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Abstract
Osteosarcoma is the most prevalent clinical malignant bone tumor in adolescents. The prognosis of metastatic osteosarcoma is 
still very poor. The aim of our study was to investigate the clinical diagnosis and prognostic significance of metastasis related 
genes (MRGs) in patients with osteosarcoma. Clinical information and RNA sequencing data with osteosarcoma patients 
were obtained and set as the training set from UCSC databases. GSE21257 were downloaded and chosen as the verification 
cohort. An eight gene metastasis related risk signature including MYC, TAC4, ABCA4, GADD45GIP1, TNFRSF21, HERC5, 
MAGEA11, and PDE1B was built to predict the overall survival of osteosarcoma patients. Based on risk assessments, patients 
were classified into high- and low-risk groups. The high-risk patients had higher risk score and shorter survival time. ROC 
curves revealed that this risk signature can accurately predict survival times of osteosarcoma patients at the 1-, 2-, 3-, 4- and 
5- year. GSEA revealed that MYC targets, E2F targets, mTORC1 signaling, Wnt /β-catenin signaling and cell cycle were 
upregulated, and cell adhesion molecules, and primary immunodeficiency were decreased in high-risk group. MRGs were 
highly linked with the tumor immune microenvironment and ICB response. These results identified that MRGs as a novel 
prognostic and diagnostic biomarker in osteosarcoma.
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Introduction

The most frequent malignant bone tumor is osteosarcoma 
in adolescents. Osteosarcoma remains the second leading 
cause of mortality in adolescents [24]. Osteosarcoma mainly 
occurs in the long bone metaphysis of the limb, and is com-
monly found in the distal humerus (43%), proximal tibia 
(23%), and proximal humerus (10%). The age of patients 
has an impact on the prevalence of osteosarcoma [40]. Clini-
cally detectable distant metastases are found in 15%–20%. 
Metastasis can be detected in 10%–20% of patients with 
confirmed osteosarcoma [22]. The most common site of 
osteosarcoma metastasis is the lung, and patients with lung 
metastases from osteosarcoma have a recurrence risk of up 
to 80%. It is generally accepted that metastasis has a sig-
nificant role in determining a cancer patient’s prognosis. 

Therefore, metastasis related genes are promising as new 
potential therapeutic targets for osteosarcoma.

Tumor metastasis is a very complex process modulated 
by metastasis related genes (MRGs) [7, 13]. Previous studies 
have demonstrated that MRGs exhibited strong prognostic 
potential in many tumors, including colorectal cancer [39], 
breast cancer [43], ovarian cancer [46], bladder cancer [42]. 
For example, 5-MRGs were identified to have strong prog-
nostic and diagnosis biomarkers for the survival of mela-
noma based on gene expression datasets [35]. A 4-MRGs 
were identified to be a reliable and useful prognostic tool for 
the survival of breast cancer patients [43]. The high expres-
sion of metastasis related MAGEA11 is a worse prognosis 
in esophageal squamous cell carcinoma [12]. Increasing 
studies have proved that osteosarcoma metastasis related 
genes potentially participated in osteosarcoma metastasis 
progression, including IGFBP5, MMP11, FXYD2 and et al. 
[34, 36]. However, the diagnosis and prognosis of metastasis 
related gene in osteosarcoma is not yet complete elucidated.

Recently, numerous studies have shown that the tumor 
microenvironment (TME) plays an important role in the 
development and metastasis progression of cancer [50]. 
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Various molecules and cells in the TME have complex 
and diverse effects on the occurrence, development and 
immunotherapy response of tumors [3]. The immune and 
inflammatory factor in TME play a key role in the efficacy 
of immunotherapy [25]. The rational design of tumor micro-
environment activated nanocomposites provides an innova-
tive strategy for constructing responsive tumor therapy [21, 
47, 48].

In the present study, the aim of the study was to discover 
a novel metastasis associated prognostic biomarkers for 
osteosarcoma. A reliable signature was established rooted 
in MEGs, and its prognostic utility was systematically 
evaluated in OS patients. Additionally, the underlying con-
notations between the signature and the landscape of TME, 
namely, predictive enrichment of tumor infiltrating immune 
cells, and the expression level of immune checkpoints 
were explored, which offered novel insights for personal-
ized immunotherapy. This was done by developing a risk 
score model based on MRGs to assess the prognostic value 
and immunotherapy efficiency of MRGs for osteosarcoma 
patients.

Materials and Methods

Collection of Osteosarcoma Datasets

Clinical data, count, and FPKM data were acquired from 
UCSC xena (https://​xenab​rowser.​net/​datap​ages/), the train-
ing cohort included 85 osteosarcoma samples. 47 osteo-
sarcoma samples (GSE21257) were acquired from (GEO; 
https://​www.​ncbi.​nlm.​nih.​gov/​geo/) database and used as the 
verification cohort.

