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Abstract
Idiopathic pulmonary fibrosis (IPF) carries a high mortality rate and has a poor prognosis. The pathogenesis of pulmonary 
fibrosis (PF) is highly related to dysregulation of multiple RNAs. This study aims to identify and validate dysregulated RNAs 
that exhibited dynamic alterations in response to bleomycin (BLM)-induced PF. The results will provide therapeutic targets 
for patients suffering from IPF. Whole transcriptomic profiles of BLM-induced PF were obtained through high-throughput 
RNA sequencing. miRNA profiling was downloaded from GSE45789 database in the Gene Expression Omnibus (GEO). We 
identified the differentially expressed RNAs (DERNAs) that exhibited dynamic alterations in response to BLM-induced PF. 
Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis 
were conducted to discovery regulatory processes of PF. Weighted gene co-expression network analysis (WGCNA), pro-
tein–protein interaction (PPI) analysis, and co-expression analysis were performed to identify key genes and pathogenic 
pattern during the progression of PF. MiRanda, miRcode, and TargetScan were utilized to predict target relationships in the 
potential competing endogenous RNA (ceRNA) network. The results were verified by qRT-PCR analysis. In the context 
of BLM-induced PF, this study identified a total of 167 differentially expressed messenger RNAs (DEmRNAs), 115 dif-
ferentially expressed long non-coding RNAs (DElncRNAs), 45 differentially expressed circular RNAs (DEcircRNAs), and 
87 differentially expressed microRNAs (DEmiRNAs). These RNA molecules showed dynamic alterations in response to 
BLM-induced PF. These DEmRNAs exhibited a predominant association with the biological processes pertaining to the 
organization of extracellular matrix. A regulatory network was built in PF, encompassing 31 DEmRNAs, 18 DE lncRNAs, 
13 DEcircRNAs, and 13 DEmiRNAs. Several DERNA molecules were subjected to validate using additional BLM-induced 
PF model. The outcomes of this validation process shown a strong correlation with the results obtained from RNA sequenc-
ing analysis. The GSE213001 dataset was utilized to validate the expression levels and diagnostic efficacy of four specific 
hub mRNAs (CCDC80, CLU, COL5A1, and COL6A3) in individuals diagnosed with PF. In this study, we identified and 
validated several RNA molecules that exhibited dynamic alternations in response to BLM-induced PF. These dysregulated 
RNAs participated in the pathogenesis of PF and can be used as therapeutic targets for early-stage IPF. Although more work 
must be done to confirm the results, our study may provide directions for future studies.
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BLM  Bleomycin
qRT-PCR  Quantitative Real-Time PCR
DEGs  Differentially expressed genes
ROC  Receive operating characteristic
AUCs  The area under the curve

Background

Idiopathic pulmonary fibrosis (IPF) is a heterogeneous 
respiratory disease with high morbidity and short survival 
time [1]. It is characterized by accumulation of extracel-
lular matrix and inflammatory cell infiltration [2]. Several 
pathological processes have been indicated to explain the 
occurrence of pulmonary fibrosis (PF), including fibroblast-
to-myofibroblast transition (FMT), resistance to apoptosis, 
immune cell infiltration, as well as epithelial-mesenchymal 
transition (EMT) [3]. However, understanding this patholog-
ical process is still in its infancy, and the detailed mechanism 
remains largely unknown. Due to delays in diagnosis and 
lack of effective treatments, the prognosis associated with 
this condition is poor.

Recently, some studies highlighted the importance of 
RNA dysregulation during the development of IPF. The dys-
regulation of mRNAs (GPR41, SPP1, CCL1, and FGF19) 
can promote pulmonary fibroblast activation and fibrosis 
to regulate different signaling pathways, such as Smad2/3, 

ERK1/2 phosphorylation and JNK phosphorylation [4–7]. 
Kraven et al. used blood gene expression signatures to pre-
dict mortality in IPF [8]. In addition, long non-coding RNAs 
(lncRNA) PCF can promote pulmonary fibrogenesis by 
regulating miR-334a/map3k11 axis [9]. LncRNA-MALAT1 
was associated with abnormal activation of macrophages, 
which affects pulmonary pathogeneses [10]. It has been 
reported that circular RNAs (circRNAs) HIPK3 acceler-
ates PF by regulating miR-30a-3p/FOXK2 expression [11]. 
Based on above-mentioned findings, it is obvious that non-
coding RNAs (ncRNAs) can regulate the biological process 
of mRNAs and affect the pathogenesis of PF.

