ ≤ 115◦ in steps of 0·1◦,
which corresponds to K-range 0.284 ≤ K ≤ 6.874 Å−1.
Raman spectra was carried out using the 532 nm line of a
diode pumped solid state laser. The scattered light is ana-
lyzed with a spectrometer equipped with holographic grating
and detected with a Andor Newton CCD camera.

4. Results and discussion

As a starting point, the observed X-ray intensities have
been corrected through background subtraction followed by
absorption and polarization corrections. The corrected X-ray
data are used to calculate the total structure factor18 as a func-
tion of the scattering vector (K = 4π sin θ/λ). As shown in
figure 1, a FSDP which is commonly observed in covalently
bonded materials implies the presence of IRO caused by con-
necting some of the structural units. In order to determine
the position and intensity of the pre-peaks, the S(K) spec-
tra have been analyzed using two pseudo-Voigt functions1

for the pre- and first-peaks. The pseudo-Voigt function is
linear summation of Lorentzian and Gaussian components
[c.Gauss.+(1−c)Lorent.],where the Gaussian fraction has a
value in the range 0 ≤ c ≤ 1.0. The values of the characteris-
tic length (R = 2π /Ko, where Ko is the peak position) and
the coherence length (L = 2π /
K , where 
K is the half-
width at half-maximum of the peak), as calculated from the
well-resolved FSDP following the procedures published by,
Johnson et al22 are 5.45 ± 0.05 and 17.44 ± 0.52 Å,
respectively.

The reduced distribution function, G(r), calculated after
one damping correction followed by several Kaplow itera-
tions,23 is shown in figure 2. At small values of r ≤ 1.5 Å,
see Equation (2), G(r) function shows a straight line with
slope is equal to − 4πρo. The bulk density obtained from the
straight portion of G(r), equals (3.85± 0.04)×10−2 atom Å−3.
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Figure 1. The total structure factor of the Ge20Se80 glass as a
function of the scattering vector (K). The spectra was analyzed
using two pseudo-Voigt functions for the pre- and first-peaks.
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Figure 2. The reduced distribution function, G(r), and the radial
distribution function, RDF(r), vs. r of the investigated Ge20Se80
glass.

The bulk density can also be calculated from the relation
ρo = NA

∑
i xidi/Ai,where di , Ai and NA are the density,

atomic weight of the element i and Avogadro number,
respectively.24 The excellent coincidence between the
former value of the bulk density and the calculated one
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Figure 3. The total distribution function, T (r), vs. r of the studied
Ge20Se80 glass.

(ρo = 3.8505×10−2 atom Å
−3

) confirms the high quality of
the present glass. The radial distribution function, RDF(r),
is shown also in figure 2. At high values of r , the curves
should fit the parabola, RDF(r) = 4πr2ρo. The broadening
appeared in the RDF(r) peaks is expected to cause signif-
icant errors in determining the SRO parameters. So instead of
RDF(r), the total distribution function, T(r) = RDF(r)/r , is
commonly used to get the SRO parameters.18 The sharpness
of the T (r) peaks shown in figure 3 is much better than that
appeared in the RDF(r) curve. Gaussian fit of T (r) curve shown
in figure 3 has resulted in two well-resolved peaks, where the
positions of the first and second peaks are r1 = 2.38 Å and
r2 = 3.82 Å, respectively. These values are in good agree-
ment with those previously obtained by Rao et al.5

The starting point in RMC simulation21 is to randomly
generate the configuration distribution of N = 4000 atoms
inside a cubic box. The length of the cubic configuration is
23.6 Å. According to their atomic percentages, the numbers
of Ge and Se atoms inside the cube are 800 and 3200 atoms,
respectively. RMC simulation runs for 20 h using the total
structure factor fit under the coordination constraints and a
minimum approach distance of 1.96 Å for any atoms pair.
When χ2 oscillates around an equilibrium value, a three-
dimensional molecular image of a disordered structure can
be obtained. In order to get an accurate image, the aver-
age of five simulation trials was taken. Figure 4 shows the
partial pair distribution gGe−Ge(r), gGe−Se(r), gSe−Se(r) func-
tions. In fact, most of the important structural parameters
such as the coordination number, inter-atomic distance and
bond angle distribution can be obtained from the partial pair
distribution functions. In the first coordination sphere, the
near-zero value of gGe−Ge(r) indicates that only homopolar
Se–Se bonds exist in addition to heteropolar Ge–Se bonds.
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Figure 4. The partial pair distribution gGe−Ge(r), gGe−Se(r),

gSe−Se(r) functions vs. r of the investigated Ge20Se80 glass.

Table 1. The partial coordination numbers of the Ge20Se80 glass
as obtained from: RMC, CONM and from other references.5,11

Ge–Ge Ge–Se Se–Ge Se–Se

Present 0.03 4.04 1.01 2.26
CONM 0 4 1 1
Rao et al5 0.22 3.61 0.9 1.71
Salmon and Petri11 0.22 3.61 0.9 1.71

The average Ge–Ge, Ge–Se and Se–Se bond lengths are,
as obtained from the refined RMC model, 2.52 ± 0.065,
2.43 ± 0.065 and 2.47 ± 0.065 Å, respectively. The average
partial coordination numbers, listed in table 1, are close to
some extent to those reported by other references.6,7 Based
on the chemical order network model (CONM), the partial
coordination numbers are also calculated and listed in table 1.
The presence of Se–Se bridges between the tetrahedral units
is a possible reason for high partial Se–Se coordination num-
ber as compared with that reported previously or computed
from the chemically ordered network model. Pan et al25 have
characterized the structural units of the Ge–Se films prepared
by pulsed laser deposition using Raman spectroscopy. They
concluded that in addition to the basic structural units of
edge-sharing GeSe4/2 tetrahedra, there are Se–Se homopolar
bonds in Se-rich GeSe4 films.

