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Abstract
Dengue fever (DF) is an endemic disease that has become a public health concern around the globe. The NS3 protease-
helicase enzyme is an important target for the development of antiviral drugs against DENV (dengue virus) due to its impact 
on viral replication. Inhibition of the activity of the NS3 protease-helicase enzyme complex significantly inhibits the infection 
associated with DENV. Unfortunately, there are no scientifically approved antiviral drugs for its prevention. However, this 
study has been developed to find natural bioactive molecules that can block the activity of the NS3 protease-helicase enzyme 
complex associated with DENV infection through molecular docking, MM-GBSA (molecular mechanics-generalized born 
surface area), and molecular dynamics (MD) simulations. Three hundred forty-two (342) compounds selected from twenty 
traditional medicinal plants were retrieved and screened against the NS3 protease-helicase protein by molecular docking and 
MM-GBSA studies, where the top six phytochemicals have been identified based on binding affinities. The six compounds 
were then subjected to pharmacokinetics and toxicity analysis, and we conducted molecular dynamics simulations on three 
protein–ligand complexes to validate their stability. Through computational analysis, this study revealed the potential of the 
two selected natural bioactive inhibitors (CID-440015 and CID-7424) as novel anti-dengue agents.
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Abbreviations
DF	� Dengue fever
DENV	� Dengue virus
IMPPAT	� Indian Medicinal Plants, Phytochemistry, 

and Therapeutics
MM-GBSA	� Molecular mechanics-generalized born 

surface area
ADME	� Absorption, Distribution, Metabolism, and 

Excretion
SID	� Simulation Interaction Diagram
RMSD	� Root mean square deviation
RMSF	� Root mean square fluctuation
Rg	� Radius of gyration
SASA	� Solvent-accessible surface area

Introduction

Dengue fever (DF) is a tropical and subtropical endemic 
infection that is caused by the dengue virus (DENV) belong-
ing to the Flaviviridae family [1, 2]. It is estimated that there 
are approximately 100 countries worldwide that are affected 
by dengue. In Southeast Asia and the Americas, the preva-
lence of the disease is on the rise. This encompasses nations 
such as India, China, and Taiwan, among others [3, 4]. From 
2000 to 2010, the number of dengue cases increased by over 
eightfold, reaching over 2.4 million, and from 2010 to 2019, 
it climbed to 5.2 million [5]. Each year, as many as 390 
million people are affected by dengue globally, but only 96 
million are clinically manifest, and approximately 20,000 die 
of the infection [6]. In 2080, dengue fever will affect about 
60 percent of the world's population [7].

DENV is primarily transmitted by Aedes aegypti mos-
quitoes to humans through the bite, although it can also 
be transmitted by Aedes albopictus to a lesser extent [8]. 
Patients with dengue can either show no symptoms (about 
75% of cases) or show symptoms ranging from a mild case 
of the flu to more severe symptoms after an incubation 
period of 4–10 days [9]. DF, the milder version of the illness, 
is characterized by a sudden, high fever that lasts 7–14 days 
and is followed by intense headaches, myalgias, arthralgias, 
and gastrointestinal distress. More severe instances, known 
as dengue hemorrhagic fever (DHF), exhibit increased vas-
cular fragility and permeability, coagulopathy, spontaneous 
bleeding, and mild to moderate liver damage [10]. Den-
gue virus is composed of four distinct serotypes: DENV1, 
DENV2, DENV3, and DENV4, and they all belong to the 
family Flaviviridae, genus Flavivirus [1]. There is a genetic 
variation between each of the four serotypes, having 65–70% 
similar amino acid sequences [11], and among the four 
serotypes, DENV-2 is the cosmopolitan genotype [12]. The 
key component of the DENV genome is a single-stranded 
RNA (~ 11 kb), which can be translated directly into a long 

polypeptide. Therefore, it is regarded as positive-sense RNA. 
Ten distinct proteins are encoded by the polypeptide; these 
are classified as seven non-structural proteins (NS1, NS2A, 
NS2B, NS3, NS4A, NS4B, and NS5) and three structural 
proteins, namely the capsid (C), envelope (E), and mem-
brane (M) [13]. The envelope protein is one of these struc-
tural proteins that allows the virus to enter the host. Since 
envelope proteins act as receptors for viral entry and are 
crucial targets for vaccine development for adaptive immune 
responses [14]. Anti-E antibody production is the primary 
way that cells respond to dengue virus by blocking virus 
binding and neutralizing viral infection [15]. The progres-
sion of the virus life cycle, such as replication, assembly, 
and other cellular functions in host cells, is accomplished 
by the seven nonstructural proteins [16]. The nonstructural 
4B transmembrane protein inhibits the interferon (IFN) 
response. Consequently, it plays a key role in virus replica-
tion and proliferation [17]. Also, NS3 is responsible for viral 
replication [18]. Viral polyproteins and virus replication 
are entirely dependent on the NS2B-NS3 protease complex 
[18], therefore it is a desirable target for the development of 
antiviral drugs [19]. Many research studies have been done 
against DENV infection, but the development of natural 
inhibitors has yet to be explored.