Several studies reported the dysregulation of mRNA-
microRNA-lncRNA-circRNA interaction was highly cor-
relative to the development of sclerosis-associated PF [12]. 
However, the key genes exhibiting dynamic alterations in 
response to bleomycin (BLM)-induced PF remain to be char-
acterized. Thus, a comprehensive exploration of dysregu-
lated RNAs could enhance our understanding of PF disease.

To identify the dysregulated RNAs in the development of 
PF, we performed whole transcriptome sequencing analysis 
on BLM-induced lung tissues and normal control tissues. 
According to the flow diagram of our study (Fig. 1), we iden-
tified differentially expressed RNAs (DERNAs) that showed 
dynamic alterations in PF development. Furthermore, the 
potential competing endogenous RNA (ceRNA) network, 
weighted gene co-expression network analysis (WGCNA), 
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functional annotation, and protein–protein interaction (PPI) 
were conducted to identify key genes and pathogenic pat-
tern during the progression of PF. Several DERNAs were 
subjected to validate using additional BLM-induce PF model 
through quantitative real-time PCR (qRT-PCR). Finally, the 
GSE213001 dataset was utilized to validate the expression 
levels and diagnostic efficacy of four specific hub mRNAs 
in individuals diagnosed with PF. These dysregulated RNAs 
participated in the pathogenesis of PF and can be used as 
therapeutic targets for early-stage IPF.

Materials and Methods

Pulmonary Fibrosis Models

Male C57BL/6 mice (6–8 weeks old, 23–25 g weight) were 
housed in separate chambers with abundant food and water 
under the optimal conditions (20 ± 2 °C, 55 ± 5% humidity). 
All animals were randomly allocated to two groups: normal 
control (NC) group (saline vehicle, 50 μL) and BLM group 
(BLM was dissolved in saline vehicle, 3 mg/Kg, 50 μL). 
C57BL/6 mice were lightly anaesthetized with isoflurane 
gas (2%), and BLM or 0.9% NaCl was administered intratra-
cheally for a single time. Mice were sacrificed at 3, 7, 14, 
or 21 days after BLM or 0.9% NaCl treatment. The left lung 
tissues were used for pathological staining. The right lung 
was collected for RNA sequencing and PCR tests.

Histological Examination

Left lung tissue was fixed with 4% paraformaldehyde at 
room temperature for 24 h, embedded in paraffin, and sliced 
into 5 μm sections, as described in previous article [13]. 
Hematoxylin and eosin (H&E) staining and Masson staining 
were used for histopathological analyses. And the severity of 
PF was evaluate depending on Ashcroft scoring system [14].

Whole‑Transcriptome Sequencing

Total RNA of lung tissues was extracted and purified using 
RNAiso Plus (Takara, Japan). RNA quality and integrity 
were evaluated using a NanoDrop 2000c (Thermo, USA), 
an Agilent 2100 bioanalyzer (Agilent, USA), and dena-
turing agarose gel electrophoresis (GE Healthcare, USA). 
The high-throughput whole transcriptome sequencing was 
conducted by Geneplus Technology Co., Ltd. (Shenzhen, 
China).

MiRNA profiling was downloaded from GSE45789 data-
base in the Gene Expression Omnibus (GEO).

The valid data were generated from the raw reads using an 
internal python script and mapped to the reference genome. 
The StringTie tool was used to determined transcripts of 

different RNAs. The identification of circRNAs was based 
on previous studies [15]. After quality filtering, miRNA 
sequences were mapped and counted using an internal script.

Identification of DERNAs

This study aims to find out the genes that showed the 
dynamic alterations during the progression of PF. The 
FPKM or TPM value of all DERNAs was calculated, 
and low expression RNAs were excluded. In general, we 
first screened differentially expressed genes (DEGs) from 
BLM-21d group and NC group using R software “DEseq2 
(v1.32.0)” package. DERNAs were selected using |Log2 
(FoldChange)|≥ 2 and P < 0.05 as the threshold criteria. 
According to the above data, we then identified the DERNAs 
from four groups (BLM-3d, BLM-7d, BLM-14d, and BLM-
21d), which showed the dynamic alterations in the devel-
opment of PF. Finally, volcano plots and heatmap revealed 
DERNAs between the two groups.

