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Abstract
Neutrophil extracellular traps (NETs) play a central role in chronic airway diseases. However, the precise genetic basis link-
ing NETs to the development of severe asthma remains elusive. This study aims to unravel the molecular characterization of 
NET-related genes (NRGs) in severe asthma and to reliably identify relevant molecular clusters and biomarkers. We analyzed 
RNA-seq data from the Gene Expression Omnibus database. Interaction analysis revealed fifty differentially expressed NRGs 
(DE-NRGs). Subsequently, the non-negative matrix factorization algorithm categorized samples from severe asthma patients. 
A machine learning algorithm then identified core NRGs that were highly associated with severe asthma. DE-NRGs were 
correlated and subjected to protein–protein interaction analysis. Unsupervised consensus clustering of the core gene expres-
sion profiles delineated two distinct clusters (C1 and C2) characterizing severe asthma. Functional enrichment highlighted 
immune-related pathways in the C2 cluster. Core gene selection included the Boruta algorithm, support vector machine, 
and least absolute contraction and selection operator algorithms. Diagnostic performance was assessed by receiver operat-
ing characteristic curves. This study addresses the molecular characterization of NRGs in adult severe asthma, revealing 
distinct clusters based on DE-NRGs. Potential biomarkers (TIMP1 and NFIL3) were identified that may be important for 
early diagnosis and treatment of severe asthma.

Keywords Severe asthma · Neutrophil extracellular traps (NETs) · Bioinformatics · Machine learning · Biomarkers · 
Molecular clusters

Abbreviations
NETs  Neutrophil extracellular traps
NRGs  NET-related genes
DE-NRGs  Differentially expressed NRGs
DEGs  Differentially expressed genes
GEO  Gene expression omnibus
NMF  Non-negative matrix factorization
GO  Gene ontology

KEGG  Kyoto encyclopedia of genes and genomes
RSS  Residual sum of squares
GSVA  Gene set variation analysis
SVM  Support vector machine
LASSO  Least absolute shrinkage and selection 

operator
AUC   Area under the curve
ROC  Receiver operating characteristic
NETosis  Neutrophil extracellular trap cell death
PPI  Protein–protein interaction
IL-6  Interleukin-6
TLR  Toll-like receptor
HMGB1  High mobility group protein 1
MMP  Matrix metalloproteinase

Background

Asthma, a heterogeneous inflammatory disease, is driven by 
diverse immune mechanisms [1]. Although the introduction 
of inhaled glucocorticoids has proven effective in reducing 
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asthma-related deaths, the global prevalence of asthma has 
continued to rise in many countries over the past decade. 
This trend underscores the critical role of gene-environment 
interactions, particularly in genetically predisposed popula-
tions. Phenotypes, complex traits shaped by a mixture of 
genetic and environmental influences, serve as critical deter-
minants in asthma diagnosis, treatment strategies, and prog-
nosis of future risk events [2–5]. In particular, the majority 
of asthmatics have type 2 eosinophilic inflammation. How-
ever, in severe asthma, a significant proportion of patients 
have neutrophil-predominant lung inflammation [6]. Despite 
the clinical significance of severe asthma, our understand-
ing of the contribution of non-type 2 immune mechanisms 
to asthma remains limited. Whether neutrophils are active 
participants or mere "bystanders" in the asthmatic context 
remains a mystery [7]. In addition, there is a lack of effective 
and feasible biomarkers to differentiate non-Th2 asthmatics 
and their response to treatment [2].

The unraveling of neutrophil biology reached new depths 
with the revelation of neutrophil extracellular traps (NETs) 
intricate reticular structures released into the extracellular 
milieu upon neutrophil activation. These structures con-
sist of DNA backbone complexes embedded within multi-
protein DNA–protein complexes. Initially characterized 
as a defense mechanism designed to engulf and neutralize 
invading microorganisms, the evolving research landscape 
has fostered a growing body of evidence highlighting the 
pivotal role of NETs in chronic inflammatory airway dis-
eases, including asthma and chronic obstructive pulmonary 
disease [8–10]. In the context of persistent inflammatory 
responses, NETs not only exert direct cytotoxic effects on 
lung epithelial and endothelial cells but also exacerbate dam-
age by releasing proteases into the adjacent extracellular 
environment. In addition, NETs exert deleterious effects by 
exposing self-antigens and immunostimulatory proteins and 
by activating plasma cell-like dendritic cells to release inter-
feron [11]. The discovery of NETs brings us to a new cel-
lular and molecular mechanism, and their unique biological 
activity may provide a potential new therapeutic target for 
patients with non-type 2 asthma. An in-depth understand-
ing of the key pathways driven by NETs in shaping asthma 
pathology holds the promise of refining patient stratifica-
tion into more precise subgroups, thereby improving clinical 
outcomes. However, the current detailed and comprehensive 
studies of NET-related genes (NRGs) in severe asthma still 
require further in-depth exploration.

