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Abstract

Ataxia telangiectasia-mutated (ATM) protein kinase, a key player in cellular integrity regulation, is known for its role in
DNA damage response. This study investigates the broader impact of ATM on cellular processes and potential clinical
manifestations arising from mutations, aiming to expand our understanding of ATM’s diverse functions beyond conventional
roles. The research employs a comprehensive set of computational techniques for a thorough analysis of ATM mutations.
The mutation data are curated from dbSNP and HuVarBase databases. A meticulous assessment is conducted, considering
factors such as deleterious effects, protein stability, oncogenic potential, and biophysical characteristics of the identified
mutations. Conservation analysis, utilizing diverse computational tools, provides insights into the evolutionary significance
of these mutations. Molecular docking and dynamic simulation analyses are carried out for selected mutations, investigating
their interactions with Y2080D, AZDO0156, and quercetin inhibitors to gauge potential therapeutic implications. Among the
419 mutations scrutinized, five (V1913C, Y2080D, L2656P, C2770G, and C2930G) are identified as both disease causing
and protein destabilizing. The study reveals the oncogenic potential of these mutations, supported by findings from the
COSMIC database. Notably, Y2080D is associated with haematopoietic and lymphoid cancers, while C2770G shows a
correlation with squamous cell carcinomas. Molecular docking and dynamic simulation analyses highlight strong binding
affinities of quercetin for Y2080D and AZDO0156 for C2770G, suggesting potential therapeutic options. In summary, this
computational analysis provides a comprehensive understanding of ATM mutations, revealing their potential implications
in cellular integrity and cancer development. The study underscores the significance of Y2080D and C2770G mutations,
offering valuable insights for future precision medicine targeting-specific ATM. Despite informative computational analyses,
a significant research gap exists, necessitating essential in vitro and in vivo studies to validate the predicted effects of ATM
mutations on protein structure and function.
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ATM- and Rad3-related

Ataxia telangiectasia mutated
Breast cancer type 1 susceptibility
protein

Abelson tyrosine-protein kinase 1
Checkpoint kinase 1

Checkpoint kinase 2

Conservation of amino acid residues
in proteins

Deoxyribonucleic acid
DNA-dependent protein kinase cata-
lytic subunit

Double-stranded break

Fanconi anemia group D2 protein
Functional analysis through hidden
Markov models

Ionizing radiation
Metastability-based SNP predictor
Murine double minute 2

Molecular dynamics simulation
Nijmegen breakage syndrome 1
Tumour protein 53
Phosphatidylinositol 3-kinase-related
kinase

Protein variation effect analyzer
Pathogenicity prediction software for
missense variants

Rad51 DNA repair protein RAD51 homolog
1

SDM2 Site-directed mutator 2

SNPs Single-nucleotide polymorphisms

mCSM Mutations of computational saturation
mutagenesis

PyMOL Python molecular graphics system

Introduction

Several DNA damage events ensue in the human body
every day as a result of exposure to diverse environments
[1]. These conditions effect the DNA by simple base altera-
tions, base incongruities, inter-strand crosslinks, intra-strand
crosslinks, bulky DNA adducts, DNA-protein crosslinks,
single-stranded break (SSB), and double stranded break
(DSB) [2]. When normal cells are stressed and their DNA
is damaged, the damage can be repaired utilising intact DNA
repair pathways until the stress becomes severe enough to
cause cell death or senescence [3]. The ataxia telangiectasia
mutated (ATM) protein is one of the most important unit
of the DNA damage response system, acting as an intra-
cellular sensor for DSB [4]. It is generally found in cells in
the dimeric forms and undergoes auto-phosphorylation in
response to DNA damage, resulting in the separation of the
inactive complex. The following activation of a signalling
cascade linking the phosphorylation of several substrates,
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which leads to two critical responses to DNA damage: the
cell-cycle checkpoints activation and the beginning of DNA
repair. Therefore, when DNA repair mechanism fails, apop-
tosis gets triggered [5]. ATM substrates comprise Mdm?2,
c-Abl, and p53, which impact the G1 checkpoint; Rad51,
NbsS1, FANCD2, and BRCAL1 that plays role in the tran-
sient IR-induced S-phase arrest; besides Chk1, Chk2, and
BRCAL1 that control the G2 checkpoint [5, 6]. It modulates
networks participating in DNA repair, insulin-like growth
factor, stress response and other metabolic pathways, with
approximately phosphorylating 700 targets, as a result of
DSBs. The large number of ATM targets during DNA repair
or genomic stress is most likely a method of coordinating
many pathways. ATM and other members of the PIKK fam-
ily, such as the catalytic subunit of DNA-dependent protein
kinase (DNA-PKc) and ATM-related (ATR), exhibit redun-
dancy and collaborate in response to various forms of geno-
toxic stress (Fig. 1).