Screening Metastasis Related Differentially 
Expressed Genes

The osteosarcoma patients were placed into two groups from 
TARGET databases, including metastasis and non-metasta-
sis group. The DEGs were analyzed by used DEseq2 from 
the training set. p. adjust values <  = 0.05 and |log2FC|> = 1 
[18].

Construction of Metastasis Related Prognostic 
Signature

Genes that substantially associated with patient prognosis 
were identified by a univariate Cox proportional HR analysis 
in the training set. The “glmnet” R package (version 4.1.1) 
was used to perform LASSO regression to prevent model 
overfitting [9]. The risk score formula looked for genes with 
independent prognostic values. Next, the DEGs were found 

in between the high-risk and low-risk groups by R package 
Limma (version 3.42.2).

Diagnostic Curve ROC Analysis

Kaplan–Meier curves was analyzed by using the “survival” 
R packages (version 3.2.10). We used the “pROC” (version 
1.18.0) to create a time dependent ROC curve to assess the 
risk score’s efficacy in predicting the 1, 2, 3, 4, and 5-year 
survival of osteosarcoma patients.

Functional Analyses and Mechanism Exploration

To determine the molecular basis of the prognostic gene, 
GSEA was performed in accordance with the Molecular 
Signatures Database (MSigDB, version 7.1.symbols.gmt). 
We decided to analyze the “KEGG gene sets (c2.cp.kegg.
v7.1.symbols.gmt)” and “HALLMARK gene set (h.all.
v7.1.symbols.gmt)”.

Cibersort Analysis

The CIBERSORT [23] was used to analyze the abundance of 
22 tumor immune infiltrating cell types in the tumor immune 
microenvironment (TME) of osteosarcoma patient samples. 
The heatmap was used to show the differentially abundance 
of 22 immune infiltrating cell. Wilcoxon test was used to sta-
tistically significant for the results of CIBERSORT analysis 
in high- and low-risk group.

Immune Checkpoint Molecules Expression

The potential immunotherapeutic markers including 18 ICB-
related genes were explored in high- and low-risk groups by 
Wilcoxon test. The heatmap of ICB-related genes expression 
was drawn by R package of “pheatmap”.

Immunotherapeutic Response Prediction

ImmuCellAI platform (http://​bioin​fo.​life.​hust.​edu.​cn/​web/​
ImmuC​ellAI/) was used to predict the response to immune 
checkpoint inhibitors in the sample of osteosarcoma patients 
[17].

Statistical Analysis

All statistical analyses were conducted by R software. Wil-
cox test was used to the differentially analysis. P < 0.05 was 
considered statistical significance.

https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
http://bioinfo.life.hust.edu.cn/web/ImmuCellAI/
http://bioinfo.life.hust.edu.cn/web/ImmuCellAI/
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Results

Identification of DEGs in Metastasis 
and Non‑metastasis Patients of Osteosarcoma

The clinical information and mRNA expression data were 
downloaded from the UCSC dataset. A total of 189 DEGs 
(70 upregulated and 119 downregulated) were identified in 
between metastatic group and non-metastatic group, includ-
ing 127 coding protein genes and 62 non coding genes (Sup-
plement Table 1). Volcano map showed that differentially 
expressed genes in metastatic group vs non-metastatic group 
(Fig. 1A). Blue dots represent downregulated genes, includ-
ing TP53, TPTEP1, IGJ, DDX43, NUDT10, HOXC12, et al.; 
red dots represent up-regulated genes, including ACTA1, 
MYBPC1, NRAP, NEB, TNNC2, FOSB, et al. Heatmap 
revealed that the expression of DEGs in metastatic group 
and non-metastatic group (Fig. 1B). Red signifies higher 
expression, and blue signifies lower expression in meta-
static group than non-metastatic group. DEGs in between 
metastasis group non-metastasis group of OS patients were 
identified.

Construction of Metastasis Related Prognostic 
Model Based on the TARGET Dataset

We used LASSO regression analysis to build a metastasis 
related prognostic model based on these 127 code-protein 
DEGs in the training set (Fig. 2A and B). A total of eight 
genes were acquired in the model, including MYC, TAC4, 
ABCA4, GADD45GIP1, TNFRSF21, HERC5, MAGEA11, 
and PDE1B (Fig. 2C). By using multivariate Cox propor-
tional HR analysis, eight MRGs were found and used to cre-
ate prognostic signature for patients OS (Fig. 2D). As shown 
in Fig. 2E, in accordance with the constructed prognostic 

model, each patient’s risk values were computed and patients 
were divided into high-risk or low-risk groups depend-
ing on the score; the patients of the low- risk group was 
longer survival time than the high-risk group. Next, the heat 
map showed that the expression of eight MRGs, PDE1B, 
MAGEA11, HERC5, and TNFRSF21 were high-expressed 
in the low-risk group, and GADD45GIP1, ABCA4, TAC4, 
and MYC were high-expressed in the high-risk group.