Medicinal plants are utilized as an abundant supply of 
therapeutic compounds all over the world [20]. They are a 
valuable source of potential pharmaceutical candidates due 
to their diverse chemical composition. Herbal medicine can 
increase the therapeutic capacity of conventional antiviral 
medications [21] and produce many primary and second-
ary components in trace amounts that have pharmacologi-
cal activity. Phytochemicals are used for drug development 
because of their harmless effects compared to chemical 
substances [4]. These have potential antiviral, antibacterial, 
antifungal, anticancer, and other properties [22]. Accord-
ing to reports, phytochemical substances such as flavonoids, 
phenolics, and terpenoids are important for treatments 
against DENV [23]. Therefore, the study examined the anti-
DENV activity of natural bioactive compounds targeting the 
NS3 protease-helicase enzyme complex from twenty (20) 
medicinal plants (Acorus calamus, Andrographis panicu-
lata, Annona reticulata, Azadirachta indica, Catharanthus 
roseus, Vitex negundo, Cissampelos pareira, Citrus limon, 
Cymbopogon citratus, Curcuma longa, Euphorbia hirta, 
Houttuynia cordata, Tinospora cordifolia, Mentha arvensis, 
Mikania cordata, Momordica charantia, Myristica fragrans, 
Phyllanthus urinaria, Spondias mombin, and Ricinus com-
munis) selected based on traditional uses through an in silico 
approach.

At present, computer-aided drug design (CADD) has 
proven to be a useful and effective tool in the development 
of many therapeutics [24]. Through this approach, a lengthy 
and costly procedure that was previously required during 
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medication research and development has been eliminated 
[25]. The use of in silico drug design has become increas-
ingly important in the modern drug design process. To find 
effective and promising drug compounds against dengue, the 
study used a variety of in silico techniques, which include 
molecular docking, MM/GBSA, ADMET (adsorption, dis-
tribution, metabolism, excretion, and toxicity), and molecu-
lar dynamic (MD) simulation.

Methods and Materials

Chemical Library Preparation

Medicinal plants are a significant source of pharmaco-
logically significant chemicals since they have historically 
played a significant role in medical systems. Around 342 
phytochemicals were obtained from the IMPPAT (Indian 
Medicinal Plants, Phytochemistry, and Therapeutics) data-
base in 3D SDF format from 20 medicinal plants.

Protein and Ligands Preparation

The 3D structure of the NS3 protease-helicase protein 
(PDB ID: 2VBC) was retrieved from the RCSB Protein 
Data Bank (PDB) (https://​www.​rcsb.​org/) [26]. The den-
gue NS3 protease-helicase protein structure was identified 
with a resolution of 3.15 Å, consisting of 618 AA residues. 
To prepare the protein, a protein preparation wizard was 
deployed with default settings [27]. By using Maestro v-12.5 
of Schrödinger Suite 2020–3, hydrogen atoms and omitted 
side chains were added, while water, metal ions, cofactors, 
and other molecules were removed. The protein's 3D crystal 
structure was stabilized by employing the OPLS-3e force 
field [28]. Additionally, the LigPrep module accessible in 
the Maestro Schrodinger Suite v11.5 was utilized to prepare 
ligands [29]. The chemical structures were optimized using 
the OPLS3e force field [30].

Receptor Grid Generation

Receptor grid generation is an important process to identify 
the target protein's active site and find compounds that will 
bind well to the catalytic site. It is insufficient to perform 
ligand-based molecular docking with the targeted protein 
without generating a receptor grid. For creating the receptor 
grid, the FTSite server (https://​ftsite.​bu.​edu/) was used to 
generate the binding site [31]. A receptor grid using binding 
site residues determined a box range of X = 5.32, Y = 2.59, 
and Z = 40.43.

Molecular Docking

Molecular docking helps in determining the binding geom-
etry and atomic-level interactions between a small molecule 
and a protein. This technique can screen large compound 
libraries, for which it is significantly considered an essen-
tial tool in drug design [32]. In this study, the Glide v-8.8 
and Maestro v-12.5.139 packages from the Schrödinger 
Suite 2020–3 were used to analyze and visualize the best 
binding scores. To conduct docking calculations, a coordi-
nate-defined grid box was used. System optimization was 
performed using the OPLS3e force field [30]. The Maestro 
viewer was used to visualize molecular-binding residues and 
chemical bonds.

MM‑GBSA Analysis

An MM-GBSA study was conducted using the Prime MM-
GBSA package to determine the binding-free energy of 
ligands and confirm the docking process between the NS3 
protease-helicase and compounds [33]. The studies consid-
ered five of the most highly interacting ligands in terms of 
negative G binds (NS), Coulomb (Coulomb energy), hydro-
gen bond (hydrogen bond energy), lipophilicity (lipophilic-
ity energy), and van der Waals interactions (VdW) [34]. In 
addition to providing useful insights into ligands, receptors, 
and complex structures, these features also provide insight 
into energy differences caused by strain and binding.

ADME and Toxicity Analysis

Pharmacokinetics and toxicity are important criteria for 
designing and developing drugs since they allow research-
ers to find potential compounds as drugs with effective fea-
tures [35]. Essentially, this refers to the movement of drugs 
within, through, and out of the body, as well as the intensity 
and duration of their action. SwissADME (www.​swiss​adme.​
ch) was used to assess the pharmacokinetic properties of our 
identified compounds at an early stage [36]. Subsequently, 
toxicity prediction is one of the essential steps in the drug 
development process. To evaluate the quality of a chemi-
cal compound that can cause organ damage to humans or 
animals, its toxicity must be predicted. Therefore, the evalu-
ation procedure for the selected compounds' toxicity was 
conducted using the ProTox-II server (https://​tox-​new.​chari​
te.​de/) [37].