The structure of ATM is characterized by a butterfly-
shaped dimer, formed by the combination of the FAT and
KD domains into a dimeric body referred to as FATKD
(Fig. 2). Emerging from this body is the N-terminal o—a
solenoids, spanning approximately 1900 residues, identified
as Spiral and Pincer domains. The Spiral domain covers resi-
dues 1-1166, followed by the Pincer domain encompassing
residues 1167-1898 [7, 8]. Moving along the sequence, the
FAT domain, named after FRAP, ATM, TRRAP, extends
from residues 1899-2613, while the Kinase domain occu-
pies residues 2614-3056. Similar to other PIKKSs, the Kinase

domain comprises an N-terminal lobe (residues 2614-2770)
and a C-terminal lobe (residues 2771-2957), with the cata-
lytic cleft situated between them. The C lobe concludes with
the FAT C-terminal domain (residues 3027-3056), a dis-
tinctive feature within the PIKK family, absent in canonical
kinases [9, 10]. Maintaining structural integrity is crucial, as
mutations in key residues of the ATM protein can potentially
alter its structure, thereby leading to significant functional
changes.

Understanding the significance of single-nucleotide poly-
morphisms (SNPs) in human genetic phenotypic variation
will help us better understand human genetic phenotypic
variability, particularly in complex illnesses. Additionally,
SNPs in the ATM gene can disturb all of the above-men-
tioned interactions, which are necessary for the kinase’s
normal function, and several studies have connected SNPs
in the ATM gene to a range of diseases [11-13]. SNPs in the
biologically important regions of ATM can alter its normal
function. Despite the fact that ATM is an important kinase
linked to DNA repair and a diversity of malignancies, only
a few computational studies have been demonstrated to be
involved in detecting disease-associated mutations and their
role in structure and function change.

Several computational analyses have already been car-
ried out in past to find harmful SNPs in the gene linked to
human diseases [14—17]. As a result, the goal of this study
was to assess the potential impacts of SNPs on distinct struc-
tural regions of ATM that might affect its function and per-
haps play a role in cancer progression. To accompany this,

Fig. 1 Schematic representation of ATM kinase involvement in various process such as checkpoint arrest, cell-cycle arrest, cell survival, chro-

matin relaxation, DNA repair, and apoptosis
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Fig.2 Structural details of ATM kinase

we primarily used several computational algorithms such
MetaSNP, Pmut, and Provean to evaluate the deleterious/dis-
ease-causing potential of SNPs. Additionally, the web serv-
ers like I-Mutant 2.0, mCSM, SDM2, CUPSAT, and MUpro
were used to evaluate the effect of SNPs on protein stability.
Later the cancer-promoting potentials and residual conser-
vation of SNPs were evaluated by FATHMM-cancer and
ConSurf server, respectively. Following that, we presented
modelled protein structures for the mutations using PyMOL
mutagenesis plugin. The molecular-docking analysis of wild
type and mutants was performed against ATM inhibitors
such as AZD0156 and AZD1390 along with the natural
compound quercetin and best docked possess were analysed
and represented. Lastly, to validate the docking experiments,
the molecular dynamics simulation was performed.

Materials and Methods

The workflow that was followed is depicted in Fig. 3.

Data Collection

The ATM kinase mutations (SNPs) list was gleaned through
online mutational databases such as HuVarBase (https://
www.iitm.ac.in/bioinfo/huvarbase/), and dbSNP (https://
www.ncbi.nlm.nih.gov/snp/). The UniProt KB (https://
www.uniprot.org/) a protein sequences database was used
to obtain the protein sequence information of ATM kinase
[UniProt Id: Q13315 (ATM_HUMAN)]. The 3D coordinates
of ATM kinase protein were obtained from the Protein Data
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Bank (RCSB PDB) PDB Id: 5PNO (http://www.rcsb.org/)
for the study.

Deleterious Mutation Analysis

We used a number of publicly available tools for this
research, which are briefly described below.

A web-based tool called MetaSNP that aids in identifying
polymorphic missense SNPs associated with disease is based
on a random forest binary classifier. It primarily incorporates
four widely used techniques, SIFT, PhD-SNP, PANTHER,
and SNAP, which aid MetaSNP in more effectively detecting
harmful variants. SV-2009 dataset was used to train and test
this tool using a 20-fold cross-validation procedure (https://
snps.biofold.org/meta-snp/index.html) [18].

A protein’s biological function can be predicted using
the online tool PROVEAN v1.1.3 (Protein Variation Effect
Analyzer), which predicts how an amino acid substitution or
indel will impact a protein. The scores generated both within
and between clusters are averaged to produce the PROVEAN
score. The tool’s default threshold score is “—2.5,” and if the
variant is predicted to be less than that score, it is predicted
to be “deleterious,” while if it is predicted to be more than
that score, it is predicted to be “neutral” (http://provean.jcvi.
org/about.php) [19].