Functional Enrichment of DEmRNAs

Gene ontology (GO) enrichment analysis was utilized to 
assess regulatory processes. Kyoto Encyclopedia of Genes 
and Genome (KEGG) pathway enrichment analysis was con-
ducted to enrich the signaling pathways. We selected the 
top 10 most significantly enriched term in GO analysis and 
KEGG pathway and imported these results into R package 
for visualization.

Construction of ceRNA network

The ceRNA interactions among DEmRNAs, DElncRNAs, 
DEcircRNAs, and DEmiRNAs were constructed and visu-
alized using Cytoscape software (https:// cytos cape. org). 
DEmiRNAs were acted as the central point of network. 
Pairing relationships between DEmiRNA and other kinds 
of RNA were obtained by multiple ways.

Weighted Gene Co‑Expression Network (WGCNA) 
Analysis

The genes associated with PF phenotype were identified 
using WCCNA approach [16]. Firstly, we identified and 
analyzed distinct gene modules. Secondly, different gene 
modules were performed to establish the co-expression net-
work. Finally, Pearson correlation was used to evaluate the 
relationship between module-eigengene and disease status.

Quantitative Real‑Time PCR (qRT‑PCR)

Total RNA was extracted from lung tissues of PF mice and 
performed Quantitative Real-Time PCR analyses to validate 

https://cytoscape.org
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above data. M-MuLV reverse transcriptase (FAPON, China) 
was used to reverse transcribed RNA into cDNA. We used 
SYBR Green/ROX and primers to amplify and quantify 
gene expression (Applied Biosystems, USA). β-actin level 
was used to normalize the relative value of each target gene. 
miRNA expression profile was evaluated according to our 
previous study [17]. Gene expression of all genes was cal-
culated by the  2−ΔΔCt method. All primers were shown in 
Additional file 1: Table S4.

Diagnostic Evaluation of Hub DEmRNAs

To improve the reliability of these results, the expression 
level and diagnostic efficacy of key DEmRNAs in an inde-
pendent dataset (GSE213001) were validated. Based on the 
normalized results, we used GraphPad Prism 8.0 to analyze 
gene expression profiling. The receiver operating character-
istics (ROC) curves was conducted to obtain the correspond-
ing area under the curve (AUC), sensitivity, and specificity.

Statistical Analysis

Data were compared and analyzed using Graphpad Prism 
8.0. All variables were displayed as the mean ± standard 
error of measurement (SEM). Unpaired Student’s t-test was 
employed for the comparison of two groups. Two-tailed P 
value < 0.05 was considered statistically significant.

Results

BLM‑Induced Pulmonary Fibrosis Mice Model

This study established a BLM-induced PF in mice to identify 
the genes with dynamic alterations during the progression 
of PF. Injuries of inflammation, alveolar structure, and the 
severity of PF was evaluated by H&E and Masson stain-
ing. The H&E staining showed that BLM-exposed lungs 
had markedly morphologic changes, including thickening 
of alveolar epithelium, lung architecture destruction, and 
inflammatory cell infiltration in the alveolar space. BLM-
induced PF group had a higher percentage of collagen fib-
ers area. (Fig. 2A). The Ashcroft score was remarkably 
increased in BLM-induced group than NC group (Fig. 2B). 
In general, the mice treated with BLM showed a decreased 
trend in body weight, whereas the NC group maintained 
their bodyweight (Fig. 2C). These results indicated that 
BLM treatment can induce pulmonary fibrosis.

Differentially Expression Analysis

Lung tissues from both BLM-induced PF at four different 
time points (BLM-3d, BLM-7d, BLM-14d, and BLM-21d) 

and NC group were used to extract and purify total RNAs. 
Total RNAs were used to perform whole transcriptome 
sequencing. After quality filtering, clean reads were gener-
ated from the original reads, which were then mapped to 
mouse genome (Additional file: Table S1).

