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Abstract
Disparity in the activity of Endoplasmic reticulum (ER) leads to degenerative diseases, mainly associated with protein 
misfolding and aggregation leading to cellular dysfunction and damage, ultimately contributing to ER stress. ER stress 
activates the complex network of Unfolded Protein Response (UPR) signaling pathways mediated by transmembrane pro-
teins IRE1, ATF6, and PERK. In addition to UPR, many ER chaperones have evolved to optimize the output of properly 
folded secretory and membrane proteins. Glucose-regulated protein 94 (GRP94), an ER chaperone of heat shock protein 
HSP90 family, directs protein folding through interaction with other components of the ER protein folding machinery and 
assists in ER-associated degradation (ERAD). Activation of GRP94 would increase the efficacy of protein folding machinery 
and regulate the UPR pathway toward homeostasis. The present study aims to screen for novel agonists for GRP94 based 
on Core hopping, pharmacophore hypothesis, 3D-QSAR, and virtual screening with small-molecule compound libraries in 
order to improve the efficiency of native protein folding by enhancing GRP94 chaperone activity, therefore to reduce protein 
misfolding and aggregation. In this study, we have employed the strategy of small molecule-dependent ER programming to 
enhance the chaperone activity of GRP94 through scaffold hopping-based screening approach to identify specific GRP94 
agonists. New scaffolds generated by altering the cores of NECA, the known GRP94 agonist, were validated by employing 
pharmacophore hypothesis testing, 3D-QSAR modeling, and molecular dynamics simulations. This facilitated the identifica-
tion of small molecules to improve the efficiency of native protein folding by enhancing GRP94 activity. High-throughput 
virtual screening of the selected pharmacophore hypothesis against Selleckchem and ZINC databases retrieved a total of 
2,27,081 compounds. Further analysis on docking and ADMET properties revealed Epimedin A, Narcissoside, Eriocitrin 
1,2,3,4,6-O-Pentagalloylglucose, Secoisolariciresinol diglucoside, ZINC92952357, ZINC67650204, and ZINC72457930 
as potential lead molecules. The stability and interaction of these small molecules were far better than the known agonist, 
NECA indicating their efficacy in selectively alleviating ER stress-associated pathogenesis. These results substantiate the 
fact that small molecule-dependent ER reprogramming would activate the ER chaperones and therefore reduce the protein 
misfolding as well as aggregation associated with ER stress in order to restore cellular homeostasis.
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Introduction

Endoplasmic reticulum (ER) is a basic sub-cellular com-
partment responsible for the critical process involving 
folding and maturation of the proteome, primarily trans-
membrane and secreted proteins in eukaryotic cells. ER 
protein homeostasis is highly sensitive to changes in intra-
cellular and extracellular stimuli, involving a complex net-
work of regulators including chaperones, ensuring high 
degrees of fidelity and efficiency. Nevertheless, alteration 
in the protein-folding environment causes accumulation of 
misfolded proteins profoundly inducing ER stress, which 
subsequently activates the Unfolded Protein Response 
(UPR) constituted by three signaling pathways mediated 
by downstream ER stress sensors IRE1 (the inositol-
requiring ER-to-nucleus signal kinase 1), PERK (protein 
kinase-like ER kinase), and ATF6 (Activating Transcrip-
tion Factor6) [1, 2]. This UPR pathway leads to a series of 
downstream events like decreasing translation and increas-
ing transcription of ER chaperones to restore normal cel-
lular function and survival [3]. However in chronic ER 
stress, protective remodeling does not happen due to pro-
longed UPR activation ultimately leading to pro-apoptotic 
signals that eventually eliminate the stressed cells [4].

The major role of UPR is to re-establish homeostasis 
either by increasing folding capacity via expression of 
folding chaperones or by the downregulation of ER protein 
client load via inhibiting protein translation and promot-
ing the degradation of misfolding proteins. Accumulating 
experimental and substantial clinical evidence suggests 
that prolonged ER stress crucially impact the pathogenesis 
of various human diseases, including diabetes, cardiovas-
cular diseases, inflammatory diseases, neurodegenerative 
disorders, and cancer. Currently, cellular ER stress along 
with oxidative stress in many disease conditions is treated 
with the administration of antioxidants and chemical chap-
erones. However, their protective effects are not sustain-
able, hence altering the molecular machinery of the cell 
will provide ways to understand the underlying metabolic 
changes. Interestingly, transcriptionally reprogramming 
of ER proteostasis network would augment ER protein-
folding capacity by modulating the UPR downstream sign-
aling pathways and therefore prevent protein aggregation 
and misfolding [5–9].

Heat shock protein 90 (Hsp90) is a evolutionarily con-
served, ubiquitous family of ATP-dependent molecular 
chaperone that plays essential role in stabilizing protein 
folding, to modulating cellular signaling by regulating 
many client protein substrates. In eukaryotes, HSP90 
exists as four isoforms: cytosolic HSP90α and HSP90β, 
ER-resident GRP94, and tumor necrosis factor receptor-
associated protein 1 (TRAP1) which localizes to the 

mitochondria [10]. GRP94, the ER-resident member of 
the hsp90 family, governs the maintenance and activation 
of many essential proteins, particularly membrane-resident 
and secreted protein clients, namely MHC class II, integ-
rins, and Toll-Like receptors. Coordinated up-regulation 
of GRP94 with many other ER folding components was 
first discovered while using pharmacological treatments to 
induce UPR [11, 12]. There are four ways to acknowledge 
the contribution of GRP94 in ER quality control which are 
(a) chaperoning the protein folding, (b) interacting with 
the ER protein-folding machinery, (c) storing calcium, and 
(d) assisting the targeting of misfolded proteins to ER-
associated degradation (ERAD) [13–15].

