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Abstract
Resistance against glucocorticoids which are used to reduce inflammation and treatment of a number of diseases, including 
leukemia, is known as the first stage of treatment failure in acute lymphoblastic leukemia. Since these drugs are the essential 
components of chemotherapy regimens for ALL and play an important role in stop of cell growth and induction of apoptosis, 
it is important to identify genes and the molecular mechanism that may affect glucocorticoid resistance. In this study, we 
used the GSE66705 dataset and weighted gene co-expression network analysis (WGCNA) to identify modules that correlated 
more strongly with prednisolone resistance in type B lymphoblastic leukemia patients. The PPI network was built using the 
DEGs key modules and the STRING database. Finally, we used the overlapping data to identify hub genes. out of a total 
of 12 identified modules by WGCNA, the blue module was find to have the most statistically significant correlation with 
prednisolone resistance and Nine genes including SOD1, CD82, FLT3, GART, HPRT1, ITSN1, TIAM1, MRPS6, MYC were 
recognized as hub genes Whose expression changes can be associated with prednisolone resistance. Enrichment analysis 
based on the MsigDB repository showed that the altered expressed genes of the blue module were mainly enriched in IL2_
STAT5, KRAS, MTORC1, and IL6-JAK-STAT3 pathways, and their expression changes can be related to cell proliferation 
and survival. The analysis performed by the WGCNA method introduced new genes. The role of some of these genes was 
previously reported in the resistance to chemotherapy in other diseases. This can be used as clues to detect treatment-resistant 
(drug-resistant) cases in the early stages of diseases.
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Introduction

Acute lymphoblastic leukemia (ALL) is among the most 
common childhood cancers, accounting for almost two-
thirds of childhood acute leukemias [1]. Despite the 
advances in therapeutic strategies during the last decades 
and the 5  year event-free survival rate increase from 
30 to 85%, a small percentage of patients would still 
experience treatment failure in the very first stages [2–4]. 
The newly diagnosed patients are usually treated, using 
multi-drug chemotherapy regimens. Glucocorticoids such 
as prednisolone and dexamethasone are among the most 
widely used drugs in treating leukemic malignancies, 
including ALL, to maintain remission through rapid 
destruction of leukemia blasts [2, 5]. Glucocorticoids 
(GCs) are capable of activating apoptosis-inducing genes 
and inhibiting the transcription of survival genes by 
binding to glucocorticoid receptors (GRs), resulting in 
cell death and disruption of the cell cycle in malignant 
lymphoblastic cells [6–8].

Today, using GCs in monotherapy in the first week of 
treatment is one of the important factors for predicting 
treatment outcomes. The initial resistance to this class of 
corticosteroids is known as a prognostic factor of adverse 
outcome and is associated with the risk of recurrence 
[9, 10]. Various factors, including polymorphisms and 
mutations before and during treatment, RNA silencing or 
suppression by miRNAs and changes in GCs signaling 
pathways in ALL may be involved in GC resistance [11, 
12]. However, the biomolecular mechanisms underlying 
resistance to GCs in patients with ALL are not completely 
known. In the present study, we performed a weighted 
gene co-expression network analysis on the microarray 
dataset GSE66705 and identified co-expressed modules 
highly correlated with prednisolone resistance in patients 
with type B-ALL. Then several gene clusters were 
obtained by overlapping the obtained data. Finally, the 
key pathways associated with prednisolone resistance were 
identified. This study was conducted to identify new genes 
that may provide new insight to explore the underlying 
molecular mechanisms of drug resistance in the early 
stages of B-ALL treatment.

Materials and Methods

Data Preparation and Processing

Gene expression profiles of all prednisolone-treated 
patients with accession numbers GSE66705 and 
GSE67684 obtained from the Gene Expression Omnibus 

(GEO) database [13]. The initial pre-processing of the 
raw data of both dataset, which are on the same platform 
gpl570 (Affymetrix hgu133plus2), including background 
correction and data normalization was performed using 
the Robust Multi-array Average (RMA) algorithm [14]. 
Entrez id and median were used, respectively, to remove 
the probes corresponding to several genes and determine 
the expression values of the probes assigned to each gene 
[15, 16]. To construct the WGCNA co-expression network 
and identify the potential genes involved in prednisolone 
resistance, only the expression data of samples of 
patients with lymphoblastic leukemia type B belonging 
to GSE66705 were used. After data normalization, 
gene expression changes were compared between the 
resistant and sensitive samples to prednisolone treatment. 
|logFC|> 1 and FDR < 0.01 was set to identify differentially 
expressed genes (DEGs). The gene expression profile 
of GSE67684 was used to evaluate the effectiveness of 
prednisolone and confirm the selected genes of GSE66705.