This study aimed to comprehensively analyze the asso-
ciation between NRGs and severe asthma and to identify 
reliable molecular clusters and biomarkers based on NRGs 
to provide more accurate guidance for the diagnosis and 
treatment of severe asthma. We first searched for differen-
tially expressed NRGs (DE-NRGs) in patients with severe 
asthma using the Gene Expression Omnibus (GEO) database 

and NRGs summarized in previous literature and databases. 
The Non-negative matrix factorization (NMF) based on DE-
NRGs classified patients with severe asthma into two clus-
ters with different molecular profiles. We have also identified 
core genes associated with severe asthma through various 
machine learning methods and experimental validation to 
provide more accurate information for early diagnosis of 
severe asthma.

Materials and Methods

Data Collection and Processing

GSE74986 is a dataset focused on moderate-to-severe 
asthma, sourced from the GEO database (https:// www. ncbi. 
nlm. nih. gov/ gds/). The experimental platform employed for 
this dataset is Agilent's GPL6480 platform. The GSE74986 
dataset consists of RNA samples derived from bronchoal-
veolar lavage cells obtained from 86 subjects. Among these, 
74 samples were collected from individuals with asthma, 
including 28 classified as moderate asthmatics and 46 as 
severe asthmatics. The remaining 12 samples were obtained 
from healthy subjects serving as controls. In this study, we 
used gene expression profiling data from 46 patients diag-
nosed with severe asthma, along with 12 healthy controls. In 
addition, we chose the GSE64913 and GSE76262 datasets 
as independent validation sets because both datasets were 
designed to compare the differences in gene expression pro-
files between severe asthma and healthy subjects, the sam-
ple size and data quality control were relatively better, the 
sampling sites were derived from airways and bronchi, and 
both datasets have been reported and used in the literature. 
To acquire gene symbols for each probe matrix, match-
ing platform files were utilized, and subsequent analysis 
involved the normalization of all microarray datasets using 
the "limma" R package [12].

For the identification of NRGs in this study, we retrieved 
information from various sources, including the GeneCards 
database [13] (http:// www. genec ards. org), the OMIM data-
base [14](https:// www. omim. org/), the NCBI gene database 
[15] (https:// www. ncbi. nlm. nih. gov/), as well as pertinent 
literature on the subject [16, 17]. We assembled a total of 
403 genes associated with NETs, and further details can be 
found in supplementary Table 1.

Identification of DE‑NRGs

Differential expression analyses were performed using the 
"limma" R package [12] to compare two sample types: 
patients with severe asthma and healthy subjects. A dif-
ference threshold of |logFC|> 1 and an adjusted p-value 
of < 0.05 were used to identify significantly differentially 

https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/
http://www.genecards.org
https://www.omim.org/
https://www.ncbi.nlm.nih.gov/
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expressed genes (DEGs). By intersecting the DEGs with the 
NRGs, we obtained the DE-NRGs specific to the samples 
from severe asthma patients and the samples from healthy 
controls.

Functional Enrichment Analysis

To explore the role of DEGs in severe asthma, we used the 
"clusterprofiler" package [18] in R for gene ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis. We set a q-value < 0.05 as the 
threshold value.

Non‑Negative Matrix Factorization Algorithm

Asthma phenotypes are influenced by both genetic and envi-
ronmental factors, resulting in variable responses to differ-
ent treatments. To investigate the variation among patients 
with severe asthma, we used the R package "NMF" [19] to 
perform cluster analysis based on the expression data of DE-
NRGs to identify potential molecular subtypes. For cluster 
analysis, we applied the "Brunet" criterion and performed 
30 iterations. The average contour width of the common 
membership matrix was calculated using the "consensus-
map" function within the "NMF" R package. The resulting 
consensus matrix was visualized and evaluated for clustering 
stability, using the average contour width as a measure of 
stability. Cluster stability was assessed by calculating the 
cophenetic correlation coefficient, a commonly used meas-
ure of clustering stability. The cophenetic correlation coeffi-
cient reflects the similarity between the original dissimilarity 
matrix and the matrix obtained from the clustering result. 
Higher values of the cophenetic correlation coefficient indi-
cate greater clustering stability. The clustering performance 
of the model was evaluated by calculating the residual sum 
of squares (RSS). The optimal k was determined by cal-
culating the differences between the cophenetic correlation 
coefficients and selecting the index position with the highest 
difference. Based on the above algorithm and the optimal k, 
we categorized the samples from patients with severe asthma 
into distinct molecular clusters.