To explore the predictive value of the signature, the 
Kaplan–Meier survival curves were analyzed. As in Fig. 2F, 
the survival rate of high-risk group was lower than the low-
risk group. ROC analysis confirmed that the area under the 
ROC curve more than 0.5 regardless of the predicted sur-
vival time at 1, 2, 3, 4, 5-year survival in the training set 
(Fig. 2G).

Validation of the MRGs Related Prognostic Model 
in the External Databases

The GEO dataset was used to validate the constructed prog-
nostic model. As shown in Fig. 3A, patients in the GEO 
cohort were divided into 2 subgroups based on their risk 
scores calculated using the constructed prognostic model. 
The survival time of the low- risk group was longer than 
the high-risk group. Next, the heat map showed that the 
expression of eight MRGs, PDE1B, MAGEA11, HERC5, 
and TNFRSF21 were high-expressed in the low-risk group, 
and GADD45GIP1, ABCA4, TAC4, and MYC were high-
expressed in the high-risk group. Survival analysis found 
that patients of the high-risk group have poor prognosis 
(Fig. 3B). Moreover, ROC analysis found that the AUC of 
1, 2, 3, 4, 5-year survival was 0.704, 0.697, 0.806, 0.763, 
and 0.704, respectively (Fig. 3C). Above results collectively 
illustrated that the constructed prognostic model’s prediction 
accuracy.

Fig. 1   Differentially expressed 
genes in patients with meta-
static and non-metastatic 
osteosarcoma. A Valcano plot 
of DEGs in metastatic group vs 
non-metastatic group. Down-
regulated genes are shown by 
blue dots, Up-regulated genes 
are represented by red dots. B 
Heatmap of significantly DEGs 
in metastatic group vs non-
metastatic group
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Functional Enrichment Analysis

We used GSEA to determine the enrichment pathways. 
HALLMARK pathways were mostly enriched in the 
MYC TARGETS, E2F TARGETS, MTORC1 signaling, 
and WNT β-catenin signaling (Fig. 4A). KEGG pathways 
of the high-risk group enriched in the Cell cycle; KEGG 
pathways of low-risk group enriched in the primary immu-
nodeficiency, cell adhesion molecules, T cell receptor 
signaling pathway (Fig. 4B).

Comparison of the Immune Microenvironment 
and the Immune Checkpoint Molecules Expression 
in the Between High‑Risk and Low‑Risk Groups

Metastasis is linked to immunity, we looked at the differ-
ences of immune infiltration in the between high-risk and 
low-risk groups. We employed CIBERSORT to analyze the 
difference of 22 immune cells in between high-risk and low-
risk groups for each osteosarcoma patients. The heatmap of 
the tumor infiltrating immune cells (TIICs) expression was 

Fig. 2   Construction of Metastasis related prognostic model in the 
training set. A LASSO coefficient profiles of 50 MRGs. B LASSO 
model with optimal lambda value. C LASSO coefficient configura-
tion of eight candidate genes. D The forest plot of multivariate Cox 

regression. E Distribution of risk score and survival status, expres-
sion of eight candidate genes in osteosarcoma patients. F The 
Kaplan–Meier survival analysis of OS in TCGA cohort. G ROC anal-
ysis for risk score at 1, 2, 3, 4, 5 years



1840	 Molecular Biotechnology (2023) 65:1836–1845

1 3

Fig. 3   The constructed risk model is validated in the verification set. A survival status, and risk score, and expression of MRGs in osteosarcoma 
patients. B The Kaplan–Meier curve of OS. C ROC analysis for risk score at 1, 2, 3, 4, 5 years

Fig. 4   The potential molecular mechanism of the Metastasis related genes. A HALLMARK of Metastasis related genes score was analyzed by 
GSEA. B KEGG of Metastasis related genes score was analyzed and enriched by GSEA
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showed in high/low-risk groups (Fig. 5A). The composition 
of TIICs remained basically the same, mainly composed of 
T cells CD4 memory, Dendritic cells (DC), NK cells, Mac-
rophages, and Mast cells. Wilcoxon test analysis showed T 
cells CD4 naive was higher infiltration, and B cells naïve, 
T cells CD8 and Monocytes were lower infiltration in the 
high-risk group than low-risk group (Fig. 5B).

Immune blocking checkpoint (ICB) related gene expres-
sion levels were correlated with therapeutic response of 
immune checkpoint inhibitors and targeted ICB check-
points has emerged as promising strategy in cancers treat-
ment [11, 26]. To better explore the potential of MRGs 

for predicting the response of osteosarcoma patients to 
immunotherapy, we analyzed the expression of immune 
checkpoint molecules in low-and high-groups of TRAGET 
and GSE21257. As shown in Fig. 5C and D, the expres-
sion of immunomodulators (HAVCR2, LAG3, CTLA4, 
PDCD1, GZMA, NKG7, GZMM, IFNG) were signifi-
cantly increased in low-risk group than high-risk group 
in TRAGET dataset and GSE21257 dataset. Response 
to immune checkpoint inhibitors was predicted in each 
osteosarcoma patient sample, the patients of responded to 
immune checkpoint inhibