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Abstract
The morbidity of oral squamous cell carcinoma (OSCC) has been rising year after year, making it a major global health issue. 
But the molecular pathogenesis of OSCC is currently unclear. To study the potential pathogenesis of OSCC, the differentially 
expressed genes (DEGs) were screened, and multiple databases were used to perform the tumor stage, expression, prognosis, 
protein–protein interaction (PPI) networks, modules, and the functional enrichment analysis. Moreover, we have identified 
SP110 as the key candidate gene and conducted various analyses on it using multiple databases. The research indicated that 
there were 211 common DEGs, and they were enriched in various GO terms and pathways. Meanwhile, one DEG is sig-
nificantly related to short disease-free survival, four are associated with overall survival, and 12 DEGs have close ties with 
tumor staging. Additionally, the SP110 is significantly associated with methylation level, HPV status, tumor staging, gender, 
race, tumor grade, age, and overall/disease-free survival of oral cancer patients, as well as the immune process. The copy 
number variation of SP110 significantly affected the abundance of immune infiltration. Therefore, we speculate that SP110 
could be used as the diagnostic and therapeutic biomarker for OSCC, and can help to further understand oral carcinogenesis.

Keywords  OSCC · Expression profiling data · SP110 · Hub genes · Biomarker

Introduction

Head and neck squamous cell carcinoma (HNSC) has 
become an important global public health problem due 
to its high mortality and poor prognosis [1]. OSCC is the 
most common aggressive subtype of HNSC [2]. Despite 
the progress in surgical procedures and chemo-radiother-
apy approaches, the 5-year survival rate and overall prog-
nosis of most OSCC patients are still unsatisfactory [3]. 
Meanwhile, the occurrence and progression of OSCC are 
thought to be multi-stage complex processes involving intri-
cate regulatory networks. Currently, with the development 

of sequencing technology, researchers find that DEGs may 
lead to the transformation of normal oral cells into OSCC 
[4]. Therefore, it is urgent and necessary to screen for and 
identify DEGs, differentially expressed signaling pathways, 
and potential molecular mechanisms in carcinogenesis to aid 
in the exploration of novel treatment strategies for OSCC.

The SP110 is one of the chromatin “readers” in humans 
and a member of the speckled protein family. Related 
research found that the “readers” can also be used as cancer 
therapeutic targets [5]. A number of studies have illustrated 
that SP110 is associated with immunity, advanced liver dis-
ease without veno-occlusive disease (VOD), tuberculosis 
infection, and transcriptional regulation [6, 7]. Recently, 
emerging evidence indicates that the function of SP110 is 
correlated with multiple cancers [8–10]. However, there are 
few studies on the mechanisms of SP110 in oral cancer.

In the present research, multiple databases were selected 
to screen and validate the DEGs. SP110 was found to be not 
only significantly up-regulated in multiple databases, human 
OSCC tissues, and cell lines but also related to stage and 
overall/disease-free survival. Our results indicate that SP110 
may be involved in the molecular regulation mechanism of 
OSCC and could be used as a novel potential diagnostic, 
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prognostic, and therapeutic biomarker of OSCC. More 
importantly, the present research is allowing us to screen 
potential biomarkers and contribute to a better understanding 
of oral carcinogenesis.

Materials and Methods

Datasets Acquisition

Gene Expression Omnibus (GEO, https://​www.​ncbi.​nlm.​
nih.​gov/​geo/) is a public genomics database that is freely 
available online [11]. After review, three datasets were 
selected: The GSE138206 dataset contains six oral cancer 
tissues and six contralateral normal tissues. All patients 
were diagnosed with OSCC, including five males and one 
female. And the dataset is based on microarray data obtained 
from the “GPL570 ([HG-U133_Plus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array)” platform. The GSE23558 
dataset includes 27 oral cancer samples, four independent 
controls, and one pooled control. All control group samples 
are oral cavity tissue from healthy donors. All 27 patients 
were diagnosed with oral cancer, including 20 males and 7 
females. Among the five healthy controls, there are three 
males, one female, and one pooled sample. This dataset 
was obtained from the GPL6480 (Agilent-014850 Whole 
Human Genome Microarray 4x44K G4112F) platform. The 
GSE37991 dataset consists of oral cancer samples obtained 
from 40 male OSCC patients with a history of regular alco-
hol consumption, betel chewing, and smoking. Simultane-
ously, the adjacent non-tumor epithelium of these 40 patients 
was taken as a normal control. This dataset was obtained 
from the GPL6883 (Illumina HumanRef-8 v3.0 expression 
beadchip) platform.

Data Processing

The DEGs and the P value, adjusted P value, and |logFC| 
were obtained by GEO2R (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/​geo2r/), and the adjusted P value < 0.01 and |logFC| ≥ 1 
were used as screening thresholds. Meanwhile, the DEGs 
common to the three datasets were identified for further 
function analysis.

Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) Enrichment Analysis

In the present study, the GO and KEGG pathway enrichment 
analyses were performed by ClueGO (v2.5.7) and CluePedia 
(v1.5.7). The adjusted P < 0.05 was chosen as the signifi-
cance cutoff point.

PPI Network Construction

The Search Tool for the Retrieval of Interacting Genes 
(STRING, https://​string-​db.​org/) [12] was used to detect 
and construct the potential PPI networks of the DEGs 
using the default parameters. And the Cytoscape (v3.7.1) 
was used to perform further analysis, identify, and visual-
ize the PPI networks.

Hub Gene Screening and Module Analysis

CytoHubba (v0.1) was used to further investigate the 
DEGs in the PPI network using the default parameters, 
and the top 20 node genes were identified as hub genes 
for next-step analysis. In addition, another plugin for 
Cytoscape, Molecular Complex Detection (MCODE, 
v1.5.1), was used to screen the most significant modules 
in the PPI network with default parameters.