A neural network algorithm is used by the online server
PMut to forecast the pathological nature of missense muta-
tions. SwissVar is a variation database that has been manu-
ally curated to train this tool. It primarily functions on two
levels; first, it retrieves data from a local database of muta-
tional hotspots, and then it assesses a specific SNP in a par-
ticular protein. It foresees that the mutation score will range
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Fig.3 Overall workflow and tools used for carrying out the study

from O to 1. If mutations scoring 0 to 0.5 are considered
neutral mutations and mutations scoring 0.5 to 1 are con-
sidered disease-causing mutations (http://mmb.irbbarcelo
na.org/PMut/) [20].

Protein Stability Check

A novel programme called mCSM uses a graph-based
approach to examine the effects of missense mutations on
protein stability. As a result of the atomic distance pattern
of various residues, it has been trained in a particular envi-
ronment. mCSM provides a better understanding of muta-
tions and their relationship to diseases for a large number of
proteins. For evaluating mutation stability, this programme
has a unique cutoff (scoring pattern). When a mutation’s
Gibbs free energy is predicted to be greater than zero, it
is said to be “stabilising,” and vice versa if the mutation’s
Gibbs free energy is below zero (http://biosig.unimelb.edu.
au/mcsm/) [21].

Site-directed mutator 2, or SDM2, is a computer pro-
gramme that assesses the variation in protein stability
brought on by mutations. Following the environment-spe-
cific amino acid substitutions tables based on density pack-
ing and residue length, it evaluates the effects of mutations.
Over 130 different proteins have been tested using this tool’s
nearly 2690 different amino acid substitutions. If the Gibbs
free energy is above “0,” it is predicted to be stabilising, and
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if it is below “0,” it is predicted to be destabilising (http://
marid.bioc.cam.ac.uk/sdm?2) [22].

A web server called iSTABLE is used to forecast the sta-
bility of proteins. It establishes whether a mutation has made
a protein more or less stable. Support vector machines are
used as integrators by this server. The two primary input
options for this tool are structural and sequential. A stabi-
lising mutation is indicated by a positive Gibbs free energy
value, while a destabilising mutation is indicated by a nega-
tive number (http://predictor.nchu.edu.tw/istable/) [23].

Cologne University Protein Stability Analysis Tool
(CUPSAT) is a computer programme that analyses the
effects of point mutations on protein stability. It predicts the
difference in Gibbs free energy between wild-type/normal
and mutant proteins. The findings include information on
the mutation’s location, structure, and the specific effects
of 19 different amino acid substitutions on protein stability.
A positive Gibbs free energy value indicates a stabilising
mutation, whereas a negative number indicates a destabilis-
ing mutation (http://cupsat.tu-bs.de/) [24].

[-Mutant 3.0 is a machine-learning-based technique that
considers altered residues’ spatial surroundings in terms of
surrounding residue types and surface accessibility. [-Mutant
3.0 has been trained to perform the following tasks: (I) Pre-
dict the direction of protein stability changes as a result of
mutations (a classification task); (II) Predict the Gibbs free
energy as a result of mutations (a function approximation

@ Springer
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task) (https://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutan
t3.0/I-Mutant3.0.cgi) [25].

MUpro predicts the effect of a mutation on protein stabil-
ity using a suite of machine learning systems. The results are
centred on two machine learning methodologies, support
vector machines, and neural networks. It calculates the effect
of mutation on protein stability using the value of the Gibbs
free energy change. It also forecasts the direction of energy
change using neural networks and support vector machines.
Furthermore, it predicts protein stability without knowing
the protein’s tertiary structure (http://mupro.proteomics.ics.
uci.edu/) [26].

Cancer-Causing Potential

FATHMM-cancer is a web-based high-throughput tool for
predicting the functional consequences of mutations. It
forecasts the cancer-causing potential of specific mutations.
Based on the default threshold score of “—0.75, this tool
generates a prediction. A predicted score less than “—0.75”
indicates that the mutation is “cancer-promoting”, whereas
a score greater than “—0.75” indicates that the mutation is a
“passenger” (http://fathmm.biocompute.org.uk/cancer) [27].

Biophysical Characteristics

The biophysical properties were examined using the Align
GVGD server. The prediction analysis was given the muta-
tion list and a multiple sequence alignment as inputs. The
information is arranged by Class, which ranges from 0 (most
likely neutral) to 65 (most likely deleterious) (http://agvgd.
hci.utah.edu/agvgd_input.php).

Conservation Analysis

The conservation of amino acids is critical for understand-
ing protein evolution and function. The ConSurf server is a
computational tool that uses multiple sequence alignment to
assess amino acid conservation in a protein based on phylo-
genetic relationships between homologous sequences. It has
a scoring scale of ““1 to 9”, with 1 indicating little or no con-
servation, 5 indicating moderate conservation, and 9 indicat-
ing high conservation. Furthermore, buried amino acids with
a high conservation value are considered structural residues,
whereas exposed amino acids with a high conservation score
are considered functional residues (https://consurf.tau.ac.il)
[28, 29].

