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Abstract
Despite recent advances in clinical treatments, identifying high-risk osteosarcoma (OS) patients remains an unresolved 
clinical challenge. Mitophagy, a specialized form of cellular autophagy, selectively reduces the number of mitochondria 
or repairs their abnormal functions in response to external stress, thereby ensuring mitochondrial quality and maintaining 
mitochondrial function. Mitophagy plays a crucial role in cancer development, including processes such as mitochondrial 
repair, homeostasis maintenance, and tumor metabolism. However, its impact on OS has not yet been reported. In this study, 
we collected 58 mitophagy-related genes (MPRGs) from the TARGET and GEO databases and bioinformatically screened 
for those associated with OS prognosis. By LASSO-multivariable Cox regression algorithm, we subsequently developed a 
novel scoring system, the MPRG score, and validated its significance in predicting OS prognosis. Immune landscape analysis 
showed patients in the low MPRG group had a higher immune infiltration level than those in the high MPRG group. Drug 
sensitivity differences highlighted the potential need for alternative therapeutic strategies based on MPRG scoring system. 
The distribution characteristics of the MPRG signature in different cell subtypes of OS were explored by single-cell sequenc-
ing analyses. In vitro experiments further confirmed the abnormal expression of screened targets in OS. Our findings highlight 
the role of mitophagy in OS and its potential as a therapeutic target.
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Introduction

Osteosarcoma (OS) is the most common primary bone 
malignancy, with its bimodal incidence peaked at 18 and 
60 years of age [1]. Despite advancements in chemotherapy 
and surgical techniques, the 5-year survival rate for OS 
patients remains unsatisfactory, and there is a critical need 
for reliable biomarkers to predict patient outcomes [2, 3]. 
How to identify high-risk OS patients is still an unsolved 
clinical issue. Specific histologic features assessed on resec-
tion has been considered an indicator of therapeutic response 

in OS patients receiving neoadjuvant chemotherapy, but this 
protocol has not been widely accepted [4]. Strategies that 
can predict treatment sensitivity and risk stratification of 
outcomes in patients with OS are still urgently needed to 
further identify patients with OS with poor prognosis.

Autophagy is a catabolic pathway that recycles intracel-
lular components by encapsulating them in bilayer vesicles 
called autophagosomes [5]. These vesicles can then fuse 
with lysosomes for degradation purposes [6, 7]. As a special 
form of cellular autophagy, the process of mitophagy allows 
mitochondria to respond to external pressures by selectively 
reducing the number of mitochondria or repairing abnor-
mal mitochondrial function, thereby ensuring mitochondrial 
quality and maintaining mitochondrial function [8, 9]. Cur-
rent studies have divided the mechanisms of mitophagy into 
ubiquitin-dependent and non-ubiquitin-dependent pathways 
[10]. The classical ubiquitin-dependent pathway refers to the 
ubiquitination of proteins on mitochondria by mitophagy-
related proteins such as PINK1 and leads to the aggregation 
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of microtubule-associated protein 1 light chain 3 (LC3). 
Finally, the lysosome is polymerized into autophagy lyso-
some [11]. In addition, NIP3-like protein X (NIX) receptor, 
the bcl2-interacting protein 3 (BNIP3) receptor and other 
proteins could directly aggregate with LC3. This pathway is 
known as the non-ubiquitin-dependent pathway [12].

Mitophagy has been reported to play an important role in 
the development of cancer [13]. According to different tumor 
types and different stages, mitophagy can play two opposite 
roles in cancer development: cancer inhibition and cancer 
promotion [14]. In the early stages of cancer, mitophagy 
can maintain cell metabolism while reducing mitochondrial 
damage, thereby avoiding further cancer development by 
maintaining homeostasis [15]. However, in advanced can-
cer cells, mitophagy provides nutrients that sustain cancer 
cell survival, invasion, and metastasis, thereby increasing 
tolerance to hypoxia and hypo-nutrition and supporting the 
tumor's high bioenergy requirements [16]. As critical regula-
tor of mitophagy, the PINK1/Parkin pathway is significantly 
upregulated in OS cells, leading to enhanced removal of 
damaged mitochondria and improved cellular resilience [17]. 
Mitophagy promotion by BNIP3 in OS can attenuates cispl-
atin resistance [18]. Based on these evidences, we hypoth-
esize that mitophagy may contribute to OS progression by 
promoting mitochondrial quality control, thereby enabling 
cancer cells to survive under metabolic stress conditions 
commonly found in the tumor microenvironment.

In this study, we aimed to identify mitophagy-related 
genes (MPRGs) associated with OS prognosis and develop 
and validate a prognostic scoring system based on MPRGs. 
The relationship between MPRG expression, immune infil-
tration, and drug resistance in OS was also explored. Our 
results suggest the role of mitophagy in OS and its potential 
value as a therapeutic target.