The most important activity of GRP94 subsists as 
molecular chaperone that directs folding and/or assembly 
of secreted and membrane proteins. GRP94 protein contains 
three domains: C-terminal domain with ATP-binding site 
thought to regulate HSP90 homodimerization, charged mid-
dle linker region, and an N-terminal domain that contains 
an ATP-binding pocket (with ATPase activity) which regu-
lates the turnover of folded client proteins (Fig. 1). Both 
the C- and N-terminal ATP-binding sites have been greatly 
explored as target for inhibitors; however, the majority of 
HSP90 inhibitors have concentrated only on the N-terminal 
ATP-binding site [16, 17]. Molecular chaperones require 
ATP hydrolysis to favor the native folding of their substrates, 
to avoid aggregation, and revert protein misfolding. GRP94, 
an ER chaperone displays selective ligand binding affinity 
to NECA (5ʹ-N-ethylcarboxamido adenosine), a broad-spec-
trum adenosine A2 receptor agonist which is more potent 
than adenosine and a well-known activator of GRP94. Sev-
eral structural studies have demarcated the interaction of 
NECA with the N-terminal region of GRP94. A number of 
studies indicate that scaffolds generated from core hopping 
of known agonist with further pharmacophore modeling and 
QSAR validations will provide similar scaffold and ligands 
which would serve as potential agonist in activating the tar-
get [23]. Therefore, we decipher that NECA would probably 
increase the chaperone activity of GRP94.

A number of small-molecule pharmacological chaper-
ones have emerged as a novel therapeutic approach to treat 
metabolic disorders, such as type 2 diabetes and neurode-
generative diseases. Small-molecule kinase inhibitors and 
ATP mimetics have shown to activate the IRE1 arm of the 
UPR signaling pathway and reduce ER stress-associated 
pathogenesis. Hence, identification of small molecules that 
enhance the ER chaperoning activity and preferentially 
activation of the UPR-associated transcriptional program is 
needed to ameliorate protein misfolding and aggregation. 
This strategy of small molecule-dependent ER programming 
would restore the protein-folding ability of GRP94 thereby 
preventing ER stress-induced disease pathogenesis [18, 
19]. With this insight, we have employed Scaffold hopping, 
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pharmacophore modeling, QSAR-based virtual screening, 
molecular docking, and dynamic simulations to screen small 
molecules as potential agonists for GRP94 using NECA 
scaffold.

Materials and Methods

Protein and Ligand Preparation

The crystal structure of GRP94 was downloaded from the 
Protein Data Bank (PDB ID: 4NH9, https://​www.​rcsb.​org/) 
with resolution 2.77 Å [20]. All the water molecules were 
removed, hydrogen atoms were added, and the H-bond 
assignment was optimized with exhaustive sampling using 
Glide module of Schrödinger Maestro Suite 2018-4 ver-
sion 11.8, https://​www.​schro​dinger.​com/​produ​cts/​maest​
ro). Finally, the protein structure was energy minimized 
using the OPLS3e force field to reach the converged root 
mean square deviation (RMSD) of 0.30 Å. The grid box 
was defined using “Receptor Grid Generation” by assign-
ing a common constituency point from where a cubic grid 
box was extended to touch the bounty of 20 Å in size. Lig-
prep module of Schrodinger Maestro was used to prepare 
the 3D co-ordinates of the retrieved ligand structures from 
the selected ZINC and Selleckchem compound databases 
[21]. The ligands were geometrically minimized using the 
OPLS3e force field with the Truncated Newton Conjugate 
Gradient of RMSD below 0.01 kJ/Ǻ. Eventually, the mini-
mized conformer was filtered through a relative energy 

window of 10 kcal/mol and a minimum atom deviation 
of 1.00 Å. The ionization states were created for ligands 
at a physiological pH of 7.2 ± 0.2 and all other variables 
remained default. The tautomers of the ligands were gen-
erated, optimized, and partial atomic charges were com-
puted using the OPLS3e force field [22]. Then the pre-
pared ligands structures were segregated and selected by 
removing the repetitive compounds manually.

Core Hopping of NECA

Core Hopping v2.1 module of Schrodinger Maestro 11.8 
software was used to modify the known agonist by per-
forming fragment-based replacement using ligand- and 
isosteric-based constraints. The first step was to define 
the points at which the cores were attached to the scaf-
fold using Define Combinations mode. Next step was to 
subject the scaffold for optimization process for altering 
the cores. The altered scaffolds were selected based on 
the template of NECA and were considered as the initial 
structure for further analysis. The selected scaffolds of 
NECA with new analogs were further subjected for Phar-
macophore modeling, 3D-QSAR, virtual screening, and 
molecular dynamics simulations. This parameter is based 
on the principle of bio-isosteres by replacing functional 
groups in the template ligand, for targeting and reducing 
the toxic side effects as well as improving the curative 
effects [23, 24].