Construction of Weighted Gene Co‑Expression 
Network and Identification of Modules related 
to Prednisolone Resistance

The  WGCNA package of R software includes a 
comprehensive set of different R functions for analyzing 
large datasets, constructing a weighted gene co-expression 
network, and identifying modules related to prednisolone 
resistance in patients with ALL and the key genes (hub 
genes) [17].Firstly, Sample clustering was applied based 
on Pearson's correlation matrix, After that, we used the 
soft thresholding power β as a parameter to calculate the 
adjacency matrix and adjust the scale independence of the 
scale-free network. The lowest value of β, whose its scale-
free independence index is above 0.8 was selected. Then, 
the block-wise Module function was used to manage the 
network’s construction and to classify co-expressed genes 
in different modules known as the module eigengene (ME). 
The minimum number of genes in each module was set to 
30 and finally, an integration level cutoff of 0.25 was used as 
a criterion for integrating modules whose genes are highly 
correlated [18, 19].

Identification of Key Co‑expression Modules Related 
to Clinical Traits

To identify and investigate the significant relationship 
between ME and clinical traits, the preliminary information 
provided about the type of sensitivity of patients to 
prednisolone was used. Moreover, the heatmap was used 
to visualize the correlations of each module better, and the 
modules that were significantly correlated with individual 
traits (P-value < 0.05) were identified [17]. To evaluate the 
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extent of module preservation and also to select genes that 
could potentially be related to prednisolone resistance, the 
module preservation function of the WGCNA package of 
R software was applied and the Z summary was used to 
score the level of preservation. In this study modules with Z 
summary  < 2 were considered as poorly preserved modules 
while modules with Z summary 2 -10 as semi-preserved 
modules and a Z summary > 10 implied a strongly preserved 
module. The default number of permutations was defined 
as P = 100. [20, 21] Since the semi-protected modules have 
more topological diversity among the case and control 
groups, modules with 5 < Z summary > 10 were considered 
as significantly correlated modules. Subsequently, to 
determine the proximity of a gene to a module, known as 
module membership, and the relationship between the genes 
of each module with clinical traits (drug sensitivity), known 
as Gene Significance, the quantitative association between 
MEs and gene expression profiles were investigated [20]. 
Finally, the hub gens of the blue module with the criteria of 
|MM|≥ 0.80 and |GS|≥ 0.65 were screened.

Module Enrichment Analysis

Enrichment analysis was performed to identify the biological 
pathways further and explore the function of DEGs of the 
key modules, which are mostly related to prednisolone 
resistance, using the Molecular Signature Database 
(MsigDB).

Construction of the PPI Network of the Clinically 
Significant Module

The online database (STRING v10.5) was used to assess 
the interaction between DEGs of the key module at the 
protein level. The protein–protein interaction (PPI) network 
was constructed considering the medium confidence score 
of 0.4 [22]. Cytoscape software (version 3.9) was used for 
the visualization of the PPI networks. Then, to screen genes 
with high interaction capability in the PPI network, the 
degree calculation algorithm in the CytoHubba plugin of 
Cytoscape software was used [23]. Nodes with connectivity 
degrees ≥ 10 were used as hub genes for further analysis.

Identifying the Key Genes (Hub Genes)

To identify the key genes that play role in developing 
resistance to prednisolone, The overlap between the obtained 
results from the previous steps including identified DEGs 
of the blue module, hub genes of the PPI network with 
a minimum connectivity degree of 10, genes of the blue 
module with |MM|≥ 0.80 and |GS|≥ 0.65, and identified 

DEG of the GSE67684 platform was investigated. Genes 
that were common between them were identified as the hub 
genes.

Statistics and Software

All analysis was performed by R programming language 
(V 4.1), and an unpaired t-test and One-way ANOVA 
tests were used to evaluate significant differences between 
groups. A significance level of less than P < 0.05 was 
considered for each statistical test. Cytoscape software (V 
3.9) was used to visualize the protein networks.