Materials and Methods

Data Acquisition and Download of Mitophagy Gene 
Signature

The osteosarcoma (OS) transcriptome data and baseline 
clinical characteristics used in this study were obtained from 
the TARGET and GEO databases. From the TARGET data-
base, we collected a total of 87 OS samples that included 
clinical features such as survival time and status. Addition-
ally, we acquired two gene chip datasets containing OS sam-
ple information (GSE21257 and GSE39058) from the GEO 
database. To eliminate batch effects between the TARGET, 
GSE21257, and GSE39058 data, we standardized the tran-
scriptome data using the "sva" script. This process resulted 
in a final dataset of 140 OS samples for subsequent analysis. 
The mitophagy-related genes (MPRG) were obtained from 

the MSigDB database. Supplementary Table 1 lists the 58 
mitophagy-related genes used in this study.

Identification of Prognosis‑Related MPRGs 
and Consensus Clustering Molecular Subtype 
Analysis

To identify mitophagy-related genes (MPRGs) associated 
with OS prognosis, we extracted the expression of MPRGs 
from the gene expression matrix of OS samples using the 
“limma” package. By combining survival time and clinical 
outcomes of OS samples from the TARGET, GSE21257, 
and GSE39058 datasets, we employed the LASSO univari-
ate Cox regression analysis algorithm to identify MPRGs 
associated with clinical survival outcomes of OS. To explore 
the molecular subtypes associated with MPRGs in OS, we 
used the “ConsensusClusterPlus” package to cluster OS 
patients into 2–9 subgroups based on the expression matrix 
of MPRGs related to clinical survival prognosis, with stand-
ards of pItem = 0.8 and pFeature = 1. The optimal K value 
was determined from the clustering results. We then used 
the “survival” package to analyze the survival differences 
among the different OS subgroups by integrating patients' 
survival time and clinical outcomes. The “limma” package 
was employed to identify differentially expressed genes 
among the subgroups. Furthermore, pathway enrichment 
analysis of these differential genes was conducted using the 
“GSVA” package to discover signaling pathways associated 
with the prognostic differences between subgroups.

Assessment of Immune Cell Infiltration 
Characteristics and Immune Regulatory Function

Based on the OS transcriptome matrix, we applied the 
“estimate” script to assess the immune infiltration status 
of each OS sample. This assessment included calculating 
the immune, stromal, ESTIMATE scores, and tumor purity 
for each OS sample. Using marker gene signatures of 23 
immune cell types, we evaluated the relative proportions 
of immune cells and immune regulatory function scores 
in OS samples through the ssGSEA algorithm. To explore 
the potential association between MPRGs and the OS 
immune microenvironment, we used the Pearson correla-
tion algorithm to assess the correlations between MPRGs 
and immune cells. The results were visualized using the 
"pheatmap" package.

Construction and Validation of the MPRG Scoring 
System

To accurately predict the clinical survival outcomes of OS, 
we constructed a new scoring system, the MPRG scoring 
system, based on the results of multivariate Cox regression. 
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The scoring algorithm is defined as MPRG score = Σ (Prog-
nosis-related  MPRGi *  Coefi). Using this algorithm, all oste-
osarcoma patients were scored, and patients were divided 
into high MPRG score and low MPRG score groups based 
on the median score. To evaluate the accuracy of the MPRG 
scoring system, patients were randomly divided into train-
ing (70%) and testing (30%) groups using the create Data 
Partition function from the “caret” R package. Similar to 
the whole dataset, patients in the training and testing groups 
were categorized into high and low MPRG score groups 
based on their scores. The distribution of MPRG scores in 
the whole group, training group, and testing group was dis-
played using scatter plots to study the relationship between 
MPRG scores and patients' survival time and clinical out-
comes. The "survival" package was used to analyze the 
survival differences between different MPRG score groups, 
thereby clarifying the relationship between MPRG scores 
and patient prognosis.

Construction and Validation of the Prognostic 
Nomogram

Clinical characteristics can significantly influence patient 
prognosis. To provide a more accurate prognostic assess-
ment, we incorporated patients' clinical features as covari-
ates in our modeling process. By combining clinical charac-
teristics with the MPRG score, we constructed a nomogram 
for predicting patient prognosis, thereby minimizing poten-
tial biases from other clinical factors. In this study, we inte-
grated the MPRG score with clinical information (includ-
ing age, gender, and metastasis) to construct the nomogram 
using the “rms” package. Calibration curves were employed 
to evaluate the predictive accuracy of the nomogram. These 
curves visualize the agreement between the actual and pre-
dicted incidence rates, with closer alignment indicating a 
more accurate prediction model.