The reliability of sequencing results was evaluated 
through principal component analysis (PCA). BLM-induced 
PF samples could be clearly separated from the NC group, 
implying the reliability of the results. (Fig. 3A–C). Given the 
heterogeneity among different mice, we set strict screening 
standard |Log2(FoldChange)|≥ 2 and P value < 0.05 to iden-
tify DERNAs between BLM-21d group and NC group mice. 
Subsequently, we filtered the DERNAs with dynamic altera-
tions during the development of PF at four points (BLM-3d, 
BLM-7d, BLM-14d, and BLM-21d). Finally, a total of 167 
differentially expressed messenger RNAs (DEmRNAs), 115 
differentially expressed long non-coding RNAs (DElncR-
NAs), and 45 differentially expressed circular RNAs (DEcir-
cRNAs) were identified. A volcano plot was performed to 
compare DEGs between BLM-induced PF group and NC 
group (Fig. 3D–F). DERNAs were analyzed by the cluster-
ing heatmaps. (Fig. 3G–I).

Functional Enrichment of DEmRNAs

DEmRNAs were used to explore the biological processes in 
BLM-induced PF. GO analysis and KEGG pathway analysis 
found that the enriched biological processes were primarily 
associated with extracellular matrix organization. (Fig. 4A, 
B; Additional file1: Table S2-3). These results suggested 
that extracellular matrix changes may serve as pathological 
factors of the occurrence of BLM-induced PF.

Construction of a Potential ceRNA Regulatory 
Network

As is known to all, miRNAs can interact with other kinds 
of RNAs. To investigate the regulatory relationship of 
mRNA and ncRNAs related to PF, a ceRNA network was 
constructed, including 31 DEmRNAs, 18 DElncRNAs, 13 
DEcircRNAs, and 13 DEmiRNAs (Table 1). According 
to the above screening criteria, the 75 hub genes within 
the ceRNA regulatory network exhibited dynamic altera-
tions during PF development (Fig. 5B–D). The results of 
the ceRNA interactions demonstrated that some miRNAs 
could interact with either lncRNAs or circRNAs, while 
only a few miRNAs interact with both lncRNAs and circR-
NAs. Cytoscape software was used to visualize the inter-
acting relationships that responds in the BLM-induced PF 
(Fig. 5A). An insightful understanding of the pathogene-
sis of PF can be gained through the interactions between 
mRNAs and ncRNAs in this network.
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Otherwise, we established a PPI network and co-expres-
sion pattern of DEmRNAs. (Fig. 6A). There are 48 co-
expression gene pairs in the ceRNA network, including 
Col1a1-Col1a2, Col5a1-Mmp2, CCDC80-Col1a2, and so 
on (Fig. 6B).

Construction of Weight Gene Co‑expression 
Network Analysis (WGCNA)

In this study, gene modules that could be involved in PF phe-
notype were identified. Using the dynamic tree cut method, 
we identified distinct gene modules in our dataset. Hierarchi-
cal clustering dendrograms of different gene modules were 
utilized to visualize the relationship between genes in our 
dataset (Fig. 7A). These gene modules were then further 
analyzed to identify their relationship with the PF pheno-
type. A heatmap was generated to display the relationship 
between all the gene modules and PF disease (Fig. 7B), 
which suggested that certain gene modules are positively 

or negatively correlated with PF, indicating that these gene 
modules could potentially be associated with the pathogen-
esis of PF.

We then conducted module-eigengene analysis to explore 
their relationships. The results revealed that different gene 
modules in our dataset were well separated and could be 
used to distinguish between different stages of PF (Fig. 7C). 
This analysis allowed us to identify key modules that could 
associate with the development of PF. The relationships 
between gene significance and module membership in dif-
ferent gene modules was explored. Modules membership 
in turquoise, blue, and red showed remarkably significant 
relationship with gene significance, which could serve as 
potential biomarkers for the disease. (Fig. 7D–F).

Validation of the Expression of Key Genes

The expression of key genes that exhibited dynamic alterations 
were confirmed using qRT-PCR analyses. In accordance with 
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the results of whole transcriptome sequencing in PF lung tis-
sues, the expression of CCDC80, CLU, COL5A1, COL6A3, 
and ATP6V1C2 were significantly different between BLM-
induced PF group and NC group (Fig. 8A–E). In addition, 
the expression of miR-223-5p, miR-21-5p, miR-218, and miR-
214-3p were significantly increased in BLM-induced group 
(Fig. 8K–N). Moreover, miR-92c, LINC7172, LINC5923, 
LINC6803, LINC6849 and circ_712183 were also confirmed 
to be downregulated in BLM-induced lung samples (Fig. 8F–J, 
O). The key genes that exhibited dynamic alterations could 
provide therapeutic targets for IPF patients and promote 
research on the pathogenesis of PF.