Results

Data Processing

As for both datasets, the initial preprocessing of raw data, 
including background correction, and data normalization 
was done using R software. Then, by employing the 
median of multiple probes, 9299 genes from GSE66705 
and 9154 genes from GSE67684, with the highest 
expression variance (over 25%), were identified. The 
ratio of gene expression changes between resistant 
and sensitive samples to prednisolone treatment was 
compared in the platform GSE66705. Totally, 422 genes 
with increased expression and 288 genes with decreased 
expression were distinguished. |logFC|> 1 and FDR < 0.01 
was set to identify DEGs (Supplementary Table 1). Due 
to the existence of the diversity of B-cell subtypes only 
normalized data of GSE 67,684 were used considering 
FDR < 0.01(Supplementary Table_2).

Construction of the WGCNA Network

To construct the WGCNA network, only the expression 
data of treated patients with B-cell ALL of GSE66705 
data were used. This dataset includes 45 sensitive 
samples, 17 samples with intermediate sensitivity, and 
24 prednisolone-resistant samples. Average linkage 
hierarchical clustering was used to remove outliers and 
subsequently 1 sample was removed from the study due 
to poor quality. In our study, the soft thresholding power 
of 12 was chosen to calculate the scale-freeness of the 
network. To detect and integrate the modules with high 
correlation, a minimum module size of 30 and a merge 
Cut Height of 0.25 was set to determine and integrate 
the modules which have a high correlation (Fig.  1A). 
Consequently, a total of 12 co-expression modules labeled 
with different colors were identified (Supplementary 
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Table 3, Fig. 1B). Most genes were grouped in the magenta 
(2815 genes) and blue (1180 genes) modules except for the 
gray module. The yellow-green module, with 39 genes, 
had the lowest number of grouped genes [39].

Identification of Modules Associated 
with Prednisolone Resistance

To identify and examine the significant correlation between 
module eigengenes and clinical traits, we investigated the 
correlation between each module and the type of patient 
sensitivity to prednisolone. By comparing all the modules, 
it was found that the genes of the blue module (cor = 0.76, 
P = 8.e-08) in particular, were significantly positively 
correlated with prednisolone resistance followed by black 
(cor = 0.56, P = 4e-04), purple (cor = 0.42, P = 0.01) and red 
modules (cor = 0.36, P = 0.04), respectively. On the other 
hand, the pink (cor = 0.56, P = 4e-04) and magenta modules 

(cor = −  0.42, P = 0.01) showed a significant negative 
correlation (Fig. 1C). Due to the lack of significant change 
in the expression of genes in samples with intermediate 
sensitivity, their expression data were used only for better 
identification of modules resistant to prednisolone.

Preservation Assessment and Key Module Selection

The module Preservation function and Z summary were 
used to check the preservation level of modules and also to 
select the genes that could potentially be related to disease 
treatment. The cyan, red, yellow, purple, pink, and black 
modules were preserved, while the green-yellow module 
was considered unpreserved (Fig. 1D). Since semi-preserved 
modules have more topological diversity among the control 
and disease groups, in this study, GS criteria were used to 
select the appropriate key genes among blue, black, red, and 
purple modules.[20] The results of this study showed that 

Fig.1  WGCNA co-expression network analysis and identification of 
modules related to resistance to prednisolone. A Analysis of fit index 
of scale independence and average connection for various powers of 
soft threshold β, B Dendrogram of clustered genes based on β = 12 
and merge Cut Height = 0.25, C Identification of modules related to 

prednisolone resistance based on correlation and p value. Red and 
blue colors show the highest and lowest correlation, respectively, D 
Module preservation analysis using Z summary and median rank blue 
and green lines indicate thresholds of 5 and 10, respectively
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the genes of the blue module (cor = 0.62, P = 3.3e-129) have 
higher importance and a higher module membership than 
those of other modules. Therefore, only the blue module was 
considered for further analysis and selection of key genes. 
Due to the lowest correlation and non-significance, purple 
and green modules were also excluded from further study. 
Finally, based on the criteria |MM|≥ 0.80 and |GS|≥ 0.65, 
137 genes out of a total of 1180 genes with the possibility 
of playing role in prednisolone resistance were identified in 
the blue module ((Supplementary Table_4).

Enriched Key Module Pathways

The blue module pathways enrichment results showed that 
the genes are mostly upregulated in the following pathways 
heme metabolism, inflammatory response, IFN-γ, and 
apoptosis, with a significant level of less than 2e-15. Also, 
the signaling pathways including IL2_STAT5, KRAS, IL6_
JAK_STAT3, and MTORC1 are enriched with a significance 
of less than 2e-6 (Fig. 2A). Downregulated genes are more 
enriched in the pathways of hypoxia, adipogenesis, ERL, 
EMT, and KRAS signaling pathways with a significance 
level of less than 3e-3 (Fig. 2B). Full details along with the 
gene names are depicted in (Supplementary Table_5 and 6).