Single‑Cell Sequencing Data Acquisition 
and Analysis

The single-cell RNA sequencing dataset GSE152048, com-
prising transcriptomic profiles from osteosarcoma sam-
ples, was obtained from the Gene Expression Omnibus 
(GEO) database (https:// www. ncbi. nlm. nih. gov/ geo/). Raw 
sequencing data were subjected to quality control using 
FastQC. Low-quality reads and adapters were removed using 
Trimmomatic, cleaned reads were aligned to the reference 
genome using STAR, and gene expression quantification 
was performed with feature Counts. The Seurat R package 
was utilized for downstream analysis: Cells with low library 
sizes and high mitochondrial gene content were filtered out. 
Data normalization was performed to adjust for differences 
in sequencing depth and cell size. Cells with fewer than 200 

detected genes or more than 5% mitochondrial gene content 
were excluded from the analysis. Clustering was performed 
using the Louvain algorithm with a resolution parameter 
of 0.8. Principal component analysis (PCA) was applied 
to reduce data dimensionality. UMAP was used for visu-
alization. Cells were clustered based on significant princi-
pal components using a graph-based clustering approach. 
Known marker genes and differential expression analysis 
were used to annotate cell types within the SingleR database. 
Differential gene expression between identified cell clus-
ters was assessed using the FindMarkers function in Seurat. 
Statistical significance was determined using the Wilcoxon 
rank-sum test, with adjustments for multiple testing (Benja-
mini–Hochberg correction). Results were visualized using 
t-SNE and UMAP plots to explore cell clustering and dif-
ferential gene expression patterns. Heatmaps and violin plots 
were generated to visualize expression profiles of marker 
genes across cell clusters.

Drug Sensitivity Analysis

Drug sensitivity analysis was performed using the “pRRo-
phetic” package, which allows us to understand the sensi-
tivity of different patient groups to anti-tumor drugs. This 
understanding can facilitate personalized treatment for dif-
ferent patients, enhancing the clinical applicability of our 
predictive model. The results of drug sensitivity analysis 
were visualized using the "ggplot2" package, incorporating 
osteosarcoma patient subgroup and score group informa-
tion to reveal differences in drug sensitivity among various 
subgroups or scoring groups.

Cell Culture

U2OS human osteosarcoma cells were obtained from ATCC 
and cultured in DMEM supplemented with 10% fetal bovine 
serum (FBS) and 1% penicillin–streptomycin. U2OS cells 
were maintained in a humidified incubator at 37 °C with 5% 
CO2. Normal human (Human Fibroblast Cells) cells were 
cultured in appropriate medium DMEM supplemented with 
10% FBS and 1% penicillin–streptomycin under similar 
conditions as U2OS cells. U2OS cells were used at passage 
numbers between 5 and 20 and were authenticated using 
short tandem repeat (STR) profiling before experiments.

Western Blot

Total protein from U2OS cells and control cells was 
extracted using RIPA lysis buffer (R0010, Solarbio, China) 
supplemented with 1 mM protease inhibitor mixture and 
1 mM phosphatase inhibitor mixture. After adding an appro-
priate amount of lysis buffer on ice, the mixture was shaken 
for 30 min and then centrifuged at 12,000 g for 10 min at 

https://www.ncbi.nlm.nih.gov/geo/
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4 °C. The supernatant was collected, and total protein quan-
tification was performed using the BCA protein assay kit 
(PC0020, Solarbio, China). For quantification, 20 µl of pro-
tein sample was mixed with 200 µl of BCA working solution 
and incubated at 37 °C for 30 min. Absorbance at 562 nm 
was measured using a microplate reader (CMax Plus, USA), 
and protein concentration was inferred from the standard 
curve of BSA protein standards. Protein supernatant was 
mixed with 5 × protein loading buffer (P1040, Solarbio, 
China) at a 4:1 (V/V) ratio and boiled for 10 min. Proteins 
were separated by SDS-PAGE and transferred to a polyvi-
nylidene fluoride (PVDF) membrane. The PVDF membrane 
was blocked with 5% skim milk at room temperature for 
1 h. The membrane was then incubated overnight at 4 °C 
with primary antibodies: β-actin (E-AB-48018, Elabscience, 
China), ATG4D (ab237751, Abcam), RPS27A (ab172293, 
Abcam), and TOMM20 (ab78547, Abcam). The next day, 
the membrane was incubated with the corresponding HRP-
conjugated secondary antibody (Elabscience, China) for 1 h. 
ECL reagent (34,577, Thermo Fisher, USA) was used for 
detection. The grayscale values of the bands were quanti-
fied using ImageJ software. Primary antibodies were diluted 
1:1000 for β-actin and 1:500 for ATG4D, RPS27A, and 
TOMM20. Secondary antibody incubation was performed 
at a 1:2000 dilution, and ECL exposure times ranged from 
1 to 5 min, depending on the signal strength.