MD Simulation Studies

MD simulation provides atomistic information about the 
movement of molecules and atoms in an artificial environ-
ment. In addition, protein–ligand complexes are assessed for 
structural stability [38]. An evaluation of the thermodynamic 

https://www.rcsb.org/
https://ftsite.bu.edu/
http://www.swissadme.ch
http://www.swissadme.ch
https://tox-new.charite.de/
https://tox-new.charite.de/
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stability of the receptor-ligand complex was performed using 
the 'Desmond v3.6 Program' in Schrodinger (academic ver-
sion) on a Linux platform [39]. The system was operated uti-
lizing a preset TIP3P water model, where an orthorhombic 
periodic boundary box shape with a diameter of 10 × 10 × 10 
Å3 was selected on both sides to ensure suitable volume 
and ions like Na+ and Cl− with a level of salt of 0.15 M 
throughout the whole system for electrical neutralization. 
The stabilization of the system was done using OPLS3e 
force field settings [38]. In the NPT (constant pressure-
constant temperature) ensemble, the temperature was main-
tained at 300.0 K and the pressure at 1.01325 bar through-
out the simulation. Through the computation of parameters 
including RMSD (root mean square deviation), RMSF (root 
mean square fluctuation), Rg (radius of gyration), and SASA 
(solvent-accessible surface area), the stability and dynamic 
properties of the complexes were assessed.

Simulation Trajectory Analysis

Every MD simulation snapshot was generated using Schro-
dinger's Maestro interface version 9.5. The simulation event 
has been analyzed using the Simulation Interaction Diagram 
(SID) of the Desmond module in the Schrodinger pack-
age. The RMSD, RMSF, protein–ligand interactions (P-L 
contact), and hydrogen bond interactions were all used to 
evaluate the stability of the complex structure based on the 
trajectory output.

RMSD Analysis

RMSD is used to calculate the dislocation distance aver-
aged over a particular period in a protein–ligand complex 
system [40]. The RMSD of protein-suited molecules from all 
frames is fitted and calculated in comparison to the 100 ns 
simulation time. The RMSD should be calculated using the 
following formula (Eq. 1).

Here, N indicates the number of select atoms, tref stands 
for the reference or specified time, r indicates the specified 
atom's location in frame x following superimposition on the 
reference frame, and tx specifies the duration of the record-
ing intervals.

RMSF Analysis

The RMSF describes the local conformational shift that 
occurs within a protein structure [41]. The following equa-
tion (Eq: 2) is assigned to get the RMSF value of a protein 
with the number of residues in the MD simulation.

(1)RMSDx =

√

1

N

N
∑

i=1

(r�i(tx)) − ri(tref ))
2

Here, T primarily refers to the trajectory time, tref is the 
reference or given time, r is the selected atoms' position in 
frame i after superimposition on the reference frame, and 
(< >) expresses the average square distance traveled over 
residues.

Results

Plant Selection and Phytochemical Library 
Preparation

After a comprehensive review of the literature, a phytochem-
ical library of 342 compounds was identified from twenty 
traditionally used medicinal plants, along with their chemi-
cal identifiers as presented in Table 1.

Molecular Docking Analysis

Molecular docking employs computational methods to fore-
cast the binding interactions between target proteins and 
phytochemicals, facilitating the identification of potential 
drug candidates as well as the comprehension of their bind-
ing mechanisms. The resultant binding affinities obtained 
from the molecular docking of these phytochemical com-
pounds have exhibited a diverse range between 4.21 and 
−7.16 kcal/mol, as shown in Supplementary Table 1.

The compounds selected for further analysis comprise the 
top two percentages (%) from a set of 342 phytochemicals 
(total 6) that have a binding score > −6.4 kcal/mol. The top 
six molecules that have the strongest binding affinities are 
displayed in Table 2.

Interpretations of Protein–Ligand Interactions

The interactions between the target protein and six selected 
ligands (CID 440015, CID 3033938, CID 11980943, CID 
17750979, CID 7424, and CID 8018607) have been fig-
ured out by the Maestro module of the Schrodinger suite 
illustrated in Figs. 1 and 2. Various types of non-covalent 
interactions between receptors and ligands have been iden-
tified, including hydrogen bonds, electrostatic interactions, 
and hydrophobic interactions. It has been demonstrated that 
CID 440015 obtained a docking score of −7.16 kcal/mol 
and found two hydrogen bonds with residues GLU285 and 
ARG463 (Table 3). Moreover, it established interaction with 
the NS3 protease-helicase enzyme by forming three hydro-
phobic bonds with LEU193, PRO195, and ALA316 residues 

(2)RMSFx =

√

1

T

N
∑

t=1

< (r�i(t)) − ri(tref ))
2
>
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Table 1   List of twenty traditionally used medicinal plants

Local name Scientific name Family Traditional use References

Sweet flag Acorus calamus Aceraceae Antifungal, Antibacterial, Anti-inflammatory and immu-
nomodulatory, Antioxidative and protective, Antioxidant, 
Anticonvulsant and antispasmodic, Anticancer, Hypolipi-
demic, Antidiabetic, Cardiovascular related activity, anti-
asthmatic, CNS depressant, Pesticidal, Antimicrobial

[42]

Green chiretta Andrographis paniculata Acanthaceae Antimicrobial and Antiparasitic, Cardiovascular, Anti-Inflam-
matory, Antihyperglycemic, Hepatoprotective, Anticancer, 
Immunomodulatory, Antihyperlipidemic,

Prevention of respiratory infections

[43]