Fig.2  DEGs enrichment analysis in blue module based on MsigDB 
data and visualization of PPI networks in Cytoscape. A Pathway 
analysis and ontology of upregulated genes, B Pathway analysis 
and ontology of downregulated genes, C Co-expression network of 
GSE66705 differentially expressed genes, The red and blue colors, 
respectively, indicate the up and downregulated genes in the blue 

module, and the gray color indicates the rest of the changed genes 
expressed in the GSE66705 dataset, D Co-expression network of the 
hub genes is identified in the blue module. The red color indicates 
that the hub genes and the size of each node is proportional to the 
displayed degree
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Identification of PPI Network Hub Genes

Of a total of 709 genes with altered expression, the only 
interaction between 568 DEGs was estimated using the 
STRING database, and a PPI network of 568 nodes and 
1959 edges was created by Cytoscape software. A total of 
121 nodes with degree ≥ 10 were identified as hubs of PPI 
network genes (Fig. 2C–D and Supplementary Table_7).

Data Overlap Analysis and Selection of Key Genes

In order to identify the key genes, the overlap between the 
obtained results of the blue module’s altered expression 
genes (324 DEGs in total, including 271 upregulated and 
53 downregulated genes), the known hub genes of the 
PPI network (121 genes out of a total of 568 genes), 137 
genes selected according to the criteria of |MM|≥ 0.80 and 
|GS|≥ 0.65 and the statistically significant data extracted out 
of GSE67684 platform was evaluated (Fig. 3, Supplementary 
Table8). In total, nine genes consisting of CD82, FLT3, 
GART, HPRT1, ITSN1, MRPS6, MYC, SOD1, and TIAM1 
were identified as the primary hub genes of this study, and 
MYC gene was identified as the main key gene with the 
highest degree of connectivity.

Discussion

Although Glucocorticoids including prednisolone are 
classically served as a key component in the multiagent 
chemotherapy regimen of ALL, resistance to these agents 
is frequently observed among patients with ALL [24, 25]. 
In the present study, to identify the genes and molecular 
interactions that may contribute to prednisolone resistance 
development, we used the GSE66705 dataset to analyze the 
relationship between genes dysregulation and prednisolone 
resistance in patients with B-ALL. To identify the highly 
correlated modules and their genes with prednisolone 
resistance, WGCNA was employed to construct a 
co-expression network. Among all recognized modules, the 
blue module was selected as the key module of study. After 
that, we used the STRING database to identify DEGs out of 
709 altered expressed genes of the blue module. 568 DEGs 
were recognized and a PPI network was constructed. By 
evaluating the overlapping data between the genes of the 
blue module with altered expression (324 DEGs in total, 
including 271 up-regulated genes and 53 down-regulated 
genes), results obtained from the known PPI network hub 
genes (121 genes out of a total of 568 genes) and 137 
genes according to the criteria |MM|≥ 0.80 and |GS|≥ 0.65, 
and significantly altered genes of GSE67684 dataset, the 
overall hub genes of this study were recognized. At last, 
nine genes, SOD1, CD82, FLT3, GART, HPRT1, ITSN1, 
TIAM1, MRPS6, and MYC were identified as the primary 
hub genes of this study and the MYC gene was recognized 
as the main key gene.

One of the genes selected as a hub gene with increased 
expression in prednisolone resistance samples in our study 
is SOD1. The protein encoded by the Superoxide dismutase 
gene is in charge of destroying reactive oxygen species. The 
superoxide-free radical undergoes dismutation, and as a 
result,  O2 and  H2O2 are produced [26]. It has been shown 
that SOD1 is upregulated in ovarian cancer cells that are 
resistant to cisplatin [27]. SOD1 activity was suppressed 
using a non-cytotoxic dose of TETA, which resulted in a 
remarkable improved sensitivity to cisplatin in ovarian 
cancer cells [28]. Several studies have indicated that patients 
suffering from ALL have increased levels of oxidative stress 
and decreased levels of antioxidant biomarkers, such as 
SOD1 [29–31]. Nevertheless, a study by Chen et al. showed 
that overexpression of the SOD1 gene reduced the effect 
of PMA on myeloid leukemia cell death. This study also 
suggests that PMA induces cell death via PKD2 activation, 
and possibly by involving the SOD1-dependent pathways 
[32]. The next gene which was selected as a hub gene is 
CD82, a member of the tetraspanin family [33]. This 
gene is classically known as a metastasis suppressor that 
P53 can activate. This gene undergoes downregulation in 