Mutant Protein Modelling and Quality Assessment
Using the mutagenesis plugin embedded in PyMOL (www.

pymol.org), Y2080D and C2770G mutant models were
created using the wild-type ATM as a reference model.

@ Springer

Subsequently, the SwissPDB viewer was employed to miti-
gate high-energy configurations, employing the GROMOS
43B1 force field for energy minimization in both mutant
and wild-type ATM structures. This involved adjusting their
coordinate geometries to release internal constraints and
diminish the overall potential energy.

Drug-Likeness Property and ADME Check

The ADMETIab 2.0 server (https://admetmesh.scbdd.com/
service/evaluation/cal) was used to evaluate the drug like-
ness and pharmacokinetic property of two known ATM
kinase inhibitors, AZD0156 and AZD1390, as well as a
natural chemical compound “quercetin”, which has previ-
ously exhibited to have anticancer characteristics.

Molecular Docking Analysis

The AutoDock software was used to perform molecular-
docking studies with AZD0156, AZD1390, and quercetin
for wild type and mutants [30]. The wild-type ATM and
mutants were given all of the necessary polar hydrogen, sol-
vation parameters, and were assigned Kollman United Atom
charges. Grid (affinity) maps with 100 (X), 100 (Y), and 100
(Z) grid points, plus a spacing of 0.375, were created for the
protein’s active site using the AutoGrid programme. The
Lamarckian Genetic Algorithm (LGA) was used to perform
the molecular docking, with each experiment containing
ten distinct runs [31]. Finally, using the Discovery studio
visualizer and Pymol software, the structure of the docked
complexes with the highest binding affinity was visualised.

Molecular Dynamic (MD) Simulation

MD simulations were conducted for docked complexes
involving wild-type ATM, Y2080D, and C2770G as protein
targets, along with the ligands AZD0156, AZD1390, and
quercetin. GROMACS 2021 and the PROGRG server were
employed to generate ligand and complex topologies. The
complexes were solvated with simple point charge (SPC)
water molecules, and NA™ and Cl~ ions were added for neu-
tralization. The system underwent initial equilibration in the
NVT ensemble, addressing particle number, volume, and
temperature, followed by equilibration in the NPT ensemble,
which considered particle number, pressure, and tempera-
ture. Subsequently, 10,000 picoseconds (ps) of MD simula-
tion were conducted for the complexes.

Post MD Analysis
The analysis of MD simulations results involved the utili-

zation of trajectory files, including computations for Root-
Mean-Square Deviation (RMSD), Radius of Gyration (Rg),
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and Solvent-Accessible Surface Area (SASA). Additionally,
Principal Component Analysis (PCA) was performed using
various built-in scripts in GROMACS. The graphical rep-
resentation of all trajectory files was generated using the
QtGRACE visualization software.

MM-PBSA Assessment

The g_mmpbsa package was employed in conjunction with
GROMACS 2021 to assess the molecular mechanics Poisson
Boltzmann surface area (MM-PBSA) and analyze the free
binding energy of wild-type ATM, Y2080D, and C2770G
proteins in complex with ligands (AZD0156, AZD1390, and
quercetin). The binding energy was computed based on the
final 1000 ps from the 10,000 ps MD simulation production.
The estimation of binding affinity considered both bonded
and non-bonded interactions in the solvent stage, distin-
guishing between interactions in the vacuum. To calculate
polar and non-polar solvation energy, the Poisson Boltzmann
equation and solvent-accessible surface area (SASA) were
utilized. The binding free energy (AG binding) was deter-
mined using the following equation:

AG binding = AG complex — (AG protein + AG ligand)

Results
Distribution of ATM SNPs

For our analysis, we used a list of 419 ATM kinase SNPs
found in public databases which are positioned in different
coding regions of the protein.

Analysis of Pathogenicity

The impact of missense SNPs on the amino acids they alter
can be used to estimate their pathogenicity. Therefore, this
investigation was mainly focused on ATM kinase missense
mutations and their pathogenic/deleterious effect. A total of
419 SNPs were analysed by Provean, Pmut, and MetaSNP
(PANTHER, PhD-SNP, SIFT, SNAP) which resulted 167,
89,250, 311, 240, 283, and 269 as deleterious SNPs, respec-
tively, and is represented in the graphical manner (Fig. 4). In
addition, a detailed dataset of predicted results is presented
in Supplementary Table 1. Overall results achieved from this
investigation exhibited “54”” SNPs as deleterious/pathogenic
which are residing on different domains of ATM from the
large pool of mutations. The 54 deleterious SNPs details
sheet obtained, replete with score and server predictions, is
displayed in Table 1. Later, these 54 deleterious SNPs were
further analysed for protein stability check.
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Fig.4 Computational prediction and screening of mutations in ATM;
Graph represents the screening of deleterious and neutral mutations
using Provean, Pmut, PANTHER, SIFT, PHD-SNP, SNAP, and
MetaSNP

Analysis of Protein Stability

The impact of the 54 most deleterious mutations on pro-
tein stability was predicted using Mupro, iStable, iMutant
3.0, mCSM, SDM, and CUPSAT. Out of 54 mutations,
5 (V1913C, Y2080D, L2656P, C2770G, C2930G) were
found to be destabilising SNPs based on the examination
of all 6 stated web-based algorithms; details related to the
score and predictions are listed in Table 2 and are graphi-
cally depicted in Fig. 5.