Gene Set Variation Analysis

The mRNA expression profiles of the two molecular clusters 
in severe asthma were analyzed using the gene set varia-
tion analysis (GSVA) [20], a non-parametric unsupervised 
analysis method primarily used to evaluate the enrichment 
characteristics of gene sets in microarray and transcriptome 
data. GSVA allows the identification of gene sets associ-
ated with specific biological processes, pathways, or func-
tions. By calculating the expression activity score of a gene 
set, we can assess functional differences between samples 

and determine whether different pathways are enriched. In 
this GSVA analysis, we used Hallmarker, KEGG, and GO-
related gene sets as reference sets. The GSVA score for each 
gene set was quantified to assess its enrichment level.

Calculation of Immune Cell Infiltration

To assess immune infiltration between patients with severe 
asthma and healthy controls, we used ssGSEA [21] to quan-
tify the relative abundance of immune cells and pod-plot to 
compare immune cell infiltration.

Identification of NETs‑Related Hub Gene Based 
on the Machine Learning Algorithm

Three machine learning algorithms, Boruta [22], Support 
Vector Machine (SVM) [23], and Least Absolute Shrinkage 
and Selection Operator (LASSO) [24] were used to screen 
for key genes associated with DE-NRGs. The Boruta algo-
rithm is a machine learning algorithm used for feature selec-
tion, which is mainly used to extract the most informative 
features in a dataset, thus improving the performance and 
generalization of the model, which can be implemented 
using the "Boruta" R package [22]. SVM is a feature selec-
tion algorithm that finds the most discriminative features for 
a task by combining the classification or regression capa-
bilities of SVM with the feature culling strategy of random 
forest to identify the subset of features that are most inform-
ative for a classification or regression task, which can be 
implemented using the "e1070" R package [25]. This algo-
rithm can be implemented using the "e1070" R package. In 
LASSO regression, we used 10 resampling iterations based 
on tenfold cross validation to select the best lambda values. 
Area under the curve (AUC) values were calculated using 
receiver operating characteristic (ROC) curves to identify 
potential candidate biomarkers with diagnostic significance 
for severe asthma.

Donor Consent

Blood samples were collected in accordance with the Dec-
laration of Helsinki, and written informed consent was 
obtained from study participants. All samples were col-
lected with the approval of the Ethics Committee of the 
China-Japan Friendship Hospital (No:2021-GZR-70). 10 ml 
of peripheral blood was collected from three patients with 
severe asthma and three healthy subjects.

Quantitative Real‑Time PCR

Total RNA was isolated and extracted using Tritol reagent 
(#9109, TaKaRa Bio), and reverse transcription was per-
formed using a PrimeScript™ RT Reagent Kit (#RR036A, 
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TaKaRa Bio). Quantitative real-time PCR was then per-
formed according to the Hieff® qPCR SYBR Green Master 
Mix (Low Rox Plus; Yeasen) protocol using specific prim-
ers. GAPDH was used as an internal control and the  2−△△Ct 
method was used to calculate relative mRNA levels. The 
primer sequences for TIMP1 and NFIL3 in this study were 
as follows Forward: 5'-CCT CTG GCA TCC TGT TGT TG-3', 
Reverse: 5'- GGT ATA AGG TGG TCT GGT TG-3'; Forward: 
5'-CCG AGA ACG TCG GAA ACT GA-3', Reverse: 5'-TTG GCT 
TTG ATC CGG AGC TT-3'.

Neutrophil Isolation and NET Induction

Human peripheral blood neutrophils were isolated using the 
Polymorphprep isolation solution method as described pre-
viously [26]. Experiments were performed in RPMI-1640 
(without phenol red) supplemented with 10 mM HEPES and 
5% heat-inactivated FBS. For NET experiments, cells were 
seeded at 5*10^5 cells/well (24-well plate) and stimulated 
with or without 100 nm PMA (#HY-18739, Medchemex-
press) for 3 h. Neutrophils inoculated onto PDL-coated 
glass coverslips were stained as previously described [27]. 
Briefly, after neutrophil induction, cells were fixed with 
4% paraformaldehyde and samples were then stained with 

Sytoxgreen (#KGA260, Keygen). Images were captured 
using a Leica orthogonal fluorescence microscope.