Netted Custard Apple Annona reticulata Annonaceae Analgesic, CNS depressive, antipyretic, anthelmintic, antihy-
perglycemic, antiulcer, and antinociceptive antimicrobial, 
anti-inflammatory, and antioxidant wound-healing, anti-
marking, and antiproliferative

[44]

Neem Azadirachta indica Meliaceae Antipyretic, anti-inflammatory, anti-arthritic, antifungal, 
antibacterial, and antitumor

[45]

Periwinkle Catharanthus roseus Apocynaceae Anti-helminthic, anti-ulcer, anti-diabetic, anti-microbial, 
antioxidant, hypotensive, and antidiarrheal

[46]

Chaste tree Vitex negundo Lamiaceae Analgesic, anti-inflammatory, anti-arthritic, anti-hyperpig-
mentation, immunostimulant, hepatoprotective, anti-andro-
genic, antioxidant, insecticidal, and pesticidal activity

[47]

Velvetleaf Cissampelos pareira Menispermaceae Anti-nociceptive, anti-inflammatory, wound-healing, and anti-
arthritic activity

[48]

Lemon Citrus limon Rutaceae Not found
Lemon grass Cymbopogon citratus Poaceae Anti-inflammatory, anti-protozoa, and antifungal activity [49]
Turmeric Curcuma longa Zingiberaceae Antioxidant, Anticoagulant, Antineoplastic, Antiviral, Anti-

inflammatory, Antibacterial, Antifungal, Antidiabetic, 
Antifertility, Cardiovascular protective, Hepatoprotective, 
Immunostimulant

[50]

Asthma-plant Euphorbia hirta Euphorbiaceae Antibacterial, analgesic, antipyretic, anticancer, anti-inflam-
matory, antifungal, nematicidal, antiamoebic, antidiarrheal, 
and antispasmodic activity

[50]

Fish mint, fish leaf Houttuynia cordata Saururaceae Anti-inflammatory, anti-mutagenic, anti-leukemic, and anti-
anaphylactic activity

[51]

Guduchi Tinospora cordifolia Menispermaceae Anti-stress, anti-leprotic, anti-malarial, hepatoprotective, anti-
allergic, anti-arthritic, immunomodulatory, antioxidant, anti-
diabetic, anti-periodic, anti-spasmodic, and anti-neoplastic 
activity

[52]

Wild mint Mentha arvensis Lamiaceae Anti-dental caries, anti-inflammatory, antioxidant, anticancer, 
antibacterial

[53]

Bitter vine Mikania cordata Asteraceae Antimicrobial, anti-inflammatory, wound-healing, analgesic, 
anti-ulcerogenic, and anticarcinogenic

[54]

Bitter melon or peria Momordica charantia Cucurbitaceae Immune-modulatory, anti-tumor, anti-ulcerogenic, anti-muta-
genic, antioxidant, and anti-diabetic Antibiotic, analgesic, 
lipolytic, and abortifacient activity

[55]

Nutmeg Myristica fragrans Myristicaceae Analgesic, neuropharmacological, antibacterial, anti-fungal, 
anticonvulsant, anti-diabetic activity

[56]

Chamber bitter Phyllanthus urinaria Phyllanthaceae Anticancer, hepatoprotective and antioxidant, anti-diabetic, 
antimicrobial, antithrombosis, stimulating antiarthritic, and 
phagocytosis activity

[57]

Hog plum Spondias mombin Anacardiaceae Antitumor and antiangiogenic, Antiviral, antibacterial, leish-
manicidal, mosquito adulticidal, anti-inflammatory, Antiul-
cer, Antidiabetic, Oxytocic, Anthelminthic, Antifertility

[58]

Ricinus Ricinus communis Euphorbiaceae Anticancer, anti-diabetic, leishamicidal, insecticidal, antioxi-
dant, insecticidal, anti-bacterial, ophthalmic, antimicrobial 
and anti-inflammatory, anti-asthmatic, and anticonvulsant

[59]
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and two polar bonds with THR200 and ASN416, as shown 
in Table 3.

CID 3033938 demonstrated a docking score of 
−7.00 kcal/mol when interacting with the NS3 protease-hel-
icase enzyme. It formed four hydrogen bonds with LYS199, 
LYS201, ASN416, and ASN464 residues, along with six 
hydrophobic bonds involving LEU193, PRO195, ALA234, 
VAL227, TYR394, and PHE417. Additionally, there are 

three polar bonds with THR200, ASN416, and ASN464. 
CID 11980943 showed a docking score of −6.99 kcal/
mol with the target protein. The analysis of the interaction 
revealed the presence of ten hydrogen bonds that bound with 
GLU66, LYS199, ALA229, GLU233, ASH284, GLU285, 
LYS398, ASN416, PHE417, and ASN464. In addition, 
there were ten hydrophobic bonds with LEU193, PRO195, 
ALA229, MET231, ALA234, VAL226, VAL227, TYR394, 

Table 2   Pharmacological effects and molecular docking scores of the selected six compounds

SN Compounds
Name

PubChem CID Binding affinity 
(kcal/mol)

Biological Activities References

1 Cis-4-Hydroxyproline CID 440015 −7.16 Anticancer, antioxidant, anti-inflammatory [60, 61]
2 Leupeptin CID 3033938 −7.00 Protease Inhibitor Neurological Effects [62, 63]
3 1,3,6-Trigalloyl glucose CID 11980943 −6.99 Anti-inflammatory, antioxidant, and anti-diabetic [64, 65]
4 Agnuside CID 17750979 −6.68 Proangiogenic, Anti-arthritic [66]
5 3,5-Dihydroxybenzoate CID 7424 −6.45 Anticancer [67]
6 Trans-Zeatin glucoside CID 8018607 −6.45 Transcriptional and proteomic effects [68]

Fig. 1   Molecular docking con-
figurations and interactions with 
the target protein. The complex 
protein–ligand interaction in 2D 
is shown on the right side, while 
the 3D side is represented on 
the left. A CID 440015; B CID 
3033938; C CID 11980943
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PRO395, and PHE417. Furthermore, there were three polar 
bonds with THR200, ASN416, and ASN464, similar to CID 
3033938.