Fig. 1   GRP94 protein with three distinct domains showing the Adenosine binding N-terminal domain (69-337 region)

https://www.rcsb.org/
https://www.schrodinger.com/products/maestro
https://www.schrodinger.com/products/maestro
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Pharmacophore Generation and Modeling

Pharmacophore models were generated by ligand-based 
modeling through PHASE module 11.8 of Schrödinger 
Maestro 2018. Phase allows specification of matching chem-
ical molecules and marginalization for pharmacophore fea-
tures. The common pharmacophoric features were used for 
generating the hypothesis. The box size was adjusted to 2 Å 
with default scoring parameters and the maximum number 
of sites was set to 5 and minimum to 3. The top ranking 
hypothesis was selected for further screening. The common 
integral pharmacological features involved were hydrogen 
bond acceptor (A), hydrogen bond donor (D), hydrophobic 
group (H), and aromatic ring (R). After the pharmacoph-
ore generation, the scoring function was used to analyze the 
hypothesis. The selected alignment was computed using the 
default values and survival score. The feature definitions 
were utilized to map the positions of pharmacophore sites 
and were represented internally by a set of SMARTS pat-
terns [25]. To encompass the space occupied by the aligned 
training set molecules, the grid was generated. Each model 
contains five or more partial least square (PLS) factors that 
tend to suit it [26].

3D‑QSAR Validation

An atom-based 3D-QSAR model was built from the align-
ment on the simplest pharmacophore model through PHASE 
11.8. A PLS analysis, that correlated the estimated activities 
with the observed activities, was used to evaluate the predic-
tive ability of the best-scoring hypotheses [27]. QSAR mod-
els were important to elucidate the structural information of 
the ligand’s active conformation. QSAR was mainly based 
on known biological activities for structural and functional 
ligands for the pharmacophore model [28]. The statistical 
parameters such as R2 (coefficient of determination), SD 
(standard deviation of regression), and Q2 (cross-validated 
coefficient) were calculated to assess the general significance 
of the model [29].

Virtual Screening and Docking

Virtual screening was performed in ZincPharmer (http://​
zincp​harmer.​csb.​pitt.​edu/) and Selleckchem Natural Com-
pound library with 2726 compounds (https://​www.​selle​
ckchem. com/screening/natural-product-library.html) by 
exploiting the best pharmacophore model to efficiently 
search the datasets for fixed conformers [30, 31]. Low-
energy 3D conformers with the best bond lengths and 
angles were generated for each two-dimensional structure. 
In this study, ADHR_2 was the best hypothesis based on 
which query search was performed to identify hits match-
ing the pharmacophoric features of the hypothesis using the 

search for match option in PHASE. The default constraints 
included a maximum of 0.7 Root Mean Square Deviation 
(RMSD), obeying 10 rotatable bond cutoffs, with a molecu-
lar weight range of 180–500 Da. The obtained database hits 
were ranked depending on the degree of consistency with 
the pharmacophore model. A minimum fit value of > 3, the 
lowest limit to qualify as a hit compound, was applied to 
decrease the number of hits. Molecules with good fitness 
scores were selected for further docking studies.

Structure-based docking studies were carried out to inves-
tigate the intermolecular interactions between the ligand and 
the targeted protein using Glide 11.8, Schrodinger, 2018. In 
the first step, the high-throughput virtual screening mode 
of Glide was employed and 10% of the top-scoring ligands 
were further subjected to Glide SP docking. Again, 10% of 
the top-scoring leads from Glide SP were retained and all the 
ligands were subjected further to Glide XP docking. Low-
energy conformations of all the compounds were docked into 
the active site of GRP94 using Grid-based Ligand Docking 
with Energetics [32] in extra precision mode without apply-
ing any constraint. The best-docked structure was identified 
using Glide score function, Glide energy, and Glide E model 
energy. The top ten lead compounds were selected based on 
their docking score for further studies.

Lipinski’s Rule and ADMET Prediction

Qikprop v.11.8, module was applied to screen the lead 
compounds for their ADMET properties. ADMET gives 
the specific range for analyzing the drug-like properties, 
such as aqueous solubility (QPlog S), brain/blood partition 
coefficient (QP log BB), (QP log Po/w), predicted appar-
ent MDCK cell permeability (QPMDCK), and human oral 
absorption [33]. The drug-like behavior of the compounds 
was predicted through the analysis of pharmacokinetic pro-
file of the compounds. Physically significant descriptors 
and pharmaceutically relevant properties of all the test com-
pounds such as molecular weight, log P, H-bond donors, and 
H-bond acceptors were analyzed in accordance with Lipin-
ski’s rule of five [34]. Finally the selected compounds were 
filtered through Lipinski’s rule to ensure the properties of 
pharmacokinetics.

SwissADME online tool (http://​www.​swiss​adme.​ch/) 
brings together the most relevant computational methodolo-
gies to give a worldwide assessment of small-molecule phar-
macokinetics profiles [35]. The pharmacological properties 
of the top lead molecules were assessed based on different 
parameters and the bioavailability radar was generated.

Molecular Dynamics Simulations

The best-docked complex of GRP94 target protein acquired 
from the virtual screening result was explored for the 

http://zincpharmer.csb.pitt.edu/
http://zincpharmer.csb.pitt.edu/
https://www.selleckchem
https://www.selleckchem
http://www.swissadme.ch/
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conformational stability using molecular dynamic (MD) 
simulations. MD simulations were carried out using the Des-
mond module of Schrodinger suite of 2018-4 for 100 ns with 
the force field OPLS-2005. The generated MD trajectory 
files were examined in order to determine the equilibrium of 
dynamics over the period of time. The structure was gener-
ated and solvated using the TIP4P model by orthorhombic 
water box parameters as well as neutralizing with counter 
ions from each edge of the box [36]. Before the MD simu-
lations, the complex charge was electrically neutralized as 
well as the system was minimized with their energies by 
series of heating and equilibrium processes. The selected 
complexes were energy minimized by the protocol of steep-
est descent minimization for the maximum extent followed 
by a cascade of molecular simulations. The above mentioned 
steps were taken into account at temperature of 300 K with 
a NVT ensemble by Nose–Hoover thermostats, whereas 
the pressure was maintained using Berendsen thermostats 
method [37]. Eventually the salt concentration of the sys-
tem was set in a specified state as 0.15-M Na+/Cl− for the 
neutralizing components in a dynamics system. The process 
of simulated protein–ligand complexes were examined to 
assess the root mean square deviations (RMSD) for the MD 
trajectory frames of the selected simulated structure [38]. 
Further, RMSD variations were calculated and the Root 
mean square fluctuation (RMSF) was analyzed to study the 
structural changes of both the GRP94 protein and ligand 
complexes.