Results

Identification of DEGs

Figure 1 shows the flow chart of our study. Differential 
expression analysis was performed on the gene expression 
profiles of 12 healthy control samples and 46 severe asthma 
samples. A total of 1681 severe asthma-related DEGs were 
identified, consisting of 568 up-regulated genes and 1113 
down-regulated genes, based on the conditions described in 
the Materials and Methods section. Volcano and heat maps 
of the DEGs are shown in Fig. 2A and Fig. 2B, respectively.

Identification of DE‑NRGs and Their Functional 
Enrichment Analysis, Gene Expression Patterns, 
and Construction of PPI Networks

By integrating 1681 DEGs with our collection of 403 NRGs, 
50 DE-NRGs were finally obtained (Fig. 3A). To visualize 
their expression patterns in different samples, we generated a 
heat map of the DE-NRGs (Fig. 3B). Furthermore, the gene 

Fig. 1  Flowchart of this study. 
NETs, Neutrophil Extracellular 
Traps; NRGs, NET-associated 
genes; SA, Severe Asthma; 
NMF, Non-Negative Matrix 
Factorization; GSVA, Gene 
Set Variance Analysis; SVM-
RFE, Support Vector Machine 
Recursive Feature Elimination; 
LASSO, Least Absolute Shrink-
age and Selection Operator; 
ROC, Receiver Operating 
Characteristic Curves
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relationship network graph (Fig. 3C) depicted the correla-
tion among these DE-NRGs. In addition, we constructed a 
network of DE-NRGs that included 20 other genes, namely 
DSTN, BNIP3L, AGER, CFL1, TLR3, NCF2, AMOTL2, 
PDLIM1, CFL2, S100A9, SYNE4, CYBA, TIRAP, AGGF1, 
IRAK4, C1QB, CCR6, IL1B, LY96, and FCER1G (Fig. 3D). 
To gain insight into the potential role of DE-NRGs in severe 
asthma, we performed a functional enrichment analysis. The 
results of GO analysis revealed that DE-NRGs were associ-
ated with various biological processes, including granule 
lumen secretion, cellular response to bacterial-derived mol-
ecules, positive regulation of leukocyte activation, cytokine 
receptor binding, and signaling receptor activation activity 
(Fig. 3E). In addition, KEGG enrichment analysis revealed 
significant enrichment in pathways such as the NOD-like 
receptor signaling pathway, Toll-like signaling pathway, 
TNF signaling pathway, NF-κB signaling pathway, HIF-1 
signaling pathway, and IL-17 signaling pathway (Fig. 3F).

Stratification of Patients with Severe Asthma based 
on DE‑NRGs

To differentiate between severe asthma patients with varying 
degrees of severity, a cluster analysis was conducted using 
the NMF algorithm. This analysis was based on the expres-
sion profiles of the 50 DE-NRGs across all severe asthma 
patient samples. By assessing co-expression, dispersion, and 
profile metrics, the optimal number of clusters was deter-
mined to be k = 2 (Fig. 4A, B).

Accordingly, all samples from severe asthma patients 
were categorized into two clusters using the NMF 

algorithm: C1 cluster (n = 23) and C2 cluster (n = 23). 
The expression patterns of DE-NRGs in these two severe 
asthma clusters are illustrated in Fig. 4C. Notably, the 
C1 cluster exhibited upregulated expression of DEFA3, 
DEFB1, DNASE1L3, DYSF, HTRA1, JAK3, MMP9, 
ROMO1, S100A12, S100A8, SLPI, TECPR2, TICAM1, 
and TNFSF12. Conversely, the C2 cluster displayed upreg-
ulated expression of ACTB, ACTG1, APEX1, CASP1, 
CLEC7A, CTSC, CYBB, FCGR3B, FN1, HAVCR2, IL1A, 
ITGB1, LYZ, MME, MSR1, MYD88, OLR1, PIK3CA, 
PLAUR, PTPN22, RIPK3, SUCNR1, TLR4, and VDAC1 
(Fig. 4D).