Bond angle distribution functions, �(θ), are obtained
from the final configuration of the investigated glass using
triplets program.7 In which, the bond angle for any reference
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Figure 5. Bond angle distribution functions, �(θ), obtained from
RMC simulations.

atom can be calculated from the Cartesian coordinates of the
final positions of the surrounding atoms. The �(θ) functions
of the Ge20Se80 glass are shown in figure 5. �Se−Ge−Se(θ)

function presents a main peak around 104.2◦, which is close
to the ideal tetrahedral angle of 109◦. A small peak appears
at 60◦ can be attributed to the existence of what we can call it
as wrong (homo) bonds. During the melt-quench process, the
freeze of Ge atoms in some corner positions of the tetrahedral
units instead of Se atoms could be responsible for the above
small peak. A reverse behavior is given by �Se−Se−Se(θ)

function, where a main peak is located at 60◦ and a small one
at 104.2◦. Selenium atoms occupying face of a perfect tetra-
hedron should exhibit internal angles of 60◦. The presence
of a �Se−Se−Se(θ) peak at 104.2◦ can be attributed to inter-
tetrahedral units. The above bond angle distributions have
strongly confirmed that the distorted tetrahedral units in addi-
tion to the ideal units are formed inside the cube. These struc-
tural units seem to be connected by Se–Se bridges, forming
small chains and rings, as previously reported.24 In the same
figure, �Ge−Ge−Ge(θ) function shows a broad distribution
from 50◦ to 150◦, which indicates that pairs of tetrahedral
units can be connected either by corner or edge share.

Fourier transformation of the partial pair distribution gives
the corresponding partial scattering factor. The dependence
of the partial scattering factors on the scattering vector
(K) are shown in figure 6. The partial S(K) are important
especially in regions where the FSDP is located. Because
of its insignificant contribution to the pre-peak, SGe−Se(K)
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Figure 6. The partial scattering factors, Sij (K), for the studied
Ge20Se80 glass.

function is not shown. It was previously mentioned26 that the
pre-peak is originated by Ge–Ge correlation, which bridging
GeSe4/2 tetrahedra. Recently, Machado et al7 have used the
RMC simulations and noticed the existence of large num-
ber of Se–Se pairs in the first coordination shell suggesting
that the tetrahedral units are linked by Se–Se bridges. The
FSDP appeared in the partial SGe−Ge(K) and SSe−Se(K) func-
tions indicates that the intermediate range order is not only
attributed to Ge–Ge bonds but also to the presence of Se–Se
bonds. Summation of the partial scattering factors gives the
total RMC scattering factor as a function of the scattering
vector. Figure 7 shows a very good coincidence between
RMC simulation and the experimental scattering factor to
the point no one can distinguish between their values. In the
above figure, the RMC curve is shifted downward by 0.05 in
order to differentiate between their values.

Based on the present IRO and SRO parameters, some con-
clusions about the structural correlations inside the glass
matrix are assumed. To confirm such conclusions, Raman
spectra measurements of the investigated glass is made and
shown in figure 8. Two broad as well as one side (shoulder)
peaks have appeared. One of the main peaks located at
267 cm−1 is related to Se–Se pairs. The second main peak
located at 200 cm is assigned to the stretching mode of the
corner-sharing (CS) GeSe4/2 tetrahedra. The latter peak is
accompanied by a shoulder at 215 cm−1, which rises from the
vibrations of Se atoms in the four member rings com-
posed of two edge-sharing (ES) tetrahedra.27 The intensi-
ties difference between the peak and its shoulder clarify that
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Figure 7. Experimental scattering factor together with RMC sim-
ulation of the studied Ge20Se80 glass. RMC data are shifted down-
ward (–0.05) to clarify the coincidence.
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Figure 8. Raman spectrum vs. Raman frequency of the investi-
gated Ge20Se80 glass.

the studied glass has a lot of CS tetrahedra and few ES
tetrahedra.

5. Conclusions

The FSDP appeared in the structure factor curve implies the
presence of IRO caused by connecting some of the structural
units. The values of r1/r2 ratio and the corresponding bond
angle (�), obtained from the conventional (Fourier) method,
indicate that the structural units inside the present alloy are
Ge(Se1/2)4 tetrahedra connected by chains of the chalcogen
atoms. RMC simulations of the X-ray scattering data are use-
ful to compute the partial pair distribution functions, gij (r),

the partial structure factors, Sij (K), and consequently the
total structure factor. The partial structure factors have shown
that not only the homopolar Ge–Ge bonds, but also Se–Se
bonds are behind the appearance of the FSDP in the total
structure factor. The presence of the tetrahedral Ge(Se1/2)4

structural units which connected by Se–Se chains have been
confirmed by the simulated values of the partial coordination
numbers and the bond angle distributions. Finally, Raman
spectra measurements have strongly supported the conclu-
sions obtained either from the calculated Fourier data or from
RMC simulations.
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