Real‑Time Quantitative PCR Analysis

RNA from tumor tissues was isolated using the TRIzol™ 
Plus reagent (Thermo Fisher, USA) according to the manu-
facturer's instructions. The isolated RNA was then reverse-
transcribed into cDNA using a reverse transcription kit 
(AG11728, Accurate Biology, China). The cDNA was 
mixed with primers and SYBR Green Pro Taq HS premix 
(AG11701, Accurate Biology, China) and detected using 
a Bio-Rad real-time quantitative PCR system (Bio-Rad, 
USA). The relative expression levels of target genes ATG4D, 
RPS27A, and TOMM20 were normalized to glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) as the reference gene. 
The relative gene expression was calculated using the  2−∆∆CT 
method. The primer sequences used are listed in Table 1.

Statistical Analysis

All analyses were conducted using R software (version 
4.4.1) with Bioconductor packages and custom scripts, 
along with the Perl programming environment. Survival 
curves between different subgroups were analyzed using 
the log-rank algorithm. Pearson correlation analysis was 
employed to assess relationships between variables. Statis-
tical differences between two groups were assessed using 

the Wilcoxon rank-sum test, while one-way ANOVA was 
utilized for comparisons among multiple groups. Cell 
experiments in this study were performed in triplicate, 
and statistical analyses of differences were conducted 
using SPSS and GraphPad software (Student's t-test) for 
both statistical testing and visualization. Statistical signifi-
cance was set at corrected p < 0.05. Data are presented as 
mean ± SD, with significance levels indicated as *p < 0.05, 
**p < 0.01, ***p < 0.001.

Results

Identification of Mitophagy‑Associated Prognostic 
Genes and Unsupervised Consensus Clustering 
Analysis

We retrieved 58 genes associated with mitophagy from 
gene set databases. Univariate Cox regression analysis 
of these 58 mitophagy-associated genes revealed 6 genes 
significantly associated with prognosis in osteosarcoma 
patients. Further analysis using LASSO-multivariable Cox 
regression identified three mitophagy-associated prognos-
tic genes: ATG4D, RPS27A, and TOMM20 (Fig. 1a, b). 
Additionally, based on the expression levels of these three 
mitophagy-associated genes, patients were stratified into 
2–9 distinct subtypes. Notably, when K = 3, osteosarcoma 
patients were effectively classified into three subtypes: 
MPRG cluster A, MPRG cluster B, and MPRG cluster 
C (Fig. 1c). Survival and clinical outcome curves among 
the three MPRG subtypes demonstrated statistically sig-
nificant differences in prognosis. Patients in MPRG clus-
ter C exhibited favorable outcomes, whereas those in 
MPRG cluster B showed the poorest prognosis (p < 0.05, 
Fig. 1d). In summary, the expression of mitophagy-asso-
ciated prognostic genes in osteosarcoma correlates closely 
with patient prognosis. Alterations in the expression of 
mitophagy-associated prognostic genes may significantly 
impact patient outcomes.

Table 1  Primers Used for RT-PCR

Gene Primer sequence

h-ATG4D-F ATC ATA GAC GCC GGA GAC AG
h-ATG4D-R CCT ATC GCC AAG CAA TGA GC
h-RPS27A-F ATC ATA GAC GCC GGA GAC AG
h-RPS27A-R CCT ATC GCC AAG CAA TGA GC
h-TOMM20-F AGA GAA GAT GGT GGG TCG GA
h-TOMM20-R CAC TTC GTC TTT TGC GGT CG
h-GAPDH-F TGC AAC CGG GAA GGA AAT GA
h-GAPDH-R GCA TCA CCC GGA GGA GAA AT
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Immune Landscape Analysis Based on MPRG 
Clusters

To assess differences in immune landscapes among MPRG 
clusters, we employed multiple analytical algorithms to 
evaluate immune profiles across samples. ESTIMATE was 
used to assess immune status in tumor patients based on 
expression matrices. Results revealed that MPRG cluster 
C exhibited the highest stromal score, immune score, and 
ESTIMATE score, and the lowest Tumor Purity, whereas 
MPRG cluster B exhibited the opposite trends (Fig. 2a–d). 
This suggests that MPRG cluster C is characterized by 

greater immune cell infiltration compared to the other two 
subtypes. Combining these findings with prognostic out-
comes indicates a positive correlation between immune 
scores, immune cell infiltration, and patient prognosis. 
Further analysis using single-sample Gene Set Enrichment 
Analysis (ssGSEA) was conducted to delineate immune 
cell infiltration and functional differences among different 
subgroups. Results showed that MPRG cluster C patients 
exhibited significantly higher infiltration levels of most 
immune cells compared to MPRG cluster B, particularly 
Activated B cells, Activated CD8 T cells, Activated den-
dritic cells, and Immature B cells (Fig. 2e). In addition, 