Results

In the present study, novel GRP94 agonists were designed 
and identified by means of core hopping approach, the 
structure of NECA (5ʹ-N-ethylcarboxamidoadenosine), the 
known agonist for GRP94 was used as the lead compound. 
The newly designed scaffolds of GRP94 from core hopping 
analysis [39] were subjected to pharmacophore hypothesis 
testing, 3D-QSAR model validations, and high-throughput 
virtual screening using Selleckchem and ZINCpharmer data-
base to effectively identify small molecules for enhancing 
GRP94 activity. The screened compounds were validated as 
effective drug molecules based on ADMET prediction and 
the top lead compounds were taken over for further analy-
sis. Molecular dynamics simulations of the representative 
ZINC and Selleckchem compounds with GRP94 protein 
were also performed to study the binding stability of the 
protein–ligand complexes.

Core Hopping Approach

The scaffold structure of NECA was divided into three parts 
as Core A, Core B-linkers, and Core C. The linkers and core 

of NECA were modified to produce various novel scaffolds. 
After optimization, 37 novel ligand-based scaffolds were 
generated by Core hopping. The newly constructed scaffolds 
obtained by modifying the linkers were visually inspected 
and four new scaffolds were selected for further analysis 
(Fig. 2). These scaffolds were then subjected for pharmo-
cophore modeling, QSAR analysis, and virtual screening.

Pharmacophore Model Generation

The pharmacophore models were generated using a set of 
pharmacophore features in order to get suitable sites for all 
the new scaffolds. In total, 392 common pharmacophore 
hypotheses were generated using different combinations 
of 13 variants. Among the 13 variants, five pharmacoph-
ore models ADHH_1, ADHHR_3, ADHR_2, DHHR_1, 
and DHHR_4 were selected for further analysis (Table 1). 
The scoring procedure provides a ranking of the different 
hypotheses, allowing us to make rational choices. The scor-
ing algorithm includes the alignment of site points and vec-
tors, volume overlap, number of ligands matched, selectivity, 
relative conformational energy, and activity [40]. A total of 
five hypotheses survived the scoring processes were utilized 
to build an atom-based QSAR model. In the present study, 
the pharmacophore site of the selected scaffold was defined 
by a set of four pharmacophoric features: hydrogen bond 
acceptor (A), hydrogen bond donor (D), hydrophobic groups 
(H), and an aromatic ring (R). Hypothesis ADHR_2 was 
selected as the best hypothesis based on highest survival 
score of 4.594 and volume of around 0.640 (Fig. 3). 

Evaluation of 3D‑QSAR

The 3D-QSAR model prediction and validation were per-
formed for the five selected pharmacophore hypothesis [38]. 
Regression values for the QSAR model were analyzed with 
the increasing number of PLS factors as the statistical signif-
icance and predictive ability of the model also incrementally 
increased up to 7. ADHR_2 has the most significant R2 value 
of 0.3170, predictive power Q2 value of 0.1039, Pearson R 
value of 0.3483, variance (SD) of 1.2098 indicative of its 
best fit, and high cross-validated coefficient of correlation 
(Table 2). In addition, ADHR_2 has P-value of 8.73e−018 
indicative of the goodness of the model (Fig. 3).

Virtual Screening

Structure-based docking studies were carried out to 
investigate the intermolecular interaction between the 
ligands and the targeted protein, GRP94 using Glide [41]. 
ADHR_2 hypothesis was subjected for virtual screen-
ing against ZINC and Selleckchem databases to obtain 
ligands that match the pharmacophoric features of the 
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model. A total of 2, 26, 248 compounds from ZincP-
harmer database and 833 compounds from Selleckchem 
were retrieved as hits. These hit compounds were docked 
onto GRP94 protein using Glide XP module of Schrod-
inger. The top ten ligands from ZINC database (Table 3) 
interacted with the following GRP94 active site residues 
ASN107, LYS114, ASP149, ASN162, GLY196, PHE199, 
and TYR200 either by hydrogen bonding or hydrophobic 
interactions (Fig. 4). Further, the potential lead molecules 
such as ZINC39737222, ZINC92952357, ZINC67650204, 

ZINC72457930, and ZINC15669361 had their docking 
score range from − 12.271 to − 9.025 which was con-
siderably much higher than the known agonist, NECA 
(ZINC3995401). 