Expression, Stage and Survival Analysis

To explore the role of identified hub genes in oral carcino-
genesis, the Gene Expression Profiling Interactive Analy-
sis (GEPIA, http://​gepia.​cancer-​pku.​cn/#​index) [13] was 
used to perform expression, stage, and survival analyses of 
the top 20 hub genes using the default parameters.

Analysis of Oncomine, ENCORI and UALCAN 
Database

Oncomine (https://​www.​oncom​ine.​org/) is an integrated 
tumor sequencing database [14], and ENCORI (https://​
rnasy​su.​com/​encori/) is an open-source database including 
multiple modules [15]. They were used to further analyze 
the transcription level of SP110 in different tumors and 
detect the expression level of SP110 with default parame-
ters. Furthermore, to increase the credibility of our results, 
the UALCAN (http://​ualcan.​path.​uab.​edu/) database [16] 
was used to detect the relative expression level, meth-
ylation level, HPV status, patient’s gender, tumor grade, 
patient’s race, and patient’s age in the SP110 using the 
default parameters.

OSCC Sample Collection

The OSCC samples with pathologically definitive diagno-
ses were provided by Professor Sun from Shanxi Provincial 
People’s Hospital, which included five OSCC samples and 
their three normal counterparts. The written informed con-
sent for tissue donation for research was obtained, and the 
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relevant research was approved by the ethics committees of 
the Shanxi Provincial People’s Hospital (2019-05).

Cell Line Culture

Human OSCC cell line SCC-9 was purchased from FuHeng 
Biology Co., Ltd. (Shanghai, China); CAL-33 and SCC-25 
were provided by Henan Provincial People’s Hospital. And 
the HOK (human normal oral keratinocyte cell line) and 
HN6 cell lines were provided by the School and Hospital 
of Stomatology, Shanxi Medical University. All cell lines 
were cultured for fewer than six months after resuscitation 
and evaluated for mycoplasma on a regular basis. Addition-
ally, OSCC cells were grown in Dulbecco’s modified Eagle 
medium (DMEM, BOSTER, China), and HOK cells were 
grown in Hyclone 1640 medium (Hyclone, USA). Mean-
while, the medium contains 10% fetal bovine serum (Gibco, 
USA) and 1% penicillin–streptomycin (Solarbio, China). All 
cells were maintained in a 37 °C incubator with 5% CO2.

Expression Validation of Candidate Gene

Total RNA from human OSCC tissue and cell lines was 
extracted by TRIzol (Invitrogen, USA). Hereafter, they were 
reverse transcribed to cDNA by the Prime Script™ RT Mas-
ter Mix kit (Takara, Japan). And then qPCR was performed 
on StepOne Plus (ABI, USA). The reaction conditions were: 
95 °C for 30 s, 40 cycles of 95 °C for 5 s, and 60 °C for 30 s; 
following, a melting curve analysis was performed. Primers 
were synthesized by Sangon Biotech. The 2−ΔΔCt method 
was used to analyze the results, which used GAPDH as an 
endogenous control.

The following primers were used: GAPDH forward 
5′-GCA​CCG​TCA​AGG​CTG​AGA​AC-3′ and reverse 5′-TGG​
TGA​AGA​CGC​CAG​TGG​A-3′; SP110 forward 5′-GGA​ACG​
CAA​AGA​ACT​GGA​AAC-3′ and reverse 5′-CAT​GGA​AGA​
CTC​GTG​GAC​AAG-3′.

Co‑expression Analysis of SP110

The top 100 co-expressed genes significantly associated with 
SP110 were screened from the Oncomine database using 
the default parameters. Meanwhile, the PPI network of the 
screened genes was constructed by the STRING database 
with default parameters and visualized by Cytoscape.

Functional Analysis of Co‑expressed Genes

GO and KEGG enrichment analyses were performed by 
DAVID [17] (https://​david.​ncifc​rf.​gov/), and adjusted 
P < 0.05 is the threshold. The association between SP110 
expression and the abundance of immune infiltrates, includ-
ing various immune cells, was analyzed by the TIMER 

(https://​cistr​ome.​shiny​apps.​io/​timer/) database with default 
parameters. Moreover, the relationship between the level of 
tumor immune infiltration and the Copy Number Variation 
(CNV) of SP110 was also evaluated by the TIMER database 
using the default parameters, and P < 0.05 is the threshold.

Statistical Analysis

The quantitative results of qPCR were analyzed using 
the IBM SPSS Statistics 24 software. And the LSD t-test 
was used to compare groups. The values are expressed as 
mean ± standard error of the mean, and P < 0.05 was used 
to indicate statistical significance. In the differential expres-
sion and functional enrichment analysis, the Benjamin and 
Hochberg false discovery rate (FDR) method was used to 
correct the adjusted P value and the occurrence of false posi-
tive results. The cutoff standard was defined as an adjusted 
P value < 0.01 and |logFC| ≥ 1. The significance level of 
GO and KEGG enrichment was calculated using a thresh-
old of an adjusted P value < 0.05. And the co-expression 
analysis of SP110 was evaluated in the oncomine database 
using Spearman’s correlation analysis, and a P value < 0.05 
was considered statistically significant. Other analyses are 
performed according to the statistical analysis methods and 
default parameters provided by the corresponding software.

Brief Description of Bioinformatics Analysis

Initially, we identified three oral cancer datasets from the 
GEO database and subsequently utilized GEO2R to set an 
adjusted P value < 0.01 and |logFC| ≥ 1 as the threshold 
for screening DEGs. Perform GO and KEGG enrichment 
analysis on the selected DEGs using ClueGO (v2.5.7) and 
CluePedia (v1.5.7), with adjusted P < 0.05 as the threshold 
for significant differences. The PPI network of DEGs was 
constructed using STRING with default parameters and 
further analyzed and visualized using Cytoscape (v3.7.1); 
the plugin MCODE (v1.5.1) with default settings was used 
to filter key modules in the PPI network; Another plugin, 
CytoHubba (v0.1) with default parameters, was employed 
to investigate key node genes in the PPI network, and the 
top 20 nodes were identified as hub genes for subsequent 
analysis. In order to further validate the expression of hub 
genes and explore their impact on oral cancer staging and 
survival, we analyzed the expression, staging, overall sur-
vival, and disease-free survival of the top 20 hub genes using 
GEPIA with default parameters. Select the gene (SP110) that 
is significantly differentially expressed in oral cancer and has 
a significant impact on its staging, overall survival, and dis-
ease-free survival as the key candidate gene. SP110, which 
is significantly differentially expressed in oral cancer and 
has a significant impact on its staging, overall survival, and 
disease-free survival, has been selected as a key candidate.

https://david.ncifcrf.gov/
https://cistrome.shinyapps.io/timer/
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Oncomine and ENCORI databases (with their default 
parameters) were utilized to analyze the expression levels 
of SP110 in different types of tumors. Meanwhile, the UAL-
CAN database was employed to investigate the expression 
level, methylation level, and HPV status of SP110 in oral 
cancer, as well as the relationship between SP110 and factors 
such as the patient’s gender, tumor grade, race, and age in 
oral cancer. To ensure the reliability of the screening results, 
the expression of SP110 was examined in human oral can-
cer tissues and human oral cancer cell lines. Furthermore, 
the co-expression genes of SP110 were identified using the 
Oncomine database with its default parameters, and the top 
100 co-expressed genes were screened for further research. 
Subsequently, the PPI network for the top 100 co-expressed 
genes was constructed using the aforementioned method and 
visualized. The top 100 co-expressed genes were subjected 
to GO and KEGG enrichment analyses using DAVID with 
default parameters. Finally, the TIMER database was used to 
analyze the relationship between SP110 expression and the 
abundance of immune infiltrates (including various immune 
cells), as well as the association between tumor immune 
infiltration levels and the CNV of SP110.

Results

Identification of DEGs

Among the datasets, GSE138206 has six OSCC tissues, six 
tissues adjacent to cancer, and six contralateral normal tis-
sues. The 27 OSCC tissues in GSE23558 were compared 
with five control oral cavity tissues. GSE37991 contains 40 
OSCC tissues and 40 non-tumor tissues. Figure 1A showed 
that there were 1041 DEGs in the GSE138206, including 
450 upregulated differentially expressed genes (uDEGs) 
and 591 downregulated differentially expressed genes 
(dDEGs). And 2080 DEGs were identified from GSE23558, 
of which 830 are uDEGs and 1250 are dDEGs (Fig. 1B). 
From GSE37991, 2092 DEGs were identified, consisting 
of 887 uDEGs and 1205 dDEGs (Fig. 1C). Subsequently, 
the intersection of the DEGs in three datasets was obtained 
by Venn analysis. In the intersection, a total of 211 DEGs 
(Fig. 1D) were detected, including 135 dDEGs (Fig. 1E) and 
76 uDEGs (Fig. 1F). Finally, a heat map of the 211 DEGs in 
the three datasets is shown in Fig. 2A–C.

GO Enrichment Analyses

From the dDEGs, 69 significant differentially GO terms, 
including 49 biological processes, 15 molecular functions, 
and five cellular components, are identified (Fig. 3A). Mean-
while, for the uDEGs, there are 35 significant differentially 
GO terms containing 32 biological processes, one molecular 

function, and two cellular components (Fig. 3B). Moreo-
ver, the dDEGs are mainly enriched in the inflammatory 
response to antigenic stimulus, scavenger receptor activity, 
negative regulation of cell junction assembly, the lateral 
plasma membrane, and NAD binding. And the uDEGs are 
mainly contained in response to vitamin D, the collagen 
catabolic process, the basement membrane, double-stranded 
RNA binding, and the negative regulation of type I inter-
feron production.

Furthermore, based on the analysis of the plugin of 
Cytoscape, the enriched GO terms of the dDEGs were 
mainly divided into 14 groups, among which the long-chain 
fatty acid metabolic process is the largest group (Fig. 3C); 
the enriched GO terms of the uDEGs were mainly divided 
into 12 groups, and the type I interferon signal is the largest 
group (Fig. 3D). At the same time, the networks of the GO 
terms indicate that, in the GO terms of dDEGs, the long-
chain fatty acid metabolic process has the most connections 
with other terms (Fig. 3E), and for the GO terms of uDEGs, 
type I interferon signal has the most connections with other 
terms (Fig. 3F).

KEGG Enrichment Analysis

We analyzed all the DEGs together in KEGG enrichment, 
and they are significantly enriched in the retinol metabolism, 
hepatitis C, Extracellular Matrix (ECM) receptor interac-
tion, small cell lung cancer, drug metabolism, and chemical 
carcinogenesis signaling pathways (Fig. 4A). In addition, 
we performed interactive analysis on these significantly 
enriched pathways and visualized them with cytoscape. 
Figure 4B not only reveals the interaction between the sig-
nificantly enriched pathways but also shows the DEGs con-
tained in the pathways. In the KEGG network, we could 
learn that many of the genes are common along different 
pathways; in other words, they overlap among pathways.