Analysis of Oncogenic Nature of ATM Mutants

FATHMM-cancer was used to check the cancer-causing
potentials of the V1913C, Y2080D, L2656P, C2770G,
and C2930G mutations. The scores for V1913C, Y2080D,
L2656P, C2770G, and C2930G derived from this study
were —2.87, — 1.5, — 2.4, — 1.69, and — 2.64, respectively,
and were predicted to have cancer-promoting potential
(Table 3). Overall, the results of this prediction indicated
that these mutations have a role in cancer and subjected
for further analysis.

Analysis of Biophysical Characteristics

The V1913C, Y2080D, L2656P, C2770G, and C2930G
mutations were subjected to Align GVGD server to assess
the biophysical characteristics. The results obtained from
the server showed that all of the mutations belong to the
class 65 (most likely deleterious) (Table 4).
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Fig.5 Computational prediction and screening of mutations in ATM;
Graph represents the number of destabilizing and stabilizing muta-
tions of ATM predicted by I-mutant 3.0, iStable, mCSM, SDM, CUP-
SAT, and Mupro

Table 3 Cancer-promoting analysis

Sr.no Mutation Score Prediction
1 V1913G —-2.87 CANCER
2 Y2080D -1.5 CANCER
3 L2656P -2.4 CANCER
4 C2770G —1.69 CANCER
5 C2930G —-2.64 CANCER
Table 4 Biophysical characteristics

Sr.no Mutation Prediction

1 V1913G Class C65 (most likely deleterious)
2 Y2080D Class C65 (most likely deleterious)
3 L2656P Class C65 (most likely deleterious)
4 C2770G Class C65 (most likely deleterious)
5 C2930G Class C65 (most likely deleterious)

Prevalence of Mutations in Cancer

We investigated the cancer incidence of the mutations in
the COSMIC database based on the FATHMM-cancer and
Align GVGD prediction results and discovered that Y2080D
was reported in Haematopoietic and lymphoid cancer, and
C2770G was reported in squamous cell carcinomas. There-
fore, these two mutations were taken for further analysis.

Conservation Analysis
The level of residue conservation gives an approximate
notion of the structural and functional impact that deleteri-

ous mutations can have on the protein. A damaging muta-
tion at a highly conserved residue are always harmful in

@ Springer

nature. The ConSurf server was given the protein sequence
and structure as input, and the conservation level of residue
was calculated using the Bayesian technique. The conserva-
tion indices of the residues can range from 1 to 9. The score
of “1” for a residue suggests that it is extremely variable,
whereas a score of “9” for a residue suggests that it is highly
conserved. The results of this analysis revealed that Y2080D
mutations were at a highly conserved location with a score
of “8” and C2770G mutations were at a highly conserved
position with a score of “9,” as shown in Fig. 6.

Drug-Likeness Property and ADME Check

The results obtained from the ADMETlab 2.0 server exhib-
ited that AZDO0156, AZD1390, and quercetin follow the
Lipinski rule of five and other pharmacokinetic factors
are shown in Fig. 7; therefore, they were used as plausible
ligands for molecular-docking analysis.

Molecular Docking Analysis

The molecular-docking studies were accomplished for the
wild-type ATM kinases and mutants (Y2080D, C2770G)
against the two ATM inhibitors AZD0156, AZD1390, and
natural compound quercetin. The docking poses of wild type
and both mutants against all three inhibitors used were ana-
lysed, and it was revealed that the Y2080D mutant forms
two hydrogen bonds with quercetin with binding energy
of — 8.8 kcal/mol, whereas the C2770G mutant forms
one hydrogen bond with quercetin with binding energy
of — 8.8 kcal/mol. Docking poses for all interaction are
depicted in Figs. 8A-C, 9A-C, 10A-C; additionally, the
binding energy and hydrogen bond interactions for all the
docked complexes are shown in Figs. 8D, 9D, and 10D
(Table 5). The overall results obtained from molecular-
docking analysis suggest that quercetin has better binding
affinity for the mutant Y2080C when compared to AZD0156
and AZD1390. In addition, quercetin interacts better with
C2770G mutant when compared to AZD1390. There-
fore, quercetin can be used as potent inhibitors against the
Y2080C and C2770G mutants as it is a natural compound
with less side effects.