Evaluation of Hub DEmRNAs in the Gene Expression 
Level and Diagnostic Effectiveness

To further explore the clinical value of genes during the 
progression of PF, we analyzed the GSE213001 dataset, 

which included 62 patients with IPF, 36 patients with non-
IPF interstitial lung disease (non-IPF ILD), and 41 non-
disease control donors. In contrast to non-diseased con-
trol donors, four DEmRNAs (CCDC80, CLU, COL5A1, 
and COL6A3) were significantly upregulated in patients 
with IPF and non-IPF ILD (Fig. 9A–D). ROC curves were 
employed to assess the sensitivity and specificity of four 
specific genes in differential lung tissues from PF patients 
and non-diseased control donors yielded the following 
AUCs: CCDC80, 0.9308 (95% confidence interval (CI), 
0.8761–0.9854), CLU, 0.8379 (95% CI, 0.7548–0.9211), 
COL5A1, 0.9099 (95% CI, 0.8509–0.9690), and 
COL6A3, 0.9288 (95% CI, 0.8735–0.9841) (Fig. 9E–H). 
AUC values > 0.8 for four hub genes suggested their rela-
tively significant diagnostic efficacy of PF.

Fig. 3  Differentially expression analysis. Principal component analy-
sis (PCA) for mRNAs (A), lncRNAs (B), and circRNAs (C). Volcano 
plot for DEmRNAs (D), DElncRNAs (E), and DEcircRNAs (F). The 

heatmap for DEmRNAs (G), DElncRNAs (H), and DEcircRNAs (I). 
BLM-21d bleomycin-21d group, NC normal control group
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Fig. 4  GO ontology (A) and KEGG pathway enrichment (B) of DEmRANs

Table 1  The DERNA interacting relationships in the ceRNA regulatory network

DEmiRNAs DEmRNAs DElncRNAs DEcircRNAs

miR-17/17-5p/20ab/20b-
5p/93/106ab/427/518a-
3p/519d

Mmp2 LINC5980 circ_124733

miR-214/761/3619-5p COL1A1, LTBP2, SFN, CCDC80, 
SFRP1, MSLN, LRG1, PMEPA1, 
COL6A3

Neat1, LINC7064, LINC7919, LINC8746, LINC5923,
LINC7172

circ_124733,
circ_301367,
circ_251525

miR-218/218a TNC Neat1 circ_251525,
circ_800023

miR-130ac/301ab/301b/
301b-3p/454/721/4295/
3666

IGF1, PMEPA1 LINC2067, LINC5980, LINC5923, 2810430I11Rik circ_800023,
circ_926249,
circ_519496,
circ_975574

miR-15abc/16/16abc/195/
322/424/497/1907

WNT10B, FSTL1, IGF1,
GADD45G, COL12A1,

Gm47766 NA

miR-96/507/1271 PMEPA1 LINC6803 circ_975574,
circ_118588

miR-192/215 COL5A1, ATP6V1C2 2810430I11Rik circ_118588
miR-217 FNDC3B, FGFR2, CLU Gm29156, LINC8746 circ_118588,

circ_712183
miR-221/222/222ab/1928 IGF1, THBS1 Neat1 circ_712183,

circ_766053
miR-223 VMP1, NDNF, FGFR2 4932441J04Rik, LINC684, Neat1 LINC5923 circ_766053,

circ_325973,
circ_844374

miR-25/32/92abc/363
/363-3p/367

COL5A1, PMEPA1,
COL1A2, FBN1, FSTL1

6530437J22Rik NA

miR-210 COL5A1, COL1A2,
PMEPA1 FSTL1, FBN1

2600006K01Rik, Gm9913 circ_844374,
circ_595255

miR-21/590-5p RECK, EDNRB Gm30489 NA
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Discussion

IPF is one of the most aggressive forms of ILD, threaten-
ing millions of patients worldwide [18]. Although evidence 
has been proposed to explain the development of IPF, the 
prognosis of the disease has not been improved. Hence, it 
is essential to investigate the underlying pathogenesis and 
recognize novel genes with a high degree of sensitivity and 
specificity. At present study, a BLM-induced PF model was 
established to perform whole transcriptome sequencing and 
explore the key genes that exhibited dynamic alterations. 
And we applied related experiments to validate interaction 
of RNAs and their regulatory pattern in PF, which could 
provide therapeutic targets for IPF patients and promote 
research on the pathogenesis of PF.