For the compound CID 17750979, it has been found 
that the binding affinity is −6.68 kcal/mol. CID 17750979 
engages in six hydrogen bonds at the positions of GLU66, 

Fig. 2   Molecular docking con-
figurations and interactions with 
the target protein. The complex 
of protein–ligand interaction in 
2D is depicted on the right side, 
while the 3D side is shown on 
the left. A CID 17750979; B 
CID 7424; and C CID 8018607

Table 3   List of binding interactions between the top six phytochemicals and the 2VBC protein

PDB ID PubChem ID H-bond Hydrophilic bond Other’s bond

2VBC CID 440015 GLU285, ARG463 THR200, ASN416 LEU193, PRO195, ALA316
CID 3033938 LYS199, LYS201,

ASN416, ASN464
THR200, ASN416, ASN464 LEU193, PRO195, ALA234, VAL227, 

TYR394, PHE417
CID 11980943 GLU66, LYS199 ALA229, GLU233,

ASH284, GLU285,
LYS398, ASN416,
PHE417, ASN464

THR200, ASN416, ASN464 LEU193, PRO195, ALA229, MET231, 
ALA234, VAL226, VAL227, 
TYR394, PRO395, PHE417

CID 17750979 GLU66, ASH284, LYS201, GLU233 
GLU285, LYS398,

THR200, ASN416, ASN464 LEU193, ALA234, VAL227, TYR394, 
PHE417

CID 7424 ALA316, ASN416, GLN456 HIE287, THR315, GLN456 LEU193, PRO195, MET314, ALA316
CID 8018607 LYS201, GLU230, GLU233, ASH284, 

GLU285, ASN416, ARG460
THR200, HIE287, THR315, 

THR317, ASN416, GLN456
LEU193, PRO195, VAL227, MET231, 

ALA234, MET314, ALA316, 
TYR394
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ASH284, LYS201, GLU233, GLU285, and LYS398. Five 
hydrophobic bonds with LEU193, ALA234, VAL227, 
TYR394, and PHE417 and three polar bonds with THR200, 
ASN416, and ASN464 have also been observed during the 
interaction.

In the case of CID 7424, it exhibited a docking score 
of −6.45 kcal/mol and showed the ability to form three 
hydrogen bonds with ALA316, ASN416, and GLN456 resi-
dues, and four hydrocarbon bonds with LEU193, PRO195, 
MET314, and ALA316 residues. Notably, three polar bonds 
have been noticed at the positions of HIE287, THR315, and 
GLN456.

The docking score for CID 8018607 against the target 
protein was −6.45 kcal/mol. The interaction study of the 
CID 8018607 found seven hydrogen bonds at the posi-
tions of LYS201, GLU230, GLU233, ASN284, GLU285, 
ASN416, ARN460, and two hydrocarbon bonds at LEU193, 
PRO195, VAL227, MET231, ALA234, MET314, ALA316, 
and TYR394 residual positions. In addition, there were six 
polar bonds with THR200, HIE287, THR315, THR317, 
ASN416, and GLN456.

MM‑GBSA Analysis

In MM-GBSA, binding energy can be estimated to iden-
tify ligands that bind efficiently with receptors, helping 
to detect strong molecular interactions. The compounds 
or ligands' validity identified through docking underwent 
additional validation by performing MM-GBSA binding 
free energy estimation calculations. For the protein, the 
highest ΔG bind was seen for the compound CID 11980943 

at ΔG = −63.95 kcal/mol, which provides a strong interac-
tion between this ligand and the receptor. In addition, com-
pounds CID 8018607, CID 3033938, and CID 17750979 
showed a high ΔG bind at −31.97 kcal/mol −29.82 kcal/
mol, and −17.47 kcal/mol, respectively, while compounds 
CID 440015 and CID 7424 displayed the least binding 
affinity, with binding energy values of −16.11 kcal/mol and 
−8.49 kcal/mol, respectively. The analysis of 2VBC-ligand 
complexes following post-docking and MD simulations 
showed diverse interaction energies. These included Cou-
lomb energy (ΔG bind Coulomb), hydrogen bond energy 
(ΔG bind H bond), electrostatic interactions (ΔG bind 
covalent), and lipophilicity energy (ΔG bind lipo). These 
various energies collectively contribute to gaining a com-
prehensive insight into the overall binding stability within 
these complexes. In conclusion, our results suggest that 
these compounds exhibit a strong binding affinity, demon-
strating their suitability as novel candidates worthy of fur-
ther development.

Pharmacokinetic Properties and Toxicity Analysis

To evaluate the drug-likeliness properties, the top six com-
pounds have been subjected to ADME analysis; among 
them, only three compounds passed our screening criteria. 
A pharmacokinetic profile of each of these three compounds 
is presented in Table 4. The ProTox-II web server was uti-
lized to conduct an in silico toxicity investigation of the top 
six phytochemicals and provided good toxicological effects 
of the selected three compounds, as presented in Table 4.