Molecular Dynamic Simulations

MD simulation, a frequently utilized technique in computer-
aided drug design, is employed to evaluate the kinetic and
thermodynamic characteristics of biological systems under-
defined physiological conditions. Consequently, MD simu-
lations were conducted for all the docked complexes, and
the resulting data were analysed for RMSD, Rg, SASA, and
PCA.
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The conservation scale:

Variable Average  Conserved
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Fig.6 The ConSurf results exhibited Y2080D, mutation residing at highly conserved position with the score of “8”, C2770G with a score of “9”
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Fig. 10 Molecular docking analysis of ATM mutant (C2770G) pro-
tein represented in 3D and 2D form; A AZD0156 interacts with ATM
mutant; B AZD1390 interacts with mutant; C quercetin interacts

Table 5 Molecular docking analysis

Sr.no Target Ligands Binding energy ~ Hydro-
(kcal/mol) gen
bonds

1 ATM AZDO0156 -9.9 0
AZD1390 -10.5 0
Quercetin -8.6 5

2 Y2080D AZDO0156 -10 1
AZD1390 -9.9 0
Quercetin —-8.8 2

3 C2770G AZDO0156 -9.7 2
AZD1390 -10.3 0
Quercetin —-8.8 1

Root-Mean-Square Deviations (RMSD)

To assess protein stability, RMSD was calculated over a
10,000 ps simulation for all docked complexes (Fig. 11A-C).
Higher RMSD values suggest less stability, while lower val-
ues indicate greater stability in the complex. Therefore, anal-
ysis revealed that the Y2080D-quercetin complexes exhib-
ited the lowest RMSD, ranging from~0.1 to~0.45 nm in
the C-alpha backbone. Conversely, the Y2080D-AZD1390
and Y2080D-AZD0156 complexes showed RMSD values

with ATM mutant; D Graph represents the binding energy and num-
ber of hydrogen bonds formed between ATM mutant and AZD1390,
AZDO0156, and quercetin

of~0.1 to~0.65 nm and~0.1 to~0.55 nm, respectively
(Fig. 11B). The C2770G-AZD0156 complex demonstrated
an RMSD of ~0.1 to~0.15, indicating higher stability com-
pared to C2770G-AZD1390 and C2770G-quercetin with
RMSD values of ~0.1 to~0.4 and~0.1 to~0.25, respec-
tively (Fig. 11C).

Radius of Gyration (Rg)

In a stably folded protein, Rg values remain constant,
signifying structural stability. Conversely, as the protein
undergoes unfolding, Rg values exhibit temporal fluctua-
tions. A lower Rg value suggests a more compact protein
structure. Therefore, Rg analysis was conducted for all the
complexes, as illustrated in Fig. 12A—C. The Rg values of
the Y2080D-quercetin complexes were ~2.0 nm, indicating
structural compactness. In contrast, the Y2080DAZD1390
and Y2080D-AZDO0156 complexes displayed higher Rg val-
ues of ~2.2 nm and ~2.15 nm, suggesting a loss of compact-
ness during unfolding (Fig. 12B). Similarly, the C2770G-
AZDO0156 complex exhibited an Rg value of ~2.05 nm,
while C2770G-AZD1390 and C2770G-quercetin showed
higher Rg values of ~2.07 nm and ~2.15 nm, respectively,
indicating a loss of compactness in these complexes as well
(Fig. 120).
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Solvent-Accessible Surface Area (SASA)

SASA evaluates solvent behaviour accessibility, distin-
guishing between hydrophilic and hydrophobic regions
within protein molecules, while also investigating how
ligand-binding sites contribute to the solvent effect on the
protein molecule. The SASA values for the complexes are
depicted in Fig. 13A—C. For the Y2080D-quercetin com-
plexes, SASA values were approximately ~ 127 nm?, indi-
cating the accessibility of solvent behaviour. In contrast,
the Y2080D-AZD1390 and Y2080D-AZDO0156 complexes
displayed higher SASA values of ~ 139 nm? and ~ 132 nm?,
respectively (as shown in Fig. 13B), suggesting increased
exposure of solvent-accessible areas. Similarly, the C2770G-
AZDO0156 complex demonstrated an SASA value of ~ 165
nm?, while C2770G-AZD1390 and C2770G-quercetin
exhibited higher SASA values of ~ 176 nm* and ~ 180 nm?,
respectively (Fig. 13C), indicating a greater accessibility of
solvent behaviour in these complexes.