Apart from aberrant expression of mRNAs, dysregula-
tion of ncRNAs is also important for the progression of 
PF. In this study, we identified several DERNAs, including 
31 DEmRNAs, 18 DE lncRNAs, 13 DE circRNAs, and 13 
DEmiRNAs, which showed dynamic alterations in response 
to BLM-induced PF. In fact, DEmRNAs, such as COL1A1 
[19], MMP2 [20], IGF1 [21], FSTL1 [22], and SFN [23] 
have been found to be associated with the occurrence of 
PF via different signaling pathways in the previous stud-
ies. Several studies have reported that inhibiting the expres-
sion of collagen-related genes during the progression of PF 
may be a value approach to treat PF [24, 25]. Hamaguchi 
et al. indicated that the concentration of serum IGF1 were 
increased in patients suffering from severe pulmonary fibro-
sis [26]. Moreover, among the 13 DEmiRNAs, miR-210-3p 
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Fig. 5  Competitive endogenous RNA (ceRNA) network constructed with DERNAs (A). The 31 mRNAs (B), 18 lncRNAs (C), and 13 circRNAs 
(D) associated with ceRNA regulatory network showed the dynamic alterations in response to BLM-induced PF
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[27], miR-21-5p [28], miR-17-5p [29], miR-15b [30], and 
miR-214-3p [31] has been reported as effective targets for 
the treatment of PF. Furthermore, 18 DElncRNAs and 13 
novel DEcircRNAs have been identified to be related to the 
occurrence of BLM-induced PF. We found dysregulated 
RNAs could interact with each other and affect many sign-
aling pathways.

Salmena et  al. recently proposed the hypothesis of 
ceRNA network, indicating that RNAs can interact with 

others and participate in the regulation of physiological 
processes [32]. A network comprises different types of 
RNAs, such as mRNAs and ncRNAs [33]. According to 
the analysis of theory, lncRNAs and circRNAs could act 
as natural miRNA sponges, reducing the stability of tar-
get mRNAs or inhibiting their translation [34]. However, 
the research on ceRNA regulation has primarily focused 
on tumorigenesis, with only a few studies exploring the 
ceRNA network in PF [35, 36].
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Fig. 7  PF-related genes were screened by WGCNA analysis. A 
Gene dendrogram and module colors of WGCNA. B Analysis of 
correlations between the module eigengenes and PF disease, p val-
ues are shown. C The eigengene dendrogram and heatmap identi-
fying groups of correlated eigengenes. D Scatter plot analysis of 

module eigengenes in turquoise module. E Scatter plot analysis of 
module eigengenes in blue module. F Scatter plot analysis of mod-
ule eigengenes in red module. WGCNA, weighted gene co-expression 
network analysis
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It is widely known that ncRNAs are specifically expressed 
in certain diseases and are widely participated in many biologi-
cal processes. miRNAs, a key component of ncRNAs, play a 
vital function in silencing or degrading the target mRNAs [37]. 
In this study, we predicted the network between DEmiRNAs 
and DEmRNAs/DElncRNAs/DEcircRNAs using DEmiR-
NAs as hub nodes. We identified 13 miRNAs that interacted 
with 18 lncRNAs and 13 circRNAs and affected the func-
tion of 31 mRNAs. Jia et al. reported that lncRNA-HOTAIR 
regulates the expression of MMP2 by binding to miR-17-5p 
in paraquat-induced PF [29]. Our data revealed that a novel 
lncRNA (LINC5980) may regulate the expression of MMP2 
via specifically sponge miR-17-5p. Another research indicated 
that lncRNA-DNM3OS influence SMAD and non-SMAD 
components of TGF-β signaling by interacting with miRNA-
214-3p. We discovered that an additional 6 lncRNAs could act 

as miR-761 sponges to affect the level of 9 mRNAs, as showed 
in Table 1. Furthermore, silencing lncRNA-NEAT1 reduces 
SMAD3 expression via the miR-455-3p axis, thereby affecting 
its function [38]. Our study predicted that lncRNA-NEAT1 
could actively sponge miR-218 and miR-221-3p to affect the 
expression of TNC, IGF1, and THBS1.