PPI Network Analysis and Hub Gene Screening

There are 157 nodes and 288 edges in the PPI network 
(Fig. 5A). To further explore the interactions, the topological 
features were analyzed, and the Number of nodes, Topological 
coefficient, Neighborhood connectivity, and Clustering coef-
ficient were analyzed. The results revealed that, in the network, 
most of the nodes had a low score and a few nodes were highly 
connected to the others (Fig. 5B). Moreover, cluster analysis 
was performed by MCODE APP, and we found that the net-
work mainly has nine clusters, of which the top three are pre-
sented in Fig. 5C, D. And the top cluster contained 15 nodes 
with 85 edges and had the highest score (Fig. 5C). The top two 
clusters possessed six nodes and 42 edges and also had a close 
connection (Fig. 5D). Meanwhile, the third cluster included 
four nodes and six edges (Fig. 5E). Furthermore, we screened 
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Fig. 1   Analysis of DEGs. 
Volcano plots of DEGs in 
GSE138206 (A), GSE23558 
(B), and GSE37991 (C) 
datasets. The red represent 
up-regulated DEGs, and the 
green represent down-regulated 
DEGs. D–F Venn graph of 
DEGs in gene expression profil-
ing datasets. D The total DEGs 
in the three datasets. E Down-
regulated DEGs in the three 
datasets. F Up-regulated DEGs 
in the three datasets
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Fig. 2   Heat map of the DEGs. 
A GSE138206. B GSE23558. C 
GSE37991
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the 20 most significant hub genes using the CytoHubba plugin. 
And Table 1 provided more information about them.

Expression, Stage, and Survival Analysis of the Hub 
Genes

The GEPIA database was used to perform expression anal-
ysis on the top 20 hub genes. At the same time, we also 

analyzed their role in the stage and prognosis of the OSCC. 
The results showed that the expression of all 20 hub genes 
in the GEPIA database was consistent with our previous 
analysis (Fig. 6). Meanwhile, we also found that, in the top 
20 genes, SP110, IFIT3, OAS3, OAS2, DDX58, UBE2L6, 
CXCL10, CXCL11, GBP5, EPSTI1, MMP3, and SPP1 are 
closely related to tumor staging (Fig. 7A), and high expres-
sion of SP110, MMP1, SERPINE1, and SPP1 is associated 

Fig. 3   GO enrichment of the DEGs. A GO histogram of the intersect-
ing down-regulated DEGs in three datasets. B GO histogram of the 
intersecting up-regulated DEGs in three datasets. C Pie chart for GO 
categories of the intersecting down-regulated DEGs in three datasets. 

D Pie chart for GO categories of the intersecting up-regulated DEGs 
in three datasets. E The GO term interaction network in three datasets 
with intersecting down-regulated DEGs. F The interaction network of 
GO terms in the intersecting up-regulated DEGs in three datasets
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Fig. 4   KEGG enrichment of the DEGs. A KEGG histogram of the intersecting DEGs in three datasets. B KEGG pathway interaction network of 
intersecting DEGs
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Fig. 5   PPI network, topological features, and significant modules. 
A PPI network. Red nodes represent up-regulated DEGs, and green 
nodes indicate down-regulated DEGs. B Analysis results of the 

degrees, topological coefficients, neighborhood connectivity, and 
clustering coefficients of the PPI network. C–E The top three signifi-
cant modules in the PPI network
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with short overall survival (Fig. 7B). Through the multiple 
screenings mentioned above and by considering various rel-
evant factors comprehensively, we found that among the top 
20 key candidate genes, SP110, MMP1, SERPINE1, and 
SPP1 are significantly associated with the overall survival 
rate of oral cancer patients. To further explore the potential 
association between candidate genes and oral cancer, we 
conducted an analysis of disease-free survival for these four 
genes. The results indicated that out of the four genes, only 
SP110 was significantly associated with the disease-free 
survival rate of oral cancer patients, whereas MMP1, SER-
PINE1, and SPP1 showed no significant correlation with the 
disease-free survival rate (Fig. 7C). The high expression of 
SP110 leads to a significant shortening of the disease-free 
survival period in oral cancer patients (Fig. 7C). Based on 
these findings, we discovered that SP110 is significantly 
differentially expressed and is associated with tumor stage, 
overall survival, and disease-free survival. Therefore, we 
selected the SP110 for further verification and analysis.

SP110 Expression and Function Analysis

In order to better verify the expression and prognostic 
value of SP110, we further performed analysis using the 

Oncomine, ENCORI, and UALCAN databases. We com-
pared the mRNA expression of SP110 in cancer and normal 
samples in the Oncomine database (Fig. 8A). Moreover, the 
SP110 was significantly overexpressed in the cancer group 
in all three datasets (the Ginos OSCC, Peng OSCC, and 
Toruner OSCC) (Fig. 8B).The ENCORI pan-cancer analy-
sis showed that the SP110 was significantly up-regulated 
in human HNSC samples (Fig. 8C). In the UALCAN data-
base, we also found that the SP110 was significantly up-reg-
ulated in oral tumor tissues (Fig. 8D). Meanwhile, to further 
validate the findings of the analysis described above, we 
used qPCR to further validate SP110 expression in human 
OSCC tissues and human OSCC cells. We also observed 
high expression of SP110 in oral cancer specimens (Fig. 8E). 
And compared to the HOK cell line, SP110 was significantly 
up-regulated in the SCC-9, CAL-33, SCC-25, and HN6 cell 
lines, and it has the highest expression level in the HN6 cell 
line (Fig. 8F).