Fig. 1  Identification of mitophagy-associated prognostic genes and 
unsupervised consensus clustering analysis results. a, b LASSO 
regression analysis results of mitophagy-associated genes. c Results 

of unsupervised consensus clustering analysis based on mitophagy-
associated prognostic genes. d Kaplan–Meier (KM) curve results of 
MPRG subtypes
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immune functional analysis indicated superior immune 
function in MPRG cluster C across multiple immune 
parameters compared to the other groups (Fig. 2f). These 
findings underscore significant immune landscape dis-
parities among different MPRG clusters, particularly the 
heightened infiltration of key immune cells, which may 
impact patient prognosis. Lastly, pathway analysis using 
Gene Set Variation Analysis (GSVA) identified pathways 

contributing to these differences. Results indicated distinc-
tions in pathways such as KEGG focal adhesion, KEGG 
adherens junction, KEGG FC gamma R mediated phago-
cytosis, KEGG glycosaminoglycan biosynthesis chondroi-
tin sulfate, KEGG sulfur metabolism, KEGg nicotinate and 
nicotinamide metabolism, and KEGG steroid biosynthesis 
among MPRG clusters (Fig. 2g, h).

Fig. 2  Immune Landscape of MPRG Clusters. a–d Analysis of 
ESTIMATE scores among MPRG clusters using the ESTIMATE 
algorithm. e Analysis depicting variations in immune cell infiltra-
tion among different MPRG clusters. f Comparison of immune func-

tion differences among different MPRG clusters. g KEGG Pathway 
Enrichment Analysis in MPRG Clusters A and C. h KEGG Pathway 
Enrichment Analysis in MPRG Clusters B and C



Molecular Biotechnology 

Construction and Validation of the MPRG Scoring 
Model

Based on LASSO-Cox regression analysis results, we devel-
oped a novel scoring system termed MPRG score. The for-
mula for calculating MPRG score is: MPRG score = ATG4D 
* 3.20 + RPS27A * 5.940 + TOMM20 * 2.00. Furthermore, 
to validate the stability of the scoring model, osteosarcoma 
patients were randomly divided into training and testing 
groups at a ratio of 7:3. As shown in Fig. 3a–c, osteosar-
coma patients were stratified into low (blue) and high (red) 
MPRG score groups based on the median MPRG score. 
Scatter plots indicated that patients with clinical outcomes 
of death tended to have higher MPRG scores, consist-
ent across the entire cohort, training, and testing groups 
(Fig. 3d–f). Heatmap results demonstrated that expression 
levels of mitochondria autophagy-related prognostic genes 
increased with higher MPRG scores, indicating their role 
as risk factors (Fig. 3g–i). Kaplan–Meier survival curves 
showed that high MPRG score groups were associated with 
shorter survival times, while low MPRG score groups had 

longer survival times, consistently observed across the entire 
cohort (p < 0.001), training group (p < 0.001), and testing 
group (p = 0.006) (Fig. 4a–c). ROC analysis indicated AUCs 
of 0.797 at 1 year, 0.716 at 3 years, and 0.744 at 5 years for 
the entire cohort (Fig. 4d). For the training group, AUCs 
were 0.852 at 1 year, 0.630 at 3 years, and 0.676 at 5 years 
(Fig. 4e), while for the testing group, AUCs were 0.793 at 
1 year, 0.757 at 3 years, and 0.778 at 5 years (Fig. 4f). In 
conclusion, these results demonstrate that MPRG score cor-
relates with patient survival time and clinical outcomes in 
osteosarcoma, showing promising accuracy in predicting 
prognosis using MPRG score.