Similarly, the top hits from Selleckchem database 
(Table 4) exhibited more interactions with GRP94 active site 
residues particularly, ASN107, ASP110, LYS114, ASP149, 
GLU158, LYS161, ASN162, GLY196, PHE199, and 
TYR200 either by hydrogen bonding or hydrophobic inter-
actions (Fig. 5). In addition, the potential lead molecules 

Fig. 2   Scaffolds generated by Core hopping of NECA

Table 1   Pharmacophore 
hypothesis generated for the 
NECA scaffolds

Bold values indicate the ligands that were selected for further analysis and the score based on which selec-
tion was made

Hypothesis ID Survival score Survival 
inactive 
score

Adjusted score Site Vector Volume Matches

ADHH_1 4.232 1.941 2.291 0.404 0.852 0.455 4
ADHHR_3 4.581 1.890 2.691 0.262 0.827 0.444 5
ADHR_2 4.594 1.184 3.014 0.668 0.930 0.640 4
DHHR_1 4.577 1.942 2.309 0.522 0.825 0.415 4
DHHR_4 4.425 1.411 2.636 0.479 0.833 0.358 4
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such as 1,2,3,4,6-O-Pentagalloylglucose, Epimedin A, Nar-
cissoside, Eriocitrin, and Secoisolariciresinol diglucoside 
had their docking score ranging from − 14.027 to − 13.096 
and Glide energy from − 75.043 to − 61.039 which was 

considerably significant than the known agonist, NECA 
(ZINC3995401).

Fig. 3   A Structure-based Pharmacophore Mapping of ADHR_2 Hypothesis, B Common Pharmacophore Hypothesis aligned with all the Vari-
ants, and C Atom-based 3D-QSAR model Visualized for the selected Hypothesis ADHR_2

Table 2   Atom-based 3D-QSAR 
validation for NECA scaffolds

Bold values indicate the ligands that were selected for further analysis and the score based on which selec-
tion was made

Hypothesis ID SD R2 F P RMSE Q2 Pearson R

ADHH_1 0.8479 0.3828 59.9 5.94e−016 1.23 0.0963 0.3342
ADHHR_3 0.8916 0.4164 27.1 6.95e−006 1.41 0.0899 0.3195
ADHR_2 1.2098 0.3170 90.0 8.73e−018 1.42 0.1039 0.3483
DHHR_1 1.1868 0.5252 84.1 6.35e−014 1.75 0.0479 0.2821
DHHR_4 1.2041 0.4944 86.3 1.02e−026 1.52 0.0027 0.0367

Table 3   Docking and Binding 
energy of top hit compounds 
from ZINC database with 4NH9

Bold values indicate the ligands that were selected for further analysis and the score based on which selec-
tion was made
*Top five ligands that were selected for molecular dynamics simulations

Lead ZINC ID Glide score Glide energy Interacting residues

NECA − 6.513 − 28.589 TYR200,ASN107,ASN162
1* ZINC39737222 − 12.271 − 49.214 ASN107, ASN162
2 ZINC65393724 − 11.474 − 44.969 ASN162
3 ZINC40139446 − 11.094 − 50.302 LYS114
4 ZINC64058574 − 10.900 − 42.391 TYR200
5* ZINC92952357 − 10.535 − 40.686 ASP149, ASN162, ASN107
6* ZINC67650204 − 10.529 − 32.239 ASN107,GLY196, PHE199, ASN162
7 ZINC65432603 − 10.527 − 41.317 ASN162
8 ZINC65393724 − 10.507 − 42.704 ASN162
9* ZINC72457930 − 10.454 − 42.552 ASN162, LYS114
10* ZINC15669361 − 9.025 − 54.002 ASN107, TYR200
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Fig. 4   2D and 3D Interac-
tions of GRP94 and Top hit 
compounds from ZINCp-
harmer: A ZINC39737222, 
B ZINC92952357, C 
ZINC67650204, D 
ZINC72457930, and E 
ZINC15669361
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ADMET Analysis

Lipinski’s rule of five was based on the physicochemi-
cal properties of drugs and candidate drugs in clini-
cal trials to evaluate drug likeness. Qikprop module of 
Schrödinger was utilized to examine the drug likeness of 
compounds. The percentage of the human oral absorp-
tion of selected lead compounds was found to be 52% 
to 100%. For selected lead compounds ZINC39737222, 
ZINC92952357, ZINC67650204, ZINC72457930, and 
ZINC15669361, the parameters like water solubility 
(QPlogS), blood barrier (Qplog BB), and cell perme-
ability (QPPCaco) were within the permissible range as 
depicted in Table 5. Human oral absorption was 100% for 
ZINC39737222, 70.531% for ZINC92952357, 58.50% for 
ZINC67650204 as well as ZINC72457930, and 90.153% 
for ZINC15669361 indicating their efficacy as potential 
drug molecules with good therapeutic efficiency.

The different parameters of drug-likeness analysis 
of the lead compounds were visualized using the Swis-
sADME bioavailability radar (Figs. 6 and 7) [42]. Nar-
cissoside and Eriocitrin have no pharmacokinetics inter-
ference as well as are non-inhibitors of CYP enzymes 
which attributes to their excellent drug-like properties 
with strong solubility and no excretion issues. The drug-
likeness characteristics (Table  6) of Narcissoside are 
appropriate since they follow the Lipinski RO5 with 
minimal violation, zero alerts for Pan-Assay Interfer-
ence Compounds (PAINS), and a bioavailability score 
of 0.17. Although, the potential bioactive compound 
Epimedin A exhibits negligible solubility, violate drug-
likeness parameters because of its higher molecular 
weight. The drug-likeness analysis of ZINC top lead com-
pounds using SwissADME indicated ZNC92952357 and 
ZINC67650204 with bioavailability score of 0.55 which 
signifies good pharmacokinetic properties and significant 
cellular permeability.