Table 4   Pharmacokinetics and toxicity properties of selected compounds

Phytochemical identifier CID 440015 CID 11980943 CID 3033938 CID 17750979 CID 7424 CID 8018607

Pharmacokinetics proper-
ties

MW (g/mol) 131.13 g/mol 1122.94 g/mol 426.55 g/mol 466.44 g/mol 154.12 g/mol 420.85 g/mol
Heavy atoms 9 80 30 33 11 29
Arom. heavy atoms 0 30 0 6 6 12
Rotatable bonds 1 11 17 7 1 10
H-bond acceptors 4 27 6 11 4 6
H-bond donors 3 16 5 6 3 2
Log Po/w(MLOGP) −3.44 −3.51 0.27 −1.20 0.40 1.32
Log S (ESOL) 1.41 −6.64 −1.65 −1.68 −1.67 −3.92
GI absorption High Low Low Low High High
Lipinski, Violation 0 violation 3 violations 0 violations 2 violations 0 violation 0 violation
Synth. accessibility 2.23 8.67 4.41 5.91 1.01 3.60
BBB permeant No No No No No No

Toxicity Hepatotoxicity Inactive Active Inactive Inactive Inactive Inactive
Carcinogenicity Inactive Active Inactive Inactive Inactive Inactive
Immunotoxicity Inactive Active Inactive Active Inactive Active
Mutagenicity Inactive Active Inactive Inactive Inactive Active
Cytotoxicity Inactive Inactive Inactive Inactive Inactive Inactive
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MD Simulation Analysis

MD simulation is used in CADD to investigate the stability 
and interactions between molecules within a protein–ligand 
complex over a specified time frame. It also facilitates the 
identification of the conformational alterations occurring in 
the complex system within a simulated environment. MD 
simulation was performed over a duration of 100 ns to inves-
tigate the structural dynamics, binding interactions, and flex-
ibility of the protein–ligand complexes. The results led to six 
specific conclusions, addressing parameters such as RMSD, 
RMSF, Rg, SASA, and intra-molecular hydrogen bond.

RMSD Analysis

The RMSD of the protein backbone atoms is recognized 
as an important factor for evaluating the equilibrium and 
stabilization of MD trajectories. In our study, we investi-
gated the interactions of three compounds, CID 7424, CID 
440015, and CID 8018607, in complex with the protein 
(2VBC) shown in Fig. 3. The average shift in values between 
the 2VBC backbone and the compounds CID 7424, CID 
440015, and CID 8018607 falls within the 0.5 to 3 Å range. 
The CID 8018607 has the lowest overall RMSD among the 
three compounds, suggesting it has the most stable con-
formation during the simulation. CID 8018607 showed 
a higher resemblance to the apo protein than other com-
pounds, but unlike the apo protein at 1.5 ns, there was a 
fluctuation observed. However, this fluctuation eventually 
stabilized after 12 ns of MD simulation time. CID 8018607 
exhibited stability throughout the simulation until 72 ns, 
after which fluctuations were observed up to 85 ns, indicat-
ing a degree of flexibility in its structure. During the initial 
9 to 29 ns of MD simulation, noticeable fluctuations were 
observed in the behavior of the CID 7424 compound, which 
has shown a stabilized or equilibrated state after 30 ns of 

MD simulation. The average distance between the three 
compounds consistently falls within the 0.5 to 3 Å range, so 
as a result, fluctuations are expected to be optimized over an 
extended duration of the simulation.

RMSD of Ligand in Complex With Protein

The stability of the selected compounds was determined 
by calculating the RMSD. An acceptable average variation 
in RMSD for the protein–ligand complex falls within the 
range of 1–3 Å or 0.1–0.3 nm. If the RMSD value exceeds 
this limit, it indicates a significant conformational shift in 
the protein structure. The RMSD trajectories of the CID 
7424 complex displayed values reaching a peak of 0.381 Å 
at 93 ns and averaging at 0.173 Å, as shown in Fig.  4. 
Similarly, the ligand CID 440015 exhibited stability with 
a few minor fluctuations. The complex showed a maximum 
RMSD of 0.67 Å and an average RMSD of 0.25 Å. The 
RMSD trajectories of the CID 8018607 complex displayed 
an abrupt shift initially, followed by a phase of stable fluc-
tuations between 1.5 and 50 ns. The maximum trajectory 
value of this complex was 0.554 Å at 51 ns, while the aver-
age RMSD was found to be 0.84 Å, which is within the 
acceptable range. The RMSD trajectories demonstrate that 
both CID 440015 and CID 7424 maintained their structural 
integrity throughout the simulation without any substantial 
alterations from their initial configurations. Conversely, 
CID 8018607 underwent slight structural changes during 
the simulation, in contrast to the stability observed in the 
other two compounds.