Fig.3  Identifying hub genes related to prednisolone resistance in 
Acute Lymphoblastic Leukemia. Venn diagram of the altered genes 
of GSE66874, co-expressed genes identified in the PPI network, blue 
module, and criteria of |MM|≥ 0.80 and |GS|≥ 0.65
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some human cancers such as prostate cancer and breast 
cancer [34, 35]. However, one study has demonstrated that 
in pediatric patients with ALL, CD82 gene expression is 
aberrantly high [36].which is also consistent with our data. 
In addition, a previous study showed CD82 plays a role in 
chemoresistance in patients with ALL. Both chemotherapy 
treatments with daunorubicin and CD82 upregulation 
together, further increase the overexpression of PKCα. And 
it is the downstream molecule β1 integrin which in turn 
promotes AML cells survival [37]. This study also revealed 
that PKCα and β1 integrins have an integral role in evolving 
CD82-mediated chemoresistance. Since the inhibition of 
each of these two molecules reverses chemosensitivity. 
Our results suggest that increased expression of CD82 in 
GC-resistant samples compared to sensitive samples may 
be associated with prednisolone resistance in patients 
with ALL. The other hub gene, FLT3, is involved in the 
proliferation, differentiation and survival of hematopoietic 
stem cells [38]. Previous studies have reported that FLT3 
signaling pathways have interacted with PI3K/Akt/mTOR. 
Akt-mediated phosphorylation which is involved in the 
later signaling pathway inhibits glucocorticoid receptor 
activity [24, 39, 40]. On the other hand, HPRT1 has been 
shown to be overexpressed in various cancers such as breast 
cancer, endometrial cancer, and head and neck squamous 
cell carcinoma [41, 42]. One study has shown that HPRT1 
upregulation positively correlates to chemoresistance in 
patients with oral squamous cell carcinoma. In this study 
HPRT1 and MMP genes were enriched in the MMP1/
PI3K/AKT signaling pathway [43]. Since previously 
PI3K/AKT pathway was previously proved to play a role 
in chemoresistance, and Akt-mediated phosphorylation 
which is involved in the later pathway inhibits the GRs 
activity, the study theorized that FLT3 and HPRT1 could 
induce glucocorticoid resistance by activating this signaling 
pathway [43]. The polypeptide encoded by GART gene plays 
an necessary role in the de novo biosynthesis pathway of the 
purines. Cell survival and proliferation is enhanced through 
pathways in which purines are involved [44]. The results of 
one previous study on mechanisms by which dihydrofolate 
reductase antifolate binds with the human GART gene, and 
inhibit purine biosynthesis demonstrated that GART can 
be potentially used for targeted chemotherapy. It has been 
reported that one GART inhibitor plays a cytostasis role 
in cancer cells which are P53 positive [45]. On the other 
hand, some studies has reported that GART inhibitors are 
cytotoxic for the tumor cells wether the P53 pathway is 
intact or not [46].

The mitochondrial ribosomal protein 6 (MRPS6) gene 
was found to be overexpressed in prednisolone resistance 
compared to sensitive samples. MRPS6 is shown to be 
upregulated (differential expression) in breast cancer 
cells and confers a poor prognosis for patients with breast 

cancer [47, 48]. However, its role in chemoresistance is 
still unknown. There are controversial data concerning 
the Intersectin-1 (ITSN1) gene. On one hand, ITSN1 has 
been identified as a key anti-apoptotic protein, knocking 
down the ITSN1 the mitochondrial apoptotic pathways 
are promoted [49]. ITSN1 exerts its anti-apoptotic effects 
through the MEK/Erk1/2 signaling pathway. On the other 
hand, one study showed that overexpression of ITSN1 
by modulating the expression levels of Ki67 and cleaved 
caspase-3 was associated with escalation of cell apoptosis 
[50]. The next gene which was selected as a hub gene 
with increased expression in prednisolone resistance 
samples in our study is Tiam1 which encodes a protein 
called RAC-1. The RAC-1 signaling pathway is important 
in carcinogenesis [51, 52]. In one study performed by 
Izumi et al. indicated that TIAM1 overexpression could 
cause chemoresistance in colorectal cancer. The study 
demonstrated two main mechanisms; first the cancer-
associated fibroblasts upregulate TIAM1, which in 
turn enhances resistance against therapeutic agents; the 
second mechanism is driving chemotherapy resistance 
by promoting the stemness of cancer cells [53]. Another 
study showed that the drug NVP-BEZ235 (a chemotherapy 
agent which confers apoptosis to HER2-positive breast 
cancer cells) induces upregulation of TIAM1 by activating 
the FGFR/STAT3 signaling pathway. This cascade of 
molecular events in turn leads to resistance against BE235 
[54].