Fig. 4   (continued)

Table 4   Docking and binding energy of top hit compounds from Selleckchem database with 4NH9

Bold values indicate the ligands that were selected for further analysis and the score based on which selection was made

Lead Selleckchem Name Glide Score Glide energy Interacting residues

0 NECA − 6.513 − 28.589 TYR200,ASN107,ASN162
1 1,2,3,4,6-O-Pentagalloylglucose − 14.027 − 75.043 ASP110,GLU158,LYS161,ASN162,PHE199(PI-PI)
2 Epimedin A − 13.413 − 66.270 LYS161,ASN162,GLU158,LYS114,TYR200
3 Narcissoside − 13.520 − 62.360 ASN162(3),GLU158,ASP110,ASN107,ASP149
4 Eriocitrin − 13.195 − 64.653 ASP110,ASN107,ASN162,ASP149,PHE199
5 Secoisolariciresinol diglucoside − 13.096 − 61.039 GLU158,LYS114,TYR200,ASP149
6 Liensinine − 12.996 − 52.129 LYS114(PI-CAT),GLU158,ASN107,ASP110
7 Proanthocyanidins − 12.616 − 62.105 ASP149,GLU158,PHE199
8 Neochesperidin − 12.319 − 54.923 TY200,PHE(PI-PI),ASN162,PHE195
9 Rutin DAB 10 − 12.048 − 64.579 GLU158,LYS114
10 Boldine − 12.021 − 38.360 GLY196,PHE(PI-PI)
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Fig. 5   2D and 3D Interac-
tions of GRP94 and Top 
hit compounds from Sell-
eckchem A Epimedin A, B 
1,2,3,4,6-O-Pentagalloylglu-
cose, C Narcissoside, D Erioc-
itrin, and E Secoisolariciresinol 
diglucoside
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Molecular Dynamics Simulations of ligand–Protein 
Complexes

In order to study the dynamic behavior and the binding sta-
bility of the ligand–protein complex under suitable environ-
mental conditions, such as temperature and pressure, MD 
simulations were performed for 100 ns using Desmond mod-
ule of Schrodinger Biosuite. In the trajectory analysis of the 
backbone, RMSD for all the top lead molecules with GRP94 
were stable throughout the simulation run with minimum 
conformational changes.

Analysis of RMSD and RMSF Plot of ZINC Ligands

The RMSD versus the simulation time was considered 
as a significant criterion to evaluate the stability of the 
dynamic behavior. The final RMSD (Root Mean Square 
Deviation) values of the MD simulations for the selected 
complexes were indicated as a time-dependent function. 
The RMSD trajectory analysis of the known agonist NECA 
(ZINC3995401) as shown in Fig. 8A displayed consider-
able deviations for the whole simulation time without attain-
ing the stable state. The RMSD of ZINC72457930 com-
plex initially showed conformational fluctuations but after 
20 ns it reached the RMSD value of 2.0 Å and showed a 
stable interaction throughout the whole simulation process 
without significant deviations. Further, the trajectories of 
ZINC39737222 and ZINC67650204 were for the most part 
similar within the range of 2.0 and the dynamics of the com-
plexes was typically more stable without much deviations. 
The RMSD of ZINC15669361 ligand complex displayed 
fluctuations initially rather attained stability after 40 ns 
and exhibited stability throughout the runtime of 100 ns. 
However, the trajectory of ZINC92952357 complex showed 
initial deviations from 1.0 Å and reached the stable confor-
mation after 10 ns.

RMSF (Root Mean Square Fluctuation) plot was analyzed 
to evaluate the residue wise fluctuation differences in all 
the selected protein–ligand complex systems as well as to 

identify the changes in the ATP-binding region for the entire 
simulation period (Fig. 8B). During the entire simulations, 
all the protein–ligand complexes exhibited uniform fluctua-
tions in most of the residues except significant displacement 
at the residues PHE199, TYR200 close to nearly 6 Å indicat-
ing considerable mobility of the residues at those regions. 
The overall analyses revealed that all the lead molecules 
that complex with GRP94 confer a similar fluctuating pat-
tern. The interactions of ZINC39737222 revealed that resi-
dues ASP149, GLU158, ASN162, and PHE195 fluctuate at 
the range of 1.5 Å. Furthermore, ligands ZINC67650204, 
ZINC15669361, and ZINC92952357 displayed signifi-
cant interactions with the following residues: ASP149, 
GLU158, ASN162, PHE199 as well as LYS161, ASN107, 
and MET154 indicating novel interactions at specifically 
different residues. All the five compounds exhibited simi-
lar range of fluctuations. However, ZINC72457930 showed 
fluctuations at majority of the amino acid residues indicat-
ing the low stability of protein–ligand interactions: THR38, 
TYR39, ASP34, GLU201, and THR229.

Analysis of RMSD and RMSF Plot of Selleckchem 
Compounds

The RMSD of O-Pentagalloylglucose-GRP94 complex ini-
tially exhibited conformational fluctuations but after 40 ns it 
reached the stable conformation with RMSD value of 3.0 Å 
throughout the whole simulation process without significant 
deviations. However, the trajectories of Eriocitrin and Secoi-
solariciresinol diglucoside were for the most part similar 
within the range of 2.4 Å and the dynamics of the com-
plexes was typically more stable without much deviations. 
The RMSD of Epimedin A ligand complex displayed initial 
deviations from 1.0 Å rather attained stability after 20 ns 
with an RMSD of 3.0 Å and exhibited stability throughout 
the runtime of 100 ns. Conversely, the trajectory of Narcis-
soside complex showed considerable fluctuations through-
out the runtime and finally reached stability only after 85 ns 
(Fig. 9A).