Further analysis of the UALCAN database indicated that 
the promoter methylation level of SP110 was significantly 
elevated in the primary tumor (Fig. 9A). Significant differ-
ences in HPV status were found not only between the normal 
and tumor groups, but also between the HPV + ve and HPV 
− ve tumor groups. Furthermore, the results show that the 

Table 1   The detailed information of the top 20 hub genes

Name Full name Gene.ID Adjusted P value logFC

GSE138206 GSE23558 GSE37991 GSE138206 GSE23558 GSE37991

ISG15 ISG15 ubiquitin-like modifier 9636 0.0001022 7.55E−05 3.22E−15 3.888 3.37 1.523684
RSAD2 Radical S-adenosyl methionine domain 

containing 2
91543 8.737E−05 0.000095 5.56E−16 3.23029 4.56 1.608699

IFIT3 Interferon induced protein with tetratri-
copeptide repeats 3

3437 0.0001159 0.00153 5.18E−15 2.769851 3.21 1.91481

OAS3 2′-5′-Oligoadenylate synthetase 3 4940 0.0003426 0.000192 2.46E−10 1.846695 2.24 1.301641
OAS2 2′-5′-Oligoadenylate synthetase 2 4939 0.0003995 0.000102 5.66E−20 2.205093 2.77 2.489843
OASL 2′-5′-Oligoadenylate synthetase like 8638 0.0019651 0.00785 4.48E−16 2.029363 2.67 2.869684
DDX58 DEXD/H-box helicase 58 23586 0.0011716 0.000502 3.95E−10 2.021336 2.28 1.324419
IFI6 Interferon alpha inducible protein 6 2537 1.893E−05 0.00028 3.2E−24 3.560899 3.33 2.875125
SP110 SP110 nuclear body protein 3431 0.0020941 0.000326 1.7E−12 1.131826 1.97 1.135433
UBE2L6 Ubiquitin conjugating enzyme E2 L6 9246 0.0005627 0.00371 3.93E−10 1.597541 1.93 1.472504
CXCL10 C-X-C motif chemokine ligand 10 3627 0.0001846 0.00123 1.44E−06 2.873768 4.99 1.204904
CXCL11 C-X-C motif chemokine ligand 11 6373 0.0002189 0.00303 1.4E−07 3.451291 5.4 2.314256
GBP5 Guanylate binding protein 5 115362 0.0002445 0.000603 1.38E−10 2.597478 3.9 1.765904
HLA-F Major histocompatibility complex, class 

I, F
3134 0.0037876 0.00572 0.000118 1.201474 1.35 1.099754

EPSTI1 Epithelial stromal interaction 1 (breast) 94240 0.0003913 0.000354 1.33E−11 2.825655 3.19 1.224333
MB21D1 Mab-21 domain containing 1 115004 0.0022564 0.000385 3.73E−16 1.015996 1.66 1.244652
MMP1 Matrix metallopeptidase 1 4312 4.306E−05 2.71E−08 8.42E−24 6.072864 5.12 3.223244
SERPINE1 Serpin family E member 1 5054 0.0003105 0.0000861 7.23E−17 3.016001 4.42 2.838191
MMP3 Matrix metallopeptidase 3 4314 0.0095263 0.000114 1.02E−10 3.970731 5.86 1.546717
SPP1 Secreted phosphoprotein 1 6696 0.0039882 0.0000603 4.48E−09 3.939612 4.94 2.474399
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Fig. 6   Expression verification in the GEPIA database of the top 20 significant DEGs. The left column (red) indicates cancer tissues; the other 
(black) indicates normal tissues
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expression of SP110 was significantly up-regulated in both 
the HPV + and HPV − groups. Meanwhile, SP110 expres-
sion was lower in the HPV + ve group than in the HPV − ve 

group (Fig. 9B).The SP110 was significantly high expressed 
in female patients (Fig. 9C), indicating that the differential 
expression of the SP110 was closely related to the patient’s 

Fig. 7   Stage analysis and overall/disease-free survival analysis of the top 20 significant DEGs. A Stage analysis. B Overall survival analysis. C 
Disease-free survival analysis



Molecular Biotechnology	

gender. At the same time, SP110 expression was also related 
to tumor grade (Fig. 9D). Furthermore, the patient’s race 
analysis indicates that the expression of SP110 in African-
Americans was lower than that in Asians, and there were no 
differences between the other races (Fig. 9E). Furthermore, 
the patient’s age analysis results revealed that there were 
significantly differences between the Age (41–60 years)-
vs-Age (81–100  years) and Age (61–80  years)-vs-Age 
(81–100 years) (Fig. 9F).

Analysis of Co‑expression, Enrichment, Infiltrated 
Immunity, and CNV

Based on the above, we in-depth screened the top 100 genes 
co-expressed with SP110 in oral cancer from the Peng Oral 
Cavity Squamous Cell Carcinoma dataset of the Oncomine 

database (Fig. 10A). And their PPI network was generated 
in STRING and imputed into the Cytoscape for visualization 
and further analysis (Fig. 10B). Furthermore, the GO func-
tional analysis revealed that the co-expressed genes were 
significantly enriched in defense response, TAP complex, 
immune response, ATPase activity, peptide antigen bind-
ing, innate immune response, peptide antigen-transporting, 
chemokine activity, and type I interferon signaling pathways 
(Fig. 10C). KEGG enrichment analysis suggested that the 
co-expressed genes were mainly enriched in the Toll-like 
receptor, herpes simplex infection, antigen processing and 
presentation, and Chemokine and Cytokine–cytokine recep-
tor interaction signaling pathways (Fig. 10D).