Construction and Evaluation Of Prognostic Model 
Based on Clinical Features and MPRG Score

Clinical features of patients can also impact prognosis. To 
accurately predict prognosis in osteosarcoma patients, we 
integrated clinical features and MPRG scores to construct 
a prognostic model. Patient age, gender, tumor metastasis 
status, and MPRG score are shown in Fig. 5a. Univariate 

Fig. 3  Construction and Validation of the MPRG Scoring Model. 
a–c Distribution of MPRG scores in entire cohort, training cohort 
and testing cohort. d–f Scatter plot of MPRG scores, survival time, 

and clinical outcomes in the entire cohort, training cohort and testing 
cohort. g–i Heatmap of prognostic MPRGs expression in the entire 
cohort, training cohort and testing cohort
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Cox regression analysis results indicated that metastases 
(p < 0.001) and MPRG score (p < 0.001) were associ-
ated with patient prognosis (Fig. 5b). Multivariate Cox 
regression analysis showed that metastases (p < 0.001) and 
MPRG score (p < 0.001) independently assessed progno-
sis (Fig. 5c). Finally, we constructed a nomogram based 
on age, gender, metastases, and MPRG score, accurately 
predicting prognosis in osteosarcoma patients based on 
the sum of scores for each indicator (Fig. 5d). Calibra-
tion curve results demonstrated close alignment between 
predicted and actual curves for prognosis at 1, 3, and 
5 years (Fig. 5e), indicating high accuracy, minimal pre-
diction bias, and strong predictive capability of the model. 
Figure 5f, g depicts differences in MPRG scores among 
different MPRG clusters. Consistent with previous find-
ings, MPRG cluster C, associated with the best progno-
sis, had the lowest MPRG scores, whereas MPRG cluster 
B, associated with the poorest prognosis, had the highest 
MPRG scores (Fig. 5h). The relationship between MPRG 
clusters, MPRG scores, and clinical outcomes is illus-
trated in Fig. 5i. In conclusion, considering the diversity 
of clinical features among patients, integrating these with 
MPRG scores into prognostic assessment systems ena-
bles more accurate evaluation and prognosis prediction 

for osteosarcoma patients, demonstrating good predictive 
accuracy.

Immune Landscape and Correlation Analysis 
in Different MPRG Score Groups

Previous results have shown that varying degrees of 
immune infiltration can impact patient prognosis. There-
fore, focusing on MPRG scores, we conducted immune 
landscape analysis among patients grouped by MPRG 
scores. ESTIMATE results indicated that the low MPRG 
score group generally exhibited higher Immune Score, 
ESTIMATE Score, Stromal Score, and lower Tumor Score 
(Fig. 6a–d), suggesting greater immune cell infiltration 
in these patients. ssGSEA results further highlighted 
increased infiltration levels of Activated B cells, acti-
vated dendritic cells, Immature B cells, myeloid-derived 
suppressor cells (MDSCs), and various T helper cells 
in the low MPRG score group, indicating a close asso-
ciation of these immune cells with prognosis in osteo-
sarcoma patients (Fig. 6e). Additionally, compared to the 
high MPRG score group, most immune functions were 
more activated in the low MPRG score group (Fig. 6f). 

Fig. 4  Prognostic Analysis of the MPRG Scoring Model. a–c Kaplan–Meier (KM) curves in the entire cohort, training cohort and testing cohort. 
d–f ROC curve results at 1, 3, and 5 years in the entire cohort, training cohort and testing cohort
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As Fig. 6g shows that, apart from Activated CD4 T cells, 
Type 2 T helper cells, Gamma delta T cells, and Immature 
dendritic cells, most immune cells were negatively corre-
lated with MPRG scores in patients. Correlation analysis 
revealed that mitochondrial autophagy-related prognostic 
genes ATG4D and RPS27A were positively correlated 
with most immune cells, while TOMM20 gene showed 
an inverse correlation with most immune cells (Fig. 6h). 
In conclusion, there are differences in immune landscapes 
among patients with different MPRG scores, and MPRG 
scores to some extent can indicate the extent of immune 
infiltration in patients.

Drug sensitivity Results and Correlation Analysis 
in Different MPRG Score Groups

In order to tailor precise treatment plans for patients with 
different MPRG scores and enhance the clinical utility of 
drugs, we conducted drug sensitivity analysis and cor-
relation analysis to clarify the relationship between drug 
sensitivity and MPRG scores. The results are shown in 
Fig. 7. Patients in different MPRG score groups exhibited 
varying sensitivity to the same drugs. For instance, drugs 
like TGX211, Midostaurin, and Bleomycin showed lower 
IC50 values in patients with low MPRG scores, whereas 
Pyrimethamine, Sorafenib, and Imatinib showed the opposite 

Fig. 5  Construction and evaluation of prognostic model based on 
clinical features and MPRG Score. a Heatmap of patient clinical fea-
tures and MPRG scores. b Univariate Cox regression analysis results 
of clinical features and MPRG scores. c Multivariate Cox regression 
analysis results of clinical features and MPRG scores. d Nomogram 
construction based on clinical features and MPRG scores. e Calibra-

tion curve results of the nomogram. f Concordance index results of 
the nomogram. g Decision curve analysis results of the nomogram. 
h MPRG score results across MPRG clusters. i Sankey diagram illus-
trating the association between MPRG clusters, MPRG scores, and 
clinical outcomes
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Fig. 6  Immune landscape and correlation analysis in different MPRG 
score groups. a–d Immune score, ESTIMATE score, tumor purity 
and stromal score based on ESTIMATE algorithm. e Differences 
in immune cell infiltration among patients with different MPRG 

scores. f Differences in immune functions among patients with dif-
ferent MPRG scores. g Correlation analysis between immune cells 
and MPRG scores. h Correlation analysis between immune cells and 
prognostic MPRGs
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trend. Furthermore, IC50 values of TGX211 (R = 0.66, 
p = 1.9e − 07), Midostaurin (R = 0.47, p = 0.00045), and 
Bleomycin (R = 0.49, p = 0.00025) were positively corre-
lated with MPRG scores, while Pyrimethamine (R =  − 0.43, 
p = 0.0015), Sorafenib (R =  − 0.44, p = 0.0033), and Imatinib 
(R =  − 0.47, p = 0.00046) were negatively correlated with 
MPRG scores. This indicates that MPRG scores can be used 
for individualized assessment of drug sensitivity, providing 
high clinical utility for personalized treatment of patients.

Single‑Cell Sequencing Analysis Reveals Expression 
Characteristics of MPRG Prognostic Signature

We further evaluated the immune cell landscape and the distri-
bution characteristics of the MPRG signature at the single-cell 
level in OS. Based on the GSE152048 dataset, we extracted 

single-cell sequencing data from four OS samples for subse-
quent analysis. After batch effect correction and normalization 
for each sample, we used PCA for dimensionality reduction 
and identified 21 cell clusters in OS samples, as shown in 
Fig. 8a. Expression level results indicated that among these 
21 cell clusters, RPS27A and TOMM20 were highly expressed 
(Fig. 8b). Using “SingleR” method, we annotated the 21 cell 
clusters and identified six cell subtypes: Macrophages, chon-
drocytes, tissue stem cells, monocytes, MSCs, and endothe-
lial cells (Fig. 8c). Notably, RPS27A was significantly highly 
expressed among these six cell subtypes, while ATG4D 
showed low expression, and TOMM20 was highly expressed 
in Macrophages and Tissue Stem Cells (Fig. 8d–f). The promi-
nent expression of these genes in macrophages and tissue stem 
cells underscores their potential role in OS progression [19]. 
Additionally, we assessed the expression distribution of the 

Fig. 7  Drug sensitivity results and correlation analysis in different MPRG score groups. Drug sensitivity and correlation results of a, b TGX221, 
c, d Midostaurin, e, f Bleomycin, g, h Pyrimethamine, i, j Sorafenib, k, l Imatinib in different MPRG score groups
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MPRG signature in the six cell subtypes, and the results indi-
cated that the MPRG signature was prominently expressed 
in all six cell subtypes, especially in Macrophages (Fig. 8g).

Experimental Validation of the MPRG Prognostic 
Signature In Vitro

To validate the bioinformatics results, we performed 
in  vitro experiments to assess the expression of 

mitochondria autophagy-related prognostic genes in OS 
cells. Compared to control cells, the OS cell line exhibited 
higher protein levels of ATG4D, RPS27A, and TOMM20 
(Fig. 9a–d). The qRT-PCR results also confirmed higher 
mRNA levels of ATG4D, RPS27A, and TOMM20 in OS 
cells (Fig. 9e–g).

Fig. 8  Single-cell sequencing analysis reveals the expression distribu-
tion characteristics of the MPRG prognostic signature. a Identifica-
tion of OS cell clusters based on PCA analysis. b Expression levels 
of the MPRG signature in different cell clusters. c Annotation of cell 

subtypes based on SingleR. d–f UMAP dimensionality reduction 
analysis reveals the expression of the MPRG signature in different 
cell subtypes. g Expression distribution of the MPRG signature in dif-
ferent cell subtypes
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Discussion

Risk factor screening and therapeutic responsiveness evalu-
ation of OS have become a major unresolved issue. In recent 
years, the establishment of OS risk assessment models has 
helped to analyze multiple factors affecting OS prognosis, 
and several preliminary verifies have been carried out [20]. 
Our study on MPRGs effectively stratified the prognostic 
risk of OS patients by ATG4D, RPS27A and TOMM20, 
aligning with existing research and further enriching the 
assessment content [21].