Fig. 5   (continued)
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Protein–Ligand Interactions

Different bonded interactions like hydrogen, hydrophobic, 
ionic, and water bridges are important for understanding 
the intermolecular recognition between the protein–ligand 
complexes. Among them, hydrogen bond interactions are 
very crucial in determining the interactive residues in the 
protein–ligand contacts. The histogram of all the GRP94-
ligand complexes during the dynamic simulations are 
depicted in Fig. 9C. The results revealed that the hydrogen-
bonded interactions were more prominently seen in all the 
five protein–ligand complexes, indicating significant main-
tenance of the hydrogen bonds throughout the simulation 
time. All the lead molecules showed stable interaction with 
active site residues, ASP149, GLU158, ASN162, PHE199, 
LYS161, and ASP107. However, Epimedin A, Narcissoside, 
and Eriocitrin ligands exhibited significantly higher bonded 
interactions than the known agonist, NECA indicating that 
these molecules would serve as potential agonists of GRP94 
protein. However, further in vitro validations are required to 
confirm the theoretical predictions. Moreover, the interac-
tions of key residues pronounced in docking studies were 
also retained at 100-ns MD simulations suggesting that the 
identified novel lead molecules would have better agonist 
activity than the known agonist NECA (Fig. 10).

Discussion

Disruptions in the protein-folding machinery due to pro-
tein overload leads to accumulation of misfolded proteins 
in the ER which activates the UPR signaling pathway to 
attenuate protein synthesis and maintain protein homeo-
stasis. Within the lumen of the ER, protein chaperones 
assist in the folding of newly synthesized polypeptides 
and prevent aggregation of unfolded or misfolded proteins. 
Quality control exists in the ER to avoid accumulation of 
unfolded or misfolded proteins. Abnormal protein confor-
mations are a major cause for disturbed cellular homeosta-
sis; therefore, perturbations in the ER are thought to be the 
origin of many diseases and developmental abnormalities. 
Grp94, an HSP90-like protein in the ER lumen that chap-
erones secreted and membrane proteins, has emerged as 
an important target in a variety of diseases, including can-
cer, glaucoma, and neurodegenerative disorders, as well 
as viral and parasitic infections [43]. As the ER workload 
increases, GRP94 is transcriptionally co-regulated with 
other chaperones to increase the efficiency of folding and 
reduce the chance of misfolded proteins by preferential 
interactions with Grp94-dependent clients [44, 45]. Hence, 
therapeutic targeting of GRP94, a major ER chaperone, 
exploiting small molecules would enhance the efficacy of 
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GRP94 to restore ER homeostasis and mediate cellular 
protection.

There is growing interest in developing new drugs that 
modulate Hsp90 chaperone activity. While Hsp90 inhibi-
tion has gained major attention as novel anti-cancer target, 
the therapeutic relevance of Hsp90 activation in other dis-
ease areas remains unexplored. Zhao et al. 2010 reported 
the unexpected identification of tamoxifen as an effective 
small-molecule activator of Hsp90 ATPase activity [46]. 
Natural products remain as a valuable source of small mol-
ecules that serve as potential leads for drug development. 
A literature survey on nature-derived ER modulators by 
Correia da Silva et al., 2022 listed a number of molecules 
notably, fisetin, withaferin, cephalostatin, and basiliolides 
as ER stress inducers, while hydroxytyrosol and berber-
ine are reported to ameliorate ER stress. Several small 
molecules have so far been reported to modulate the dif-
ferent arms of the UPR and therefore exhibit promising 
beneficial effects in diverse human diseases. Salburinal, 
AA147, Apigenin, and Baicalein are different modulators 
that target the UPR-transducer pathways [47, 48]. Recent 
studies indicate that Curcumin, well-known polyphenol 
from turmeric, exerts antioxidant defense activity against 

ROS-induced myogenic cell damage via selective expres-
sion of the ER stress-inducible chaperone GRP94 [49]. 
GRP94 induced by curcumin maintains calcium homeo-
stasis and protects the cell from apoptosis, demonstrat-
ing that curcumin inhibits UPR induction by inhibiting 
transcription factor AP-1. Consequently, this study aimed 
at enhancing the chaperoning activity of GRP94 through 
small molecule-dependent ER reprogramming to reduce 
the protein overload and misfolding associated with ER 
stress.

In this study, the selected molecule 4NH9 (Correla-
tion between chemotype-dependent binding conforma-
tions of HSP90 alpha/beta and isoform selectivity) dis-
plays chaperone activity at the N-terminal regions from 
the residues 69–337. In addition, the NECA ligand within 
the 3D structure of 4NH9 binds the following actives sites 
ASN149, TYR200, ASN107, and ASN162 with docking 
score of -6.513 kcal/mol. Huck et al., 2019 reported the 
structural analysis of GRP94 complex with NECA reveal-
ing the interaction sites as MET85, ASN162, LEU163, 
THR165, ALA167, THR171, GLY196, VAL197, PHE199, 
and TYR200 which is adjacent to the central adenine-
binding cavity of the N-terminal domain of GRP94. A 

Fig. 6   SwissADME bioavailability radar showing drug likeness of 
different bioactive molecules—pink areas represent pharmacokinetic 
property, like lipophilicity, molecular weight, solubility, and flex-

ibility. A ZINC39737222, B ZINC92952357, C ZINC67650204, D 
ZINC72457930, and E ZINC15669361
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four-point pharmacophore model ADHR_2 was generated 
and 3D-QSAR analysis validated the hypothesis ADHR_2 as 
the best fit model with high R2 value and least P-value indica-
tive of the goodness of fit. High-throughput virtual screening 
of the hypothesis against Selleckchem and ZINC databases 

retrieved a total of 833 and 2,26,248 compounds. Using 
docking score, binding energy, and ADMET predictions, 
the following compounds ZINC39737222, ZINC92952357, 
ZINC67650204, ZINC72457930, and ZINC15669361 from 
ZINC database as well as 1,2,3,4,6-O-Pentagalloylglucose, 