RMSF Analysis

RMSF measures the flexibility and variability of individual 
atoms or groups of atoms within a biomolecule over time in 
computational biology and structural bioinformatics [69]. It 

Fig. 3   RMSD values of the 
docked proteins. Apo protein 
was denoted by purple, while 
docked protein (2VBC) with 
the three compounds CID 7424, 
CID 440015, and CID 8018607 
were denoted by yellow, orange, 
and green colors, respectively
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quantifies the extent to which atomic positions deviate from 
their average positions during simulations or other dynamic 
analyses. In our 100 ns MD simulation, we calculated the 
RMSF values for each residue analysis. The RMSF analy-
sis revealed regions of increased flexibility, such as LEU30, 
THR62, THR120, LYS157, THR252, GLY347, GLU512, 
GLU585 residues at 12, 44, 101, 140, 234, 329, 449, and 
567 positions, which are known to be involved in ligand 
binding, as represented in Fig. 5. The reduced RMSF values 
of 2VBC in complex with CID 8018607 indicate a trend of 
decreased atomic fluctuations in the biomolecule as com-
pared to Apo protein (2VBC). In contrast to the Apo protein, 
the fluctuation of residues in the complex structure is notably 
limited, pointing towards a high level of rigidity in the pro-
tein structure. Fluctuations in the protein are highest at the 
N- and C-terminal domains, suggesting a low probability of 
atom displacement in real-life environments for the identi-
fied compounds.

Rg Analysis

The Rg characterizes how atoms are distributed around the 
axis in a protein–ligand complex system. The calculation 

of Rg is a crucial indicator for the structural activity of a 
macromolecule, providing insights into changes in the com-
pactness of the complex. It has been shown that a protein in 
a consistently folded state retains a stable Rg, and a lower 
Rg signifies a higher level of compactness. In the process of 
protein unfolding, its Rg value fluctuates over time. So, the 
analysis of the stability of CID 7424, CID 440015, and CID 
8018607 in complex with the 2VBC protein involved study-
ing their Rg over a 100 ns simulation time shown in Fig. 6. 
The compounds CID 7424, and CID 440015 showed aver-
age Rg values of 2.56 Å, 2.20 Å, respectively, which is an 
acceptable range and exhibited no significant conformational 
changes in the protein's active site after binding to the speci-
fied compounds, while the CID 8018607 ligand displayed an 
average Rg value of 5.24 Å, indicating a considerable dif-
ference compared to the other two ligands. This substantial 
difference in Rg values for CID 8018607 suggests that its 
binding may induce a distinct configuration of the protein.

SASA Analysis

SASA analysis was performed to evaluate the protein surface 
area that is readily accessible to the solvent, which is shown 

Fig. 4   RMSD values of the 
docked ligands. The compounds 
CID 7424, CID 440015, and 
CID 8018607 were denoted 
by yellow, orange, and green 
colors, respectively

Fig. 5   RMSF of the amino 
acid residues over a 100 ns 
simulation timescale. The 
RMSF values were derived 
from the protein Cα atoms of 
the protein–ligand complex. 
Apo protein is shown in orange 
colors, and the three complexes 
bound to the compounds CID 
7424, CID 440015, and CID 
8018607 were indicated by yel-
low, green, and magenta colors, 
respectively
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in Fig. 7. This assessment involved estimating the hydro-
philic and hydrophobic residues of the protein, with a higher 
SASA value indicating a relatively expanded surface area. 
The average SASA values of CID 7424 and CID 440015 in 
complex with 2VBC were 10.78 Å2 and 14.66 Å2, respec-
tively, while CID 8018607 showed a SASA value of 76.16 
Å2 when in complex with 2VBC. Among the three com-
pounds, CID 7424 and CID 440015 have the most compact 
structure, as indicated by their lower SASA values. On the 
other hand, the CID 8018607 has the highest SASA through-
out the simulation, which suggests that it has the most exten-
sive surface area exposed to the solvent. The interpretation 
of effective exposure of amino acid residues to the identi-
fied compound within the complex systems requires further 
analysis beyond SASA values alone.

P‑L Contact Analysis

The protein's complex structure, along with identified 
ligands and their intermolecular interactions, has been 
assessed through a 100 ns simulation using the SID. Various 

factors, including hydrogen bonds, non-covalent bonds 
(hydrophobic bonds), ionic bonds, and water bridge bonds, 
were taken into consideration. The interactions between 
the protein and the designated compounds with CID 7424, 
CID 440015, and CID 8018607 were analyzed and visu-
ally represented in Fig. 8. The stacked bar charts represent-
ing compound CID 440015 indicate an interaction fraction 
value (IFV) of 2.0 at residue ARG 460. This suggests that 
the interaction at this specific residue, facilitated by hydro-
gen bonds, has been consistently maintained throughout the 
entire simulation, accounting for over 100% of the simula-
tion time. Significant hydrogen bonding and water bridges 
are found at the GLU 285, GLY 414, and ARG 463 sites. 
Additionally, there were some observed interactions involv-
ing ionic bonds. In the case of CID 7424, significant con-
tacts were established through hydrogen bonds and water 
bridges. Residues LYS 199, GLU 285, GLN 456, ARG 460, 
and ARG 463 were significant sites where these interactions 
occurred. Additionally, a hydrophobic interaction was also 
observed at ALA 316. For CID 8018607, all four types of 
interactions have been found, controlled by H-bonds and 

Fig. 6   Rg values of the protein–
ligand complex over a 100 ns 
simulation timescale. The three 
compounds CID 7424, CID 
440015, and CID 8018607 com-
plexed with the 2VBC denoted 
by orange and green colors, 
respectively

Fig. 7   SASA values of the 
protein–ligand complex during 
the 100 ns simulation timescale. 
The protein complexed with the 
three compounds CID 7424, 
CID 440015, and CID 8018607 
was represented by yellow, 
orange, and green colors, 
respectively
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water bridges. Significant interactions were found at THR 
200, LYS 200, GLU 285, ANS 416, ARG 460, ARG 463, 
and ANS 464. This suggests that there are a variety of forces 
at play that stabilize the complex.