Based on the functional enrichment analysis, we specu-
late that differential expression of SP110 may play an impor-
tant role in the oral tumor immune response. The results 

Fig. 8   Pan-cancer analysis of SP110 expression. A Red represents 
up-regulated and blue represents down-regulated expression in tumor 
specimens. The darker shadow indicates a higher significance. The 
numbers indicate the number of datasets. B SP110 expression in 
OSCC specimens in three oncomine datasets. C SP110 expression 

in OSCC specimens in the ENCORI database. D The expression of 
SP110 in OSCC samples in the UALCAN database. E SP110 expres-
sion in human oral cancer specimens. F SP110 expression in the 
human oral cancer cell lines
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indicated that the different infiltrated immune cells were all 
significantly related to SP110 expression levels in oral can-
cer (Fig. 10E). Besides, the relevance between immune infil-
tration and somatic CNV was also determined by TIMER. 
The results indicated that arm-level gain was related to the 
infiltration of B cells, macrophages, CD8+ T cells, CD4+ T 
cells, neutrophils, and dendritic cells, while arm-level dele-
tion was only associated with B cell infiltration. And the 
deep deletion was also related to CD4+ T cells (Fig. 10F).

Discussion

The International Classification of Diseases defines oral can-
cer as “the cancer of the oral cavity and pharynx,” and the 
most common form is oral squamous cell carcinoma. More 
than 330,000 deaths from oral cancer are reported annually 
[18]. Although the diagnostic and therapeutic methods for 
OSCC have increased markedly, the overall survival rate 
of this life-threatening disease is still at a low level [19]. 
OSCC occurs and develops in a complicated and multi-step 
sequential process that includes multiple gene and multi-
stage changes. Oral cancer is mainly treated by surgery, 
radiotherapy, and chemotherapy technologies such as plati-
num, doxorubicin, five-fluorouracil, etc. However, it has 
significant toxic and side effects, and the mechanism of the 
occurrence and malignant transformation of oral cancer is 
still unknown [2]. So it is of key importance in identifying 

new potential diagnostic, treatment, and prognostic biomark-
ers to improve targeted therapy for oral cancer.

As research progressed, it was discovered that the 
pathogenesis of oral cancer was strongly linked to genetic 
mutations [20]. Nowadays, with the rapid development of 
DEG screening technology such as microarrays and high-
throughput sequencing, it is easier for researchers to study 
oral cancer at the genetic level. At the same time, the devel-
opment of various tumor-related databases has also made 
it easier to obtain tumor-related DEGs. The GEO database 
has been widely used to explore the DEGs involved in the 
diagnosis, prognosis, and therapeutics of various tumors. 
Similarly, we also use GEO, STRING, GEPIA, Oncomine, 
UALCAN, ENCORI, and TIMER databases to screen and 
verify DEGs and perform functional analysis and immune-
related analysis.

Analysis of the differential expression in the three data-
sets in the GEO database shows that there were 211 genes 
that were significantly differentially expressed in all three 
datasets. Then, GO and KEGG functional and PPI network 
interaction analyses for DEGs were performed. At the same 
time, we characterized the network and obtained the sub-
networks and hub genes. Moreover, we selected the top 
20 prominent hub genes to verify their expression in other 
databases (GEPIA) and analyzed their roles in the stage and 
overall/disease-free survival of oral cancer. The analysis 
shows that all 20 hub genes have a consistent expression 
trend in the GEPIA and GEO databases. In addition, in the 
top 20 genes, there were 12 hub genes (SP110, IFIT3, OAS3, 

Fig. 9   Analysis of the clinical role of SP110 in HNSC by the UALCAN database. Differential expression of the SP110 is significantly correlated 
with promoter methylation level (A), HPV status (B), the patient’s gender (C), tumor grade (D), race (E), and the age of the patient (F)
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OAS2, DDX58, UBE2L6, CXCL10, CXCL11, GBP5, 
EPSTI1, MMP3, and SPP1) that were significantly related to 
tumor staging, four (SP110, MMP1, SERPINE1, and SPP1) 
that were closely related to overall survival, and one (SP110) 
that was associated with disease-free survival.

Furthermore, we also found that the up-regulation of 
SPP1 is associated with both an advanced tumor stage and 
a worse prognosis. Similarly, Hu et al. pointed out that lipid 
metabolism-related genes SPP1 and SERPINE1 have the 
potential to be used to predict the prognosis of oral can-
cer [21]. Yang et al. discovered that the mRNA and protein 
levels of the cancer-related gene SPP1 are overexpressed in 
OSCC samples and are associated with a poor prognosis. 
They hypothesized that SPP1 could be a potential therapeu-
tic target for inhibiting metastasis in OSCC [22]. Zou et al. 
identified the key candidate, SPP1, from the complex PPI 

network, and they confirmed that SPP1 is closely related to 
OSCC survival. They also found that SPP1 could regulate 
oral cancer proliferation, migration, and invasion. Mean-
while, SPP1 is considered a prognostic or therapeutic target 
for OSCC [23, 24].

Simultaneously, the research also demonstrated that up-
regulation of SP110 is not only significantly related to the 
advanced pathological stage but also closely correlated to a 
worse overall/disease-free survival rate. Inspired by these 
discoveries, we infer that SP110 could be considered a 
promising therapeutic biomarker with future clinical sig-
nificance. Therefore, we decided to select SP110 for in-depth 
analysis and detection. The results of our subsequent analy-
sis and verification show that the expression level of SP110 
in a variety of tumor databases, including Oncomine, UAL-
CAN, and ENCORI, is consistent with the GEO and GEPIA 

Fig. 10   Bioinformatics analysis of the genes co-expressed with 
SP110. A The top 100 genes co-expressed with SP110. B PPI net-
work of the top 100 genes. GO (C) and KEGG pathway (D) enrich-
ment analysis of the top 100 genes. E Correlation between SP110 

expression and immune infiltration level. F Correlation of SP110 
expression with somatic CNV and immune infiltration levels of six 
immune cells in OSCC
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databases. The qPCR verification illustrated that SP110 was 
significantly overexpressed in human oral tumor tissues and 
multiple cell lines. Moreover, we also found that the expres-
sion of SP110 in the HN6 cell line is the highest. Therefore, 
in subsequent experiments, the HN6 cell line can be used 
as a potential candidate cell line and combined with siRNA 
technology to verify the impact of reduced SP110 expres-
sion on oral cancer cell function after interference. Further 
bioinformatics analysis of SP110 found that the differential 
expression of SP110 was markedly correlated with the meth-
ylation level, HPV status, gender, tumor grade, race, and 
age of oral cancer patients, which indicates that SP110 has 
the potential to be a pre-cancer diagnosis and pathological 
grading for oral cancer, and it may also affect the occur-
rence and development of oral cancer by regulating methyla-
tion. Next, the interaction analysis of SP110 and enrichment 
analysis of its interaction genes demonstrated that SP110 
is significantly associated with immune-related genes and 
significantly enriched in immune-related pathways and GO 
terms. Thus, we speculate that SP110 could be regarded 
as a potential therapeutic target for OSCC. In subsequent 
research, efforts could be focused on reducing the expression 
of SP110 in oral cancer to inhibit its progression. In addi-
tion, the above results indicate that SP110 may also play an 
important role in the immune regulation of oral tumors. So 
it is also possible to combine SP110 with tumor immunity 
in order to explore a novel treatment method for oral cancer. 
Ultimately, immune-related analysis of SP110 suggests that 
dysregulation of SP110 is related to the infiltration levels 
of six immune cells (CD4C T cells, CD8C T cells, B cells, 
macrophages, neutrophils, and DCs); at the same time, the 
differential expression of SP110 is also associated with their 
copy number variation. The results indicate that the dysregu-
lation of SP110 can affect the occurrence and progression of 
oral cancer by affecting copy number variation and the infil-
tration of related immune cells. Based on the above analysis, 
we believe that SP110 could act as a potential immunothera-
peutic target with future clinical significance.

There are only a few studies on SP110 in cancer, but 
some related reports were found to be consistent with our 
findings. According to the literature, the transcription reg-
ulator SP110 is one of the most frequently up-regulated 
oncogenes in pregnancy-associated breast cancer. And the 
research emphasized that the SP110 might be the potential 
target for breast cancer, which controls the development of 
breast cancer and could improve fetal implantation [25]. Hu 
et al. found that SP110 was overexpressed in both mouse and 
human tumors by establishing an animal model system of 
mammary cancer [26]. A study of a gene signature based on 
B cells illustrated that SP110, as one of the B cell-specific 
genes, was an independent risk factor for overall survival in 
lung adenocarcinoma [8]. Through literature consulting, it 
was found that currently only one article has reported the 

relationship between SP110 and oral cancer. It pointed out 
that SP110 was significantly overexpressed in oral cancer. 
Furthermore, SP110 exhibits a high propensity for mutation 
in oral cancer cell lines, and these mutations may be associ-
ated with the disease. Additionally, the mutation profiles of 
SP110 and SP140 are complex, and these genes may mediate 
immune cell transcriptional regulation and cell apoptosis 
through epigenetic regulation [27].

Human SP110 were first observed to exhibit elevated lev-
els in both peripheral blood leukocytes and spleen [5]. And 
relevant studies show that SP110 could play an indispen-
sable role in the field of other biological functions. Wang 
et al. pointed out that SP110 is included in remodeling and 
formation of the chromatin, and upregulation of SP110 leads 
to fetal liver veno-occlusive disease with immunodeficiency 
[28]. SP110 also has the potential to be a targeted drug for 
the treatment of infantile influenza, according to a compre-
hensive analysis of genes involved in the immune system 
and virus defense modules [29]. Chang et al. indicated that 
the polymorphism in SP110 plays a role in controlling the 
genetic susceptibility of humans to latent and active tubercu-
losis infections [30]. Sengupta et al. pointed out that SP110 
is recruited on the FBP1 promoter rich in H3K18Ac and 
promotes the recruitment of the acetylase SIRT2 at this site 
in the presence of HBV. SIRT2, in turn, brings its interactor 
and transcriptional activator into HNF4αit to the promoter, 
ultimately leading to the loss of DNA methylation near the 
homologous site. And the regulation of FBP1 driven by 
SP110 can promote the progression of hepatitis mediated 
hepatocellular carcinoma [31]. The research on veno occlu-
sive disease shows that, the mutation of SP110 is one of the 
root causes of veno-occlusive diseases with immunodefi-
ciency (VODI) [32]. Leu et al. suggested that SP110b regu-
lates NF-κB activity, leading to the production of TNF-α and 
the concomitant upregulation of NF-κB-induced anti-apop-
totic gene expression, thereby inhibiting IFN-γ-mediated 
monocyte and/or macrophage death. Therefore, SP110b can 
serve as a potential target for regulating the body’s immu-
nity [33]. Xiaogang et al. found that the rs722555 SNP in 
the SP110 gene may be a risk factor for tuberculosis in the 
Mongolian population in the study of genotyping detection 
[34]. A study combining immunodeficiency and advanced 
liver disease has shown that functional deletion mutations in 
the SP110 gene can cause familial venous occlusive disease 
with immunodeficiency [7]. The analysis of SP110 deletion 
mutants showed that the interaction between the N-terminal 
fragment of SP110 (amino acids 1–276) and the NF-κB sub-
unit p50 in the cytoplasm plays a crucial role in the down-
regulation of TNF-α promoter activity driven by p50 in the 
nucleus [35]. Knocking down SP110 significantly reduced 
the viral DNA load in the culture medium supernatant by 
activating the type I interferon response pathway. Moreover, 
SP110 can differentially regulate several direct target genes 
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of hepatitis B virus protein X (HBx, a viral cofactor) and is 
a novel interacting agent of HBx [36].