Principal Component Analysis (PCA)

The collective motions of atoms were assessed by consider-
ing the principal components PC1 and PC2. PC1 captures
the primary direction of variations, while PC2 records
the second most significant variations. The eigenvector

A ST T
Wildtype-ATM

140

%)
n

Area 4nm:)

130

calculates the Ca motion within the ligand complex. In
Fig. 14A-C, we illustrate the 2D projection of the trajectory,
with the X-axis representing the projection of eigenvector
1 and the Y-axis representing the projection of eigenvector
2 for all ATM, Y2080D, and C2770G proteins with their
respective ligand complexes. The shared space occupancy
by the protein and ligand complexes in the plot indicates a
higher likelihood of stability. Conversely, when they occupy
ample space, it suggests lesser stability during their dynamic
interaction. The Y2080D-quercetin complexes demonstrate
a more confined conformational space, indicating a com-
paratively more stable conformation when contrasted with
the Y2080D-AZD1390 and Y2080D-AZDO0156 complexes
(Fig. 14B). Conversely, in PCA analysis, the C2770G-
AZDO0156 complex shows a limited conformational space
coverage compared to C2770G-AZD1390 and C2770G-
quercetin, suggesting a less stable state for these complexes
(Fig. 14C).

MM-PBSA Assessment for Binding Stability

In addition, we performed binding free energy calculations
utilizing the MM-PBSA technique for all complexes to
augment the information on molecular interaction energy.
Table 6 provides a breakdown of the energy components
contributing to the binding free energy in each complex.
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Fig. 13 Solvent-accessible surface area (SASA); A Wild-type ATM; B Y2080D; C C2770G complexed with AZD0156, AZD1390, and querce-

tin for time span of 10,000 ps
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Table 6 MM-PBSA analysis

Sr.no Target Ligands AE Van der Waal AF electrostatic ~ AFE polar solva- SASA (kJ/mol) AE binding (kJ/mol)
(kJ/mol) (kJ/mol) tion (kJ/mol)

1 ATM AZDO0156 —104.901 —189.478 108.006 —12.643 —88.113
AZD1390 —116.043 —83.051 72.849 —11.938 —102.980
Quercetin —148.823 —31.380 64.416 —14.973 —112.675

2 Y2080D AZDO0156 —152.754 —117.529 68.994 —10.430 —113.784
AZD1390 —121.004 —123.782 117.769 —12.939 —98.129
Quercetin —158.705 —56.457 73.885 —13.880 —128.913

3 C2770G AZDO0156 —135.893 —39.064 78.058 —15.069 —139.904
AZD1390 —129.996 —88.984 109.558 —12.894 —101.890
Quercetin —131.568 —102.811 115.084 —12.993 —98.064

The end-state-free approach serves to illustrate the strength Discussion

of the interaction between the bound molecule and receptor,
a crucial aspect in drug development assessment. Notably,
the Y2080D-quercetin complex exhibited the lowest binding
free energy at —128.913 kJ/mol, in contrast to Y2080D-
AZD1390 and Y2080D-AZDO0156. Similarly, the C2770G-
AZDO0156 complex demonstrated a low binding free energy
of —139.904 kJ/mol compared to C2770G-AZD1390 and
C2770G-quercetin (Table 6).
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The ATM kinase is the major transducer of DSB-induced
signalling and is a member of the Phosphatidylinositol 3
kinase-related kinases (PIKK) family [32]. It phosphoryl-
ates p53, Chk2, BRCA1, RPAp34, H2AX, SMC1, FANCD?2,
Rad17, Artemis, and Nbs1, among other proteins involved
in cell-cycle checkpoint control, apoptotic response, and
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DNA repair. All of these substrates must be phosphoryl-
ated for cell-cycle arrest at the G1/S, intra-S, and G2/M
checkpoints, as well as for DNA repair [6, 13, 33]. ATM
kinase has potential to auto-phosphorylate itself at specific
sites of its own, which is significant for monomerization
and association of chromatin. Mutations in ATM gene are
responsible for various diseases which includes rare auto-
somal recessive disorder ataxia-telangiectasis that is con-
sidered by cerebellar degeneration, immunodeficiency,
and can be the leading cause of an increased risk of can-
cer [32, 34]. Recent advances in computing resources and
their use in biomedical sciences have enabled researchers
to look into the impact of mutations on protein stability
and function [35, 36]. Therefore, in this study, we retrieved
SNPs details from various mutations databases such as
HuVarBase and dbSNP. To assess the pathogenic potential
of 419 mutation of ATM kinase, 13 different algorithms
were used. As noted in the results section, the MetaSNP,
Provean, and Pmut results highlighted “54” mutations as
the most deleterious mutations. These 54 mutations were
then run via several servers including CUPSAT, Mupro,
iStable, mCSM, SDM2, and I-mutant, revealing 5 muta-
tions (V1913C, Y2080D, L2656P, C2770G, C2930G) that
have the potential to induce protein destability. The cancer-
promoting potentials of the V1913C, Y2080D, L2656P,
C2770G, and C2930G mutations were further investigated,
and the results revealed that all of the variants have cancer-
promoting potential, as shown in Table 3. After using the
AVGD server to examine the biophysical parameters, it
was discovered that all of the V1913C, Y2080D, L2656P,
C2770G, and C2930G belonged to the class65. Additionally,
the prevalence of V1913C, Y2080D, L2656P, C2770G, and
C2930G mutations in cancer was assessed with the help of
COSMIC database which resulted; Y2080D (sample name:
325-01-1TD) has been found in patient with Haematopoi-
etic & lymphoid cancer whereas C2770G (sample name:
P-0005509-T01-IM5) was found in Skin cancer; therefore,
based on these results, we took these two mutations for
further analysis. The wild-type ATM kinase protein struc-
ture was used as reference model to create Y2080D and
C2770G mutations using mutagenesis plugin embedded in
PyMOL, and energy minimization was performed with the
help SwissPDB viewer tool. Later AZD1390 and AZD0156
two inhibitors of ATM kinase along with the natural com-
pound quercetin were taken as inhibitors. The most impor-
tant reason behind considering quercetin as inhibitor in this
study was its safety and is widely used as dietary supple-
ment additionally its numerous biological activities. Sev-
eral researches on quercetin have shown to have a potential
role in medical application. Further, the molecular-docking
analysis of AZD1390, AZD0156, and quercetin was per-
formed against ATM wild type, ATM mutant (Y2080D),
and ATM mutant (C2770G) with the help of AutoDock