Discussion

The NS3 protein represents an attractive target for the devel-
opment of antiviral drugs [70]. Due to NS3's dual functions 
as an RNA helicase and a protease, it plays an essential role 
in the life cycle of DV [71]. RNA helicase activity facili-
tates the unwinding of viral RNA duplexes, which is crucial 
for replication, while protease activity is responsible for the 
cleavage of viral polyproteins, which is critical for the gen-
eration of functional viral proteins [72]. Furthermore, NS3 
has been implicated in modulating the immune response 
of the host. The virus may be able to evade host defenses 
and establish infection if it interferes with the host's innate 
immune signaling pathways [73]. The development of novel 
therapeutics against dengue fever may be achieved by inhib-
iting NS3 enzymatic activity or disrupting its interactions 
with host factors [74]. For rational drug design and optimi-
zation, it is imperative to understand the structural dynam-
ics of NS3-inhibitor complexes [75]. Based on the results 
of our in silico study, we have gained valuable insight into 
the mechanism of NS3 inhibition in dengue virus infection.

CADD is a useful tool for identifying new compounds 
against an identified protein since it contains a variety of 
advanced characteristics and techniques. It has reduced 
the time and costs associated with the entire drug develop-
ment process, which includes molecular docking, molecular 
MM-GBSA, MD simulation, and ADMET [76]. Molecular 
docking is a crucial technique in CADD, enabling the vir-
tual screening of compound libraries to identify potential 
drug candidates [77]. It assesses binding affinity and inter-
molecular interactions at the atomic level between a target 
protein and bioactive compounds [78]. We identified six 

compounds (CID 440015, CID 3033938, CID 11980943, 
CID 17750979, CID 7424, and CID 8018607) with good 
binding affinity (> −6.4 kcal/mol, Table 2) for the targeted 
protein NS3 protease-helicase through molecular docking.

In the MM-GBSA study, the lowest ∆G-Bind score (the 
most negative score) was regarded as the best score [79]. In 
this study, CID 11980943 and CID 7424 demonstrated lower 
∆G Bind scores compared to other docked compounds for 
NS3 protease-helicase, indicating the best ∆G-Bind score 
(Fig. 9). ADME and toxicity prediction play a major role 
in the preclinical phase of drug research and development 
[76]. In the drug design process, toxicity analysis is indis-
pensable for identifying possible harmful effects of chemical 
substances on humans, animals, and the environment [40]. In 
our studies, three compounds revealed satisfactory outputs 
in terms of pharmacokinetics and toxicity profiles depicted 
in Table 4.

Based on pharmacokinetics and toxicity analysis, 
the best three compounds were subjected to MD simu-
lation analysis to observe the structural stability of pro-
tein–ligand complexes. An MD simulation determines a 
protein's stability when complexed with its ligand. The 
RMSD values indicate the stability of the protein–ligand 
complex, while the RMSF values indicate the fluctuation 
of the residues upon ligand binding [80]. The protein com-
plexed with the compounds CID 440015 and CID 7424 
showed lower RMSD and RMSF values over the 100 ns 
simulation time, indicating the stability of the complexes 
(Figs. 3, 4, and 5). The lower Rg value indicates a high 
level of compactness, and the larger value indicates a 
disassociation of the compounds from the protein [81]. 
Protein-compound CID 440015 complex and protein-
compound CID 7424 complexes demonstrated better Rg 
values compared to the protein-compound CID 8018607 
complex (Fig. 6). Higher SASA values indicate less sta-
ble structures, whereas lower values indicate tightly con-
tracted complexes of water molecules and amino acids 
[81]. In this study, the protein-CID 440015 complexes 

Fig. 8   The bar charts demon-
strate the protein–ligand rela-
tionships shown in the 100 ns 
simulation and exhibit the 
interaction of identified three 
compounds A CID 440015, B 
CID 7424, and C CID 8018607, 
in complex with the NS3 
protease-helicase enzyme
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and the protein-CID 7424 complexes demonstrated lower 
mean SASA values compared to the protein-CID 8018607 
(Fig. 7). Using the SID, we observed the organization of 
proteins bound to the specified ligands as well as their 
molecular interactions over a 100 ns simulation. Moreover, 
CID 440015 and CID 7424 formed higher hydrogen bonds, 

hydrophobic contacts, and water bridge bonds with NS3 
protease-helicase compared to the ligand CID 8018607.

Based on the aforementioned results, it can be said that 
CID 440015 and CID 7424 could be used as potential lead 
compounds to treat DENV infection. However, a range of 
laboratory trial methods are necessary to demonstrate the 

Fig. 9   The analysis of the 
binding scores (NSs) of the 
compounds with 2VBC after 
post-docking MM-GBSA 
analysis
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anti-viral properties of these compounds, which may provide 
alternatives for the treatment of the DENV outbreak.

Conclusion

The NS3 protease-helicase enzyme is the key responsible 
protein for the replication and infection of the DENV virus 
and serves as a very important target for the development 
of antiviral drugs. Consequently, the study aims to identify 
effective natural phytochemicals that can block the activity 
of the NS3 protease-helicase enzyme. The findings of our 
study suggest that CID 440015 and CID 7424 are potential 
inhibitors that can selectively block DENV replication by 
inhibiting the activity of the NS3 protease-helicase protein. 
Further in vitro and in vivo studies are required to verify the 
activity of these inhibitors against the NS3 protease-helicase 
protein.
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