To our knowledge, our study reported a relationship 
between significant up-regulation of SP110 and tumor stage, 
overall/disease-free survival, HPV status, tumor grade, 
patients’ age and patients’ gender of oral cancer for the first 
time. Additionally, we discovered that SP110 not only inter-
acts with a variety of genes but is also significantly associ-
ated with immune infiltration. Our study indicates that the 
occurrence and development of OSCC may be regulated by 
SP110 and its related genes, and SP110 has the capacity to 
act as a new target for diagnosis, treatment, and prognosis of 
oral cancer. And the findings expanded current knowledge 
about the role of SP110 in oral cancer and may help increase 
treatment options and improve diagnostic accuracy. Further-
more, research on the cellular, in vivo, and protein expres-
sion levels during OSCC tumorigenesis and development 
should be performed to further validate our analysis results 
and explore the potential of the key pathways as biomarkers.

There are still some potential limitations and address-
ing methods for this study: (i) The relevant sequencing data 
was obtained from the GEO database rather than generated 
by the authors. Since bioinformatics analysis relies on data 
from public databases, systematic errors in the selected data 
sources may lead to bias. To overcome this limitation, we 
validated the screening results using multiple databases to 
increase the reliability and consistency of the results. (ii) 
During the bioinformatics analysis process, steps such as 
data cleaning, screening, and integration may result in infor-
mation loss or bias. Therefore, when selecting datasets, we 
ensure that the raw data used has undergone rigorous quality 
control to avoid biases resulting from poor data quality. And 
in the analysis process, standardized and normalized data 
processing and analysis were adopted to reduce the impact 
of human factors on the results. (iii) The focus of this study 
is to screen and predict key candidate genes for oral cancer 
based on bioinformatics methods. In order to improve the 
reliability of screening and prediction results, we further 
validated its expression in human oral cancer tissues and cell 
lines using qPCR experiments. (iv) Different functional anal-
ysis methods have different advantages and disadvantages. 
In this study, the limitations of the DAVID tool include that 
it only uses the number of genes without considering gene 
expression levels or differential expression values. Mean-
while, an artificial threshold is required to obtain the genes 
of interest or differential expression. Moreover, it usually 
focuses on the most significant genes while ignoring those 
without significant differences, which may lead to the loss of 
genes with lower significance but more crucial roles, result-
ing in reduced detection sensitivity. Furthermore, pathway 
analysis may be limited by known pathway data and might 
fail to accurately identify newly discovered pathways or 
those not yet widely recognized. In order to overcome the 

abovementioned shortcomings and better screen and predict 
key candidate genes for oral cancer, we comprehensively 
utilized various analysis methods besides pathway analy-
sis, such as stage analysis, overall and disease-free survival 
analysis, immune infiltration analysis, etc., to obtain more 
comprehensive and accurate results regarding the candidate 
genes. In addition, functional validation experiments can be 
conducted in subsequent studies to determine the potential 
regulatory effect of differentially expressed SP110 on oral 
cancer. And the specific avenues for future research and 
putative translational therapy scenarios are as follows:

The specific avenues for future research and putative 
translational therapy scenarios The present research found 
that SP110 is significantly overexpressed in oral cancer, and 
its overexpression is markedly correlated with shortened 
overall/disease-free survival rates and advanced tumor stag-
ing in patients with oral cancer. Meanwhile, SP110 is also 
significantly associated with the infiltration of immune cells. 
Therefore, we speculate that the inhibition of SP110 expres-
sion may have a significant inhibitory effect on oral can-
cer. The validation of SP110 expression in oral cancer cells 
has demonstrated that its expression is higher in HN6 and 
CAL-33 cell lines than in other cell lines. Thus, when using 
siRNA technology for further in vitro and in vivo in-depth 
research and validation, performing related experiments with 
these two cell lines may yield more pronounced results. In 
subsequent studies, siRNA technology can be used to reduce 
the expression of SP110 in oral cancer to investigate its spe-
cific mechanism in the occurrence and development of oral 
cancer. At the same time, it can also be studied whether a 
reduction in SP110 expression in oral cancer can regulate the 
tumor immune microenvironment of oral cancer by regulat-
ing the infiltration of immune cells, thereby inhibiting the 
malignant progression of oral tumors.

The novel nano-materials have not only been proven to 
have good therapeutic effects in various diseases but can 
also carry relevant anti-cancer genes or inhibitors of onco-
genes into cancer cells to achieve a synergistic suppression 
of tumors with gene therapy [37]. Meantime, the protection 
provided by nanocarriers can also overcome the shortcom-
ings of genetic formulations being easily degraded and dif-
ficult to treat in vivo. Therefore, after clarifying the primary 
anticancer mechanisms of SP110, a nano anticancer drug 
that can effectively carry and deliver the siRNA of SP110 
should be designed. Integrating SP110 with nanomedicine 
allows for a multifaceted approach to treating oral cancer 
from both gene therapy and nanotherapy perspectives. In 
addition, not only can SP110 regulate the infiltration of 
related immune cells, but the nanomedicine itself may also 
exert certain effects on the immune microenvironment of 
tumors [38]. Based on this, after using nanodrugs to load 
SP110 siRNA, we can further explore their regulation of 
the immune microenvironment of oral tumors. Thereby, by 
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combining nanomedicine therapy, gene therapy, and immu-
notherapy, we can form an innovative, more comprehensive, 
and safer strategy for the treatment of oral cancer.

Conclusion

SP110 is significantly overexpressed in both oral cancer 
tissues and cells, and its overexpression is markedly cor-
related with shortened overall/disease-free survival rates 
and advanced tumor staging in patients with oral cancer. 
Meanwhile, SP110 is also significantly associated with the 
infiltration of immune cells. SP110 has the potential to serve 
as a biomarker for the treatment and diagnosis of oral cancer.
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