Our results provide new evidence for the important role 
of mitophagy in carcinogenesis and tumor progression [22]. 
Cancer cells are able to avoid programmed apoptosis that 
occurs after separation from neighboring cells or from the 
extracellular matrix [23]. There is evidence that mitophagy 
enhances the survival of cancer cells after separation from 

the original site by avoiding programmed apoptosis [23]. 
For example, in hepatocellular cancer cells, hypoxia can up-
regulate the expression of mitophagy receptor BNIP3 and 
inhibit the mTOR/S6K1 pathway to promote mitophagy, 
thereby increasing the survival of hepatocellular cancer cells 
[24]. In OS cell, mitophagy promotion by BNIP3 can attenu-
ate cisplatin resistance, showing drug sensitivity adjustment 
might be a key mechanism of how mitophagy affects tumor 
progression [18, 25]. In addition, the mTOR/AKT pathway 
and beta-catenin pathway have also been shown to be related 
to the mitophagy process in OS and influence tumor progres-
sion [26–28]. Therefore, further research on mitophagy is of 
clinical value.

The risk stratification associated with MPRG was 
related with resistance to chemotherapy drugs. There is 
evidence for the effect of mitophagy on drug sensitivity. 
Mitophagy has been observed in acute myeloid leukemia 

Fig. 9  Abnormal expression of mitochondrial autophagy related 
prognostic genes in OS verification in vitro. a Western blot analysis 
of ATG4D, RPS27A and TOMM20 in OS cells and control cells. b–d 

The statistical results of western blot (n = 3). e–g qRT-PCR result of 
ATG4D, RPS27A and TOMM20 in OS cells and control cells
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tumor cells treated with chemotherapy-targeted drugs such 
as FLT3-ITD and may be the cause of drug resistance [29]. 
In pancreatic cancer, the E3 ubiquitin ligase ARIH1 can 
promote cancer cell growth by increasing the level of 
mitophagy in tumor cells and increasing cancer resistance 
to chemotherapy drugs through an ubiquitination-depend-
ent pathway [30]. It has also been reported that enhanced 
mitophagy can increase the effect of drugs. Chemotherapy 
drugs and tumor targeting drugs directly attack mitochon-
dria or induce ROS production, resulting in the production 
of a large number of damaged mitochondria. The subse-
quent significant enhancement of mitophagy can lead to 
cell death [15]. Enhanced mitophagy after Ceramide also 
made tumor cells more sensitive to the treatment [31]. 
There is also evidence that the anti-tumor mechanism of 
rapamycin is also realized by inhibiting mTORC1 and thus 
promoting mitophagy [32]. Therefore, these evidences, 
together with our results, demonstrate the important 
value of targeting mitophagy as an intervention in cancer 
therapy. Our results suggested the impact of mitophagy 
on drug sensitivity, for example bleomycin sensitivity is 
associated with MPRG score. A regimen containing bleo-
mycin is effective in patients with OS and can be used for 
preoperative chemotherapy in patients with OS [33, 34]. 
MPRG scores are promising as a basis for determining 
whether bleomycin should be used in patients with OS.

Our results showed that macrophages had the highest 
correlation coefficient with the established MPRG score 
and were associated with better OS prognosis. Macrophage 
genetic signatures in OS have been shown to predict 
prognosis and effectiveness of therapeutic response [35]. 
Tumor-associated macrophages (TAMs) play an impor-
tant role in OS carcinogenesis progress. TAM can pro-
mote tumor growth by protecting cancer stem cells [36]. 
Moreover, TAM secretes immunosuppressive molecules 
to suppress the host immune response, thereby promoting 
tumor immune escape and promoting cancer cell metas-
tasis [37]. In addition, matrix metalloproteinases released 
by TAM can activate the NF-kB signaling pathway to 
enhance epithelial–mesenchymal transformation (EMT) 
to promote OS metastasis [38]. Based on the above evi-
dences, it has been redefined as a potential therapeutic 
strategy to treat patients with OS by reducing the pro-
portion of TAM or M2-type macrophages to activate the 
anti-cancer effects of macrophages [19]. For example, All-
trans retinoic acid (ATRA) can exert anti-tumor and anti-
tumor metastasis activity by inhibiting the polarization of 
macrophages to M2, which demonstrates the importance 
of the immune landscape in the treatment of OS [39]. In 
OS-related in vitro experiments, ATRA prevented invasion 
and migration potency of OS cancer cells as well as stem 
cell properties [39, 40]. OS patients treated with ATRA 
also showed promising results [41]. Multiple OS-targeting 

strategies by interfering with macrophage polarization are 
being developed [19].

Together, our results provide evidence that mitophagy 
plays a role in the development of OS. At present, the 
research on mitophagy is not enough, and its clinical poten-
tial still needs to be further explored. This study provides 
insight for further in vitro/in vivo experiments of mitophagy 
in OS. Further validating the MPRG score in larger, inde-
pendent cohorts, exploring the mechanistic role of identified 
genes in mitophagy, and testing the efficacy of mitophagy-
targeting drugs in preclinical OS models would be of great 
significance.
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