Pathway analysis of dysregulated genes of the blue 
module showed that IL2_STAT5 and KRAS signaling 
pathways were Top enriched in prednisolone resistance. 
This shows that the above signaling pathways play an 
important role in resistance to GCs. Previous research on 
T-type lymphocytes shows that IL2 is able to interfere with 
glucocorticoid signaling and prevent GRs from entering 
the nucleus and causing apoptosis [55]. In GC-resistant 
cells, IL2 can phosphorylate STAT5 through the JAK/
STAT pathway, and by forming a heterodimer between GRs 
and STAT5 proteins, it prevents the transfer of GCR to the 
nucleus [56, 57]. Activation of STAT5 alone is not enough 
to induce steroid resistance, but in combination with other 
cellular defects or through alternative signaling pathways, 
STAT5 contributes to steroid resistance, This indicates 
that the expression changes or the mutations created in 
related genes in this pathway may play an effective role in 
resistance to prednisolone [58]. One known genes in the 
IL2_STAT5 pathway is MYC, which was determined as 
the main hub gene. The MYC family are proto-oncogenes 
whose phosphorylated proteins encoded by these genes 
are involved in cell cycle progression, apoptosis, and cell 
transformation [59]. MYC genes are known to be associated 
with Burkitt Lymphoma and High-Grade B-Cell Lymphoma 
Double-Hit/Triple-Hit. The role of MYC upregulation has 
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also been revealed in T-cell ALL. Several studies have 
demonstrated that MYC overexpression plays a role in 
resistance to glucocorticoids in B-ALL and T-ALL which is 
also consistent with our data. Several studies have validated 
the positive impact of MYC upregulation in GC resistance 
evolution [6, 25, 60]. A study indicated that patients with 
c-myc overexpression are more likely to develop a persistent 
form of B-ALL. Hence it is proposed that the promoted cell 
growth and declined cellular death caused by increased 
c-myc regulation may lead to initial treatments [61]. In 
addition, PI3K/Akt/ mTORC1 is recognized to give rise 
to MYC overexpression. Silveiral et  al. indicated MYC 
as a downstream gene of PI3K; in fact, the inhibition of 
PI3K induced a down-regulation in its targeted genes, 
including MYC. The study reported that in  vitro and 
in vivo experiments showed a PIK3 inhibitor increased 
the sensitivity of T-ALL cells to glucocorticoids which 
implies that PI3K3 activity level is positively correlated 
with resistance to chemotherapy in T-ALL [62]. Therefore, 
it can be deduced that MYC confers a GC resistance through 
PI3K/Akt/ mTORC1.

One of the limitations of this study was the selection of 
key genes based on bioinformatics methods and several 
advanced statistical methods were applied to the blue 
module, which may have caused the unintentional deletion 
of some genes that are involved in prednisolone resistance, 
on the other hand, no laboratory study on humans or animal 
has been done and the findings of this study needs final 
confirmation through experimental tests.

Conclusion

In summary, the available literature demonstrates that 
some of the hub genes identified by this study have role 
in chemoresistance through different pathways. CD82, a 
metastasis suppressor is shown to induce chemoresistance 
by activating PKCα and β1 integrin in the presence of 
chemo agent. TIAM1 confers chemoresistance by increasing 
cancer cell stemness. Additionally, FLT3, HPRT1, and MYC 
contribute to chemotherapy resistance through the PI3K/
Akt signaling pathway. This signifies the contribution of 
the PI3K3/Akt signaling pathway in the evolution of multi-
drug resistance in chemotherapy via regulating various 
intracellular processes.[63] Although the role of some 
the hub genes including GART, ITSN1and MRPS6 in 
developing chemoresistance has not yet been established, 
it is worth to further studying the role of these genes’ 
dysregulation in creating drug resistance.
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