Enrichment Analysis of GSVA in Different Clusters 
of Severe Asthma

To elucidate the different biological features between 
the two severe asthma clusters, we performed GSVA 
enrichment analysis using the Hallmarks gene set (h.all.
v7.2.symbols.gmt) based on the MSigDB database. By 
histogram presentation, we could observe that the C1 clus-
ter was up-regulated in the following biological processes 
compared to the C2 cluster: apical junctions, KRAS sign-
aling, allograft rejection, and coagulation. In contrast, the 
C1 cluster was downregulated in apoptosis, angiogenesis, 
P53 signaling, TNFA signaling via NFκB, inflammatory 
response, interferon-gamma response, PI3K-AKT-MTOR 
signaling, IL6-JAK-STAT3 signaling, MTORC1 signaling, 
and protein secretion (Fig. 5).

Fig. 2  Identification of DEGs. A Volcano plots: Volcano plots were 
constructed based on fold change values > 1 and adjusted P val-
ues < 0.05. B The Heatmap of DEG shows the trend of gene expres-

sion in different samples and is represented by different colors. The 
top 100 genes were ranked according to the adjusted P value, as 
shown in the figure. DEGs: differentially expressed genes
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Differences in Immune Infiltration Characteristics 
Between Subclusters

The heatmap (Fig.  6A) showing immune cell correla-
tions revealed significant positive correlations between 

neutrophils and resting or activated dendritic cells, follicu-
lar helper T cells, and naive B cells. Conversely, neutrophils 
showed significant negative correlations with regulatory T 
cells, γδ T cells, resting NK cells, and mast cells. The results 
of the ANOVA analysis (Fig. 6B) showed variations in the 

Fig. 3  Identification of DE-NRGs and their gene expression patterns, 
PPI networks, and functional enrichment analysis. A Gene overlaps 
between DEGs and NRGs. B Heat map of DE-NRGs expression. C 
PPI network of DE-NRGs and their interacting proteins. (D) Corre-
lation matrix of DE-NRGs. E GO enrichment analysis of DE-NRGs 

in terms of biological processes, cellular components, and molecular 
functions. F KEGG pathway analysis of DE-NRGs. DEGs, differ-
entially expressed genes; NRGs, NET-associated genes; DE-NRGs, 
differentially expressed NRGs; PPI, protein–protein interaction; GO, 
gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes
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Fig. 4  Non-negative matrix 
factorization (NMF) analysis 
of samples from patients with 
severe asthma. A The consensus 
plot for NMF clustering at k = 2 
is presented (A). B The distribu-
tions of co-expression, residu-
als, residual sum of squares 
(RSS), and profile metrics are 
visualized on a scale ranging 
from 2 to 10 (B). C A heatmap 
illustrates the expression pat-
terns of DE-NRGs (C). D A 
box plot displays the expression 
levels of 16 DE-NRGs between 
the two clusters (D). RSS, 
residual sum of squares; DE-
NRGs, differentially expressed 
NET-related genes. *P < 0.05, 
**P < 0.01, ***P < 0.001
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number of immune cells in different subclusters, indicating 
changes in the immune microenvironment among these sub-
clusters. Simultaneously, box plot results (Fig. 6C) showed 
distinct trends in immune cell abundance between the C1 
and C2 clusters. The C2 cluster showed a higher abundance 
of neutrophils, eosinophils, naive B cells, follicular helper 
T cells, and resting and activated dendritic cells compared 
to the C1 cluster. In contrast, the C1 cluster showed a higher 
abundance of γδ T cells, resting NK cells, plasma cells, 
memory B cells, naive CD4 T cells, monocytes, M0 phase 
macrophages, and resting mast cells compared to the C2 
cluster.

Fig. 5  Plot of GSVA results. Histogram of GSVA enrichment results 
in the Hallmarker reference set. GSVA, Gene Set Variation Analysis

Fig. 6  Analysis of immune infiltration in subclusters of severe 
asthma. A Correlation heat map of 22 infiltrating immune cells. B 
Heat map of differentially expressed immune cells between two clus-

ters. C Box plots of differentially expressed immune cells between 
two clusters. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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Correlation Analysis of DE‑NRGs with Immune Cell 
Infiltration

We investigated the relationship between immune cell ratios 
and the expression of the 50 DE-NRGs in individuals with 
severe asthma. This investigation aimed to uncover potential 
biomarkers associated with immune cell ratios. The correla-
tion heatmap (Fig. 7) visually depicted these associations. 
Notably, the heatmap revealed that the expression levels of 
certain genes, including ACTN4, CCL5, DNASE1L3, JAK3, 
TECPR2, TNFSF12, DEFB1, DEFA3, S100A12, S100A8, 
SLPI, DYSF, HTRA1, TICAM1, ROMO1, and MMP9, were 
negatively correlated with the neutrophil ratio. Conversely, 
the expression of the remaining 34 genes showed a positive 
correlation with the neutrophil ratio.