Furthermore, accumulating evidence shows that circR-
NAs participated in various biological functions through 
different mechanisms of PF. CircRNAs participate in 
gene regulation in post-transcriptional manner by isolat-
ing miRNAs and inhibiting their target mRNAs [39, 40]. 
circRNA-TADA2A alleviated IPF via miR-526b/Cav1 axis 
[41]. Another study demonstrated that circRNA-HECTD 
was associated with  SiO2-induced PF [42]. In this study, 
DEcircRNAs were also identified, including five down-
regulated circRNAs (circRNA_712183, circRNA_595255, 
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Fig. 8  Validation of the expression of key genes. Expression levels 
of CCDC80 (A), CLU (B), COL5A1 (C), COL6A3 (D), ATP6V1C2 
(E), LINC7172 (F), LINC5923 (G), LINC6803 (H), LINC6849 
(I), circ_712183 (J), miR-223-5p (K), miR-21-5p (L), miR-218 

(M), miR-214-3p (N), and miR-92c (O). Data were expressed 
as mean ± SEM with n = 4 per group. *p < 0.05, **p < 0.01, 
***p < 0.001, and ****p < 0.0001. BLM bleomycin, NC normal con-
trol group
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circRNA_926249, circRNA_301367, and circRNA_800023) 
and nine upregulated circRNAs, which directly or indirectly 
influence the expression of mRNAs by targeting different 
miRNAs. Our results indicate that DEcircRNAs are indeed 
involved in many aspects of the PF progression.

We conducted GO ontology and KEGG analysis to 
explore the biologic functions of DEmRNAs in BLM-
induced PF. The results of these analyses were primarily 
enriched in extracellular matrix organization. Lin et al. 
reported that triptolide attenuates PF by preventing fibrotic 
extracellular matrix remodeling mediated by MMPs/LOX/
integrin [43]. A recent study has highlighted the role of 
extracellular matrix in IPF [44]. These findings suggest that 
accumulation of extracellular matrix may be the primary 
drives of irreversible pulmonary structure remodeling and 
fibrosis formation and may identify new biology mecha-
nisms and potential therapeutic targets in PF development.

PPI analysis was used to identify the key genes, including 
Col1a1, Col5a1, Col6a3, Col12a1, Mmp2, Fstl1, CCDC80 and 
Ltbp2, which could be promising biomarkers for the prevention 
and therapy of IPF patients. Co-expression further confirmed the 
significance of these genes. It has been previously shown that 
silencing the expression of Ltbp2 prevented PF via NF-κB sign-
aling [45]. A recent study has demonstrated that Fstl1 affects the 
function of cells in the development of PF via p38 and JNK sign-
aling pathway [46]. In our study, we found that the expression of 
CCDC80, CLU, Col5a1, and Col6a3 were remarkedly increased 
in patients with IPF and non-IPF ILD, which had high diag-
nostic value. However, due to the complexity of the regulatory 

network, it is necessary to explore it in depth. Overall, our results 
provide a meaningful direction for future research.

Nevertheless, there are some limitations in this study. 
First, the number of animal samples used to identify DER-
NAs was small. Second, we only validate the expression 
among the DERNAs in animal models, but additional exper-
iments are needed to elucidate the underlying mechanisms in 
detail. Finally, the potential ceRNA regulatory network was 
based solely on bioinformatics analysis and required further 
experimental validation.

In conclusion, we identified DERNAs between BLM-
induced PF group and NC group, which were performed to 
establish the ceRNA network. We validated the expression 
of some DERNAs that exhibited dynamic alterations during 
the progression of PF using qRT-PCR. Moreover, we also 
evaluate the diagnostic efficacy of key mRNAs. This study 
offers several potential biomarkers to illuminate the progres-
sion of PF, which may serve as therapeutic targets for IPF 
patients and facilitate research on the pathogenesis of PF.
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tary material available at https:// doi. org/ 10. 1007/ s12033- 023- 00943-4.
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Fig. 9  Evaluation of four specific DEmRNAs in the gene expres-
sion level and diagnostic efficacy. Expression levels of CCDC80 (A), 
CLU (B), COL5A1 (C), and COL6A3 (D) in patients with PF and 
non-diseased control donors. ROC curves and AUC statistics found 
the clinical significance of CCDC80 (E), CLU (F), COL5A1 (G), and 

COL6A3 (H) for diagnosing PF. A value of *p < 0.05, **p < 0.01, 
***p < 0.001 was compared with non-diseased control donors. 
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