Fig. 7   SwissADME bioavailability radar showing drug likeness of 
different bioactive molecules—pink areas represent pharmacokinetic 
property, like lipophilicity, molecular weight, solubility, and flexibil-

ity. A Epimedin A, B 1,2,3,4,6-O-Pentagalloylglucose, C Narcisso-
side, D Eriocitrin, and E Secoisolariciresinol diglucoside, F NECA

Table 6   Drug-likeness characteristics of top hit compounds from Selleckchem database

Drug-likeness 
compounds

Physiochemical properties Solubility Pharmacokinetics

molecu-
lar 
weight 
( g/mol)

HB 
Donors

HB 
receptors

No. of 
Rotat-
able 
bonds

Consensus 
log P

log S (ESOL) log S(Ali) log S (SILI-
COS—IT)

GI 
absorp-
tion

CYP 
enzyme 
inhibi-
tors

Epimedin A 836.83 11 19 12 − 0.41 Moderately 
soluble

Poorly solu-
ble

Soluble Low No

Narcissoside 624.54 9 16 7 − 0.8 Soluble Moderately 
soluble

Soluble Low No

Eriocitrin 596.53 9 15 6 − 1.3 Soluble Soluble Soluble Low No
Secoisolaricires-

inol diglucoside
686.70 10 16 15 − 1.14 very soluble soluble highly soluble Low No

1,2,3,4,6-O-Pent-
agalloylglucose

940.68 15 26 16 0.59 Poorly solu-
ble

Insoluble Soluble Low No

NECA 308.29 4 7 4 − 1.4 very soluble very soluble Soluble Low No
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Epimedin A, Narcissoside, Eriocitrin, and Secoisolaricires-
inol diglucoside from Selleckchem library were identified 
as potential lead molecules. These compounds exhibited 
various bonded interactions with either of the active site 
residues in the N-terminal region of GRP94. All the lead 
compounds were within the acceptable range defined for 
human consumption, thereby indicating their potential as 
drug-like molecules. MD simulations revealed the RMSD 
trajectories of all complexes were stable with minor devia-
tions within the range of 0.3 nm.

Protein–ligand interactions exhibited by the selected 
compounds ZINC92952357, ZINC67650204, and 
ZINC72457930 indicated more stable interactions with the 
N-terminal domain of GRP94 with Glide docking score 
from − 10.535 to − 10.454 9 kcal/mol and binding energy 

from − 42.559 to − 32.239 kcal/mol. Further analysis 
showed that these ZINC compounds are mainly piperi-
dine and pyrazole derivatives that are known for their effi-
cacy to differentially regulate ER stress and thus represent 
potential therapeutic agents to treat ER stress-related renal 
and neurodegenerative disorders [50]. Similarly, natural 
compounds such as Narcissoside, Eriocitrin, Epimedin 
A, and Secoisolariciresinol diglucoside showed better 
interactions with the ER chaperone with Glide docking 
score from − 13.520 to − 13.096 and glide energy from 
− 66.270 to − 61.039. Many natural occurring compounds 
including polyphenols, alkaloids, and flavonoids, target 
ROS and ER stress to modulate the disease pathogenesis. 
Narcissoside, known as narcissin, is a flavonoid derivative 
present in a number of medicinal plants displays several 

Fig. 8   MD simulations of the top hit ZINC compounds for 100 ns with RMSD, RMSF, and Interactions
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pharmacological properties. It exhibits neuroprotective 
potential by preventing the ROS-induced oxidative stress 
and apoptosis [51]. Eriocitrin, a major flavonoid in citrus 
plants, has displayed suppressive effect on oxidative stress 
and lipid-lowering effect in rats [52]. Secoisolariciresinol 
diglucoside, a lignan found mainly in flaxseed, has signifi-
cantly regulated the lipid metabolic disorders through the 
ER stress-Ca2+-mitochondrial-associated pathway [53]. 
However, the mechanism of regulation of these natural 
compounds on ER chaperones as well as UPR pathway are 
yet to be elucidated in wet lab studies.

Conclusion

In the present study, novel GRP94 agonists were designed 
by means of core hopping approach and the newly 
designed scaffolds of NECA were subjected to pharma-
cophore hypothesis testing, 3D-QSAR model validations, 

and high-throughput virtual screening on ZINC and 
Selleckchem databases to effectively identify small mol-
ecules for enhancing GRP94 activity. The screened com-
pounds were validated as effective drug molecules based 
on ADMET prediction and the top lead compounds were 
subjected to MD simulations to study the binding stabil-
ity of the protein–ligand complex. The study yielded 10 
top-docked compounds, which were then filtered further 
using post-docking analysis (top 5). Significantly, Epi-
medin A, Narcissoside, Eriocitrin, and ZINC92952357, 
ZINC67650204, and ZINC72457930 satisfy all the 
parameters investigated, such as docking score, binding 
energy, ADMET properties, and dynamic simulations. The 
present study deciphers that core hopping coupled with 
atom-based 3D-QSAR model and docking studies helped 
in designing analogs with better activity that may serve as 
potent small-molecule agonists for GRP94 to alleviate ER 
stress-associated disease pathogenesis. However, further 

Fig. 9   MD simulations of the top hit Selleckchem compounds for 100 ns with RMSD, RMSF, and Interactions
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experimental validations are required to substantiate the 
efficacy of these small molecules.
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