Machine Learning Algorithm Identifies NETs Related 
Central Genes in Severe Asthma

In LASSO logistic regression, a selection of 16 genes 
emerged as potential central candidates, as determined 
by the optimal lambda value of 0.01134282 (Fig. 8A, B). 
Among the different models, the SVM model showed the 
lowest classification error when considering four candidate 
genes: SLC44A2, TIMP1, S100A12, and NFIL3 (Fig. 8C). 
Using the Boruta feature selection method to predict fea-
ture attributes, the changing Z-scores are shown in Fig. 8D. 
Finally, the Boruta algorithm identified a set of 26 genes 
(Fig. 8E). Finally, the three algorithms together selected the 
genes SLC44A2, TIMP1, and NFIL3, which were identified 

as central genes (Fig. 8F). We then entered the validation 
phase by testing the three identified candidate genes in two 
different datasets—GSE64913 and GSE76262. The results, 
as shown by the ROC curves, underline a promising diagnos-
tic potential for TIMP1 (with AUC values of 0.683 and 0.71) 
and NFIL3 (with AUC values of 0.737 and 0.671). Unfortu-
nately, SLC44A2 showed less favorable diagnostic accuracy 
with AUC values of 0.417 and 0.514, respectively (Fig. 9). In 
addition, we performed further validation using the chronic 
lung disease without asthma dataset (GSE47460), which 
again showed specific expression of TIMP1 and NFIL3 in 
the neutrophil-associated severe asthma differential gene 
(Supplementary Table 2 and supplementary Fig. 1). These 
results highlight the prospective applicability of TIMP1 and 
NFIL3 as predictive biomarkers for severe asthma.

Validation of TIMP1 and NFIL3 Expression 
and Extent of NETs Release in Severe Asthma

Both independent data sets suggested that TIMP1 and NFIL3 
might be available as predictive markers for severe asthma, 
and to further validate the reliability of the results, we per-
formed an experimental verification. We isolated peripheral 
blood neutrophils from healthy individuals and patients with 
severe asthma, respectively, and verified the mRNA expres-
sion of TIMP1 and NFIL3 in neutrophils from healthy indi-
viduals and patients with severe asthma by qPCR, which 
showed that the expression of TIMP1 and NFIL3 was sig-
nificantly upregulated in severe asthma group compared to 
healthy control group (p < 0.05; Fig. 10A). In addition, we 

Fig. 7  Results of correlation analysis between DE-NRGs and immune cells. Correlation heatmap showing the correlation between DE-NRGs in 
mRNA expression profiles and immune cells. *P < 0.05, **P < 0.01, ***P < 0.001
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treated neutrophils with Phorbol 12-myristate 13-acetate, 
a stimulant widely used to understand the neutrophil path-
way and NETs formation[28], and the results showed that 
patients in the severe asthma group had a significantly higher 
level of NET release than healthy control group (Fig. 10B).

Discussion

In this investigation, we used the GEO database to shed 
light on gene expression levels in both healthy controls and 
patients with severe asthma. To provide a molecular char-
acterization of NRGs in severe asthma, further analysis of 
50 DE-NRGs showed that the vast majority of them had 
a strong tendency to co-express. This observation suggests 
a potential concerted action of these genes in the intricate 
pathogenesis of severe asthma. Protein–protein interaction 
(PPI) analysis revealed that the genes that interact with the 
DE-NRGs are predominantly involved in responding to stim-
uli from biogenic molecules such as bacteria and their con-
stituents. In addition, these genes play a key role in orches-
trating the production and release of interleukin-6 (IL-6). It 
has been found that the origin, efficacy in microbial eradi-
cation, or potential deleterious effects of NETs may adopt 
different profiles depending on the characteristics inherent 
to different pathogenic microorganisms, including factors 
such as the presence of virulence traits, microbial load, and 