Vina tool. Thus, the results obtained from molecular-dock-
ing analysis showed that quercetin has better binding affin-
ity with ATM wild type, and ATM mutant (Y2080D) than
AZD1390 and AZDO0156, whereas AZD0156 showed good
binding affinity with ATM mutant (C2770G). In addition,
we employed MD simulations, a widely employed tech-
nique in computer-aided drug design, to probe the kinetic
and thermodynamic characteristics of biological systems
under specific physiological conditions. Comprehensive
analyses, including RMSD, Rg, SASA, and PCA, were
conducted for all docked complexes. The RMSD analysis
revealed that the Y2080D-quercetin complexes exhibited the
lowest deviations, suggesting a more stable conformation
compared to Y2080D-AZD1390 and Y2080D-AZD0156.
Conversely, the C2770G-AZD0156 complex demonstrated
consistently low RMSD values, indicating enhanced stabil-
ity compared to C2770G-AZD1390 and C2770G-quercetin.
In terms of Rg, the Y2080D-quercetin complexes displayed
lower values, indicative of structural compactness, while
the Y2080D-AZD1390 and Y2080D-AZDO0156 complexes
exhibited higher Rg values, implying a loss of compact-
ness during unfolding. Similarly, the C2770G-AZD0156
complex demonstrated an Rg value suggesting structural
compactness, whereas C2770G-AZD1390 and C2770G-
quercetin showed higher Rg values, indicating potential
instability. SASA analysis further highlighted variations in
solvent behaviour accessibility among complexes. For the
Y2080D-quercetin complexes, SASA values indicated sol-
vent behaviour accessibility, while the Y2080D-AZD1390
and Y2080D-AZDO0156 complexes displayed higher SASA
values, suggesting increased exposure of solvent-accessible
areas. Similarly, the C2770G-AZD0156 complex exhibited
an SASA value indicative of solvent behaviour accessibility,
while C2770G-AZD1390 and C2770G-quercetin exhibited
higher SASA values, indicating greater accessibility of sol-
vent behaviour. PCA illustrated collective motions of atoms,
indicating shared space occupancy for stable complexes.
Conversely, limited conformational space coverage in the
C2770G-AZD0156 complex suggested decreased stabil-
ity. Finally, the MM-PBSA assessment for binding stability
highlighted the Y2080D-quercetin complex with the lowest
binding free energy, underscoring its potential in drug devel-
opment. Similarly, the C2770G-AZD0156 complex exhib-
ited a low binding free energy compared to its counterpart.
These comprehensive analyses offer valuable insights into
the dynamic behaviour and stability of the studied com-
plexes, providing essential information for drug development
considerations. Therefore, to bridge the existing research
gap, further in vitro and in vivo studies are imperative. These
studies would contribute to a deeper understanding of the
inhibiting potentials of AZDO0156 and quercetin against the
specified ATM mutants, providing crucial insights for the
development of effective therapeutic interventions.
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Conclusion

In this current study, a computational analysis was con-
ducted on nsSNPs within the ATM kinase associated with
various diseases. The strength of computational analysis
lies in its efficiency, saving both resources and time com-
pared to traditional experimental approaches. Among the
419 identified SNPs in ATM, the Y2080D and C2770G
mutants were identified as highly deleterious mutations
with potential roles in cancer development. Molecular
docking and dynamic simulations unveiled quercetin as a
potent inhibitor against the ATM-mutant Y2080D, while
AZDO0156 exhibited favourable binding affinity with the
ATM-mutant C2770G. These computational predictions
provide a basis for experimental validation in future stud-
ies. The outcomes of this research not only shed light on
the deleterious impact of Y2080D and C2770G ATM
mutations in cancer formation but also offer insights for
the development of targeted therapeutic strategies. This
study serves as a guide for further investigations aimed at
understanding the molecular implications of these ATM
mutations and lays the groundwork for potential therapeu-
tic interventions.
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