microorganism dimensions, among others [29]. Previous 
study has found that IL-6 exerts a robust influence on the 
initiation of NETs formation [30]. In the context of critically 
ill COVID-19 patients, it is noteworthy that the early surge 
in IL-6 levels showed a positive correlation with the extent 
of NETosis and subsequent respiratory impairment [31]. 
Interestingly, the interplay doesn't just flow in one direc-
tion, as NETs are capable of reciprocally modulating IL-6 
receptor expression. An insightful investigation by Winslow 
et al. revealed that Haemophilus influenza-induced NETosis 
may be a mechanism for increasing soluble IL-6 receptor 
levels. This intricate interaction also holds significant sway 
over the phenotypic attributes of individuals struggling with 
chronic obstructive pulmonary disease [32].

Subsequent functional enrichment analysis unveiled their 
pronounced enrichment in the NOD signaling pathway, 
Toll-like signaling pathway, and TNF signaling pathway. 
Previous studies have shown that the above pathways play 
an important role in NETs formation. NOD-like receptors 
constitute a family of intracellular innate immune sensors 
that are triggered by the recognition of microbe-associated 
and damage-associated molecular patterns. Notably, NOD2 
and NLRP3 are significantly expressed in neutrophils, and 
their activation promotes neutrophil IL-8 and IL-1β secre-
tion and migration toward inflammatory stimuli [33]. In a 
mouse model lacking NLRP3, both the density, and rate 
of NET formation were significantly reduced compared to 

Fig. 8  Identification of core genes in severe asthma. A LASSO coef-
ficient profiles of 16 selected genes and generation of coefficient dis-
tribution plots for log sequences. B Selection of the best-penalized 
coefficients lambda by a tenfold cross-validation process with 10 rep-
licates. lambda values generate the minimum average binomial devia-
tion used for feature selection. C RMSE of candidate central gene 
combinations for the SVM algorithm. Minimum classification error 

obtained with four candidate genes considered. (D) Z-score varia-
tion plot. E Boruta's algorithm selected 26 feature genes and ranked 
them in order of importance. F Venn diagram showing the overlap 
of candidate genes in the above three algorithms. LASSO, least abso-
lute shrinkage and selection operator; SVM, support vector machine; 
RMSE, root mean square error
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Fig. 9  Verification of the performance of centralized center genes. (A–C) GSE64913 (D–F) GSE76262
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the wild type, highlighting the important role of NLRP3 in 
NETosis [34]. Toll-like receptors (TLRs) serve as recogni-
tion sensors for foreign compounds such as viral and bacte-
rial products, thanks to their diverse extracellular structural 
domains rich in leucine repeats. Investigations by Tadie 
et al. revealed that the hazard-associated molecular pattern 
protein, high mobility group protein 1 (HMGB1), induces 
NET generation both in vitro and in vivo through a TLR4-
dependent mechanism [35]. Building on this, Wang et al. 
extended the understanding by showing that HMGB1 medi-
ates NETs formation through its engagement with TLR2 and 
TLR4. This interaction with TLR2 and TLR4 contributes to 
the generation of NETs by HMGB1 and consequently trig-
gers the recruitment of neutrophils [36]. TNF-α, a widely 
studied pleiotropic cytokine of the TNF superfamily, plays a 
prominent role as an initiator of the TNF signaling pathway. 
TNF-α and NF-κB levels are significantly elevated in indi-
viduals with severe asthma [37, 38]. A recent investigation 
highlighted the critical role of TNF signaling in NET for-
mation during Staphylococcus aureus skin infections [39].

Using the expression profiles of the 50 different DE-
NRGs, we then performed cluster analysis using NMF to 
effectively classify patients with severe asthma into dis-
tinct C1 and C2 clusters. Within the C2 cluster, genes with 
elevated expression levels were observed to be positively 
correlated with the degree of neutrophil infiltration. These 
highly expressed genes within the C2 cluster exhibited 
significant enrichment in pathways such as TNFA, which 
showed substantial dissimilarity compared to the C1 cluster. 
This revealing finding suggests that individuals within the 
C2 cluster of severe asthma samples may exhibit heightened 
immune-inflammatory responses and a propensity for NET 
formation, potentially indicating a more challenging clini-
cal prognosis. Asthma is widely recognized for its clinical 

and therapeutic diversity. This complexity underscores the 
importance of tailored management strategies to optimize 
therapeutic efficacy. Consequently, the findings from this 
study hold promise for yielding valuable biological per-
spectives into distinct clinical phenotypes and facilitating 
the stratification of patients for more targeted and effective 
interventions.

With the rapid development of artificial intelligence, 
machine learning algorithms, as an important branch of 
artificial intelligence, have been widely used in the field of 
identification and screening of key genes due to their excel-
lent feature differentiation ability and applicability to high-
dimensional feature data [40–43]. In this study, we used 
three specifically selected machine learning classifiers, 
namely Boruta, SVM and LASSO, to merge the predictive 
performance anchored in DE-NRG expression profiles to 
identify SLC44A2, TIMP1 and NFIL3 as alternative key 
core genes. We then further validated the alternative key 
core genes using two independent validation sets, and our 
results showed that TIMP1 and NFIL3 showed diagnostic 
utility for severe asthma in the context of both validation 
sets. The results of our in vitro experiments also supported 
this conclusion, as TIMP1 and NFIL3 were highly expressed 
in patients with severe asthma, and neutrophils in patients 
with severe asthma produced and released NETs at a sig-
nificantly higher rate than in healthy controls, suggesting 
that the degree of neutrophil stress in patients with severe 
asthma may be more pronounced and may contribute to the 
exacerbation of symptoms in patients with asthma.

TIMP1 is emerging as a novel soluble matrix metal-
loproteinase inhibitor that is rapidly expressed on the cell 
surface when human neutrophils are activated [44]. The 
work of Wang et al. revealed for the first time that TIMP1 
is present on NETs released by activated neutrophils. 

Fig. 10  Experimental validation procedure. A mRNA expression 
of TIMP1 and NFIL3 in peripheral blood neutrophils of control 
and severe asthma groups. B Fluorescence microscopy experiments 
showing the level of extracellular DNA release after stimulation 

with 100  nm PMA for 180  min (Images represent 3 independent 
experiments with neutrophils from different donors). PMA, Phorbol 
Myristate Acetate. **p < 0.01
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Similarly, Schoeps et al. found in a mouse model geneti-
cally engineered to carry pancreatic ductal adenocarcinoma 
that TIMP1 significantly promoted the formation of NETs 
within the tumor. Remarkably, the removal of either TIMP1 
or NETs resulted in prolonged survival in these mouse sub-
jects [45]. NFIL3, also known as E4BP4, is a basic leucine 
zipper-type transcription factor originally identified as a 
transcriptional repressor and activator [46–48]. NFIL3 has 
been implicated in immune-mediated diseases, with a grow-
ing body of literature suggesting that NFIL3 is associated 
with IgE class switching and resistance to glucocorticoid 
therapy[49, 50]. A study by Ke et al. found that NFIL3 may 
be involved in neutrophil-mediated cellular injury during 
myocardial infarction and is a core gene for NETs-associated 
endothelial injury. The role of TIMP1 and NFIL3 in asthma 
is not yet fully understood, and in particular their potential 
mechanism with NET formation is intriguing and warrants 
further study in the future.

However, it is important to acknowledge several limita-
tions of this study. First, the results were derived from a 
relatively small sample of patients with severe asthma, so 
a larger cohort is needed to obtain more robust and reli-
able results. Second, given the evolving understanding of 
NETs, there is room for refinement in the construction of 
the NET-related gene set. Furthermore, a more comprehen-
sive exploration of the cellular and molecular mechanisms 
underlying NRGs is imperative to gain a deeper insight into 
their role in the context of asthma pathogenesis. Finally, 
this study focused primarily on gene expression data; future 
investigations should expand their scope to include broader 
facets involved in severe asthma pathogenesis, including 
epigenetics, proteomics, and metabolomics, to gain a more 
comprehensive understanding and insight. Such expanded 
research efforts will undoubtedly contribute to a more 
nuanced understanding of the intricate mechanisms involved 
in severe asthma.

In conclusion, based on our current understanding, this 
study provides the first in-depth exploration of the molecu-
lar characterization of NRGs in adult patients with severe 
asthma. Through an intricate analysis of DE-NRGs, we have 
effectively categorized individuals affected by severe asthma 
into two distinct clusters. In addition, our exploration has 
yielded two potential biomarkers—TIMP1 and NFIL3—that 
hold promise for opening up new avenues for the diagnosis 
and treatment of severe asthma. As we look to the future, 
future investigations may delve deeper into the functional 
attributes of these markers and their potential role in refin-
ing severe asthma management and therapeutic strategies, 
thereby making more substantial contributions to the well-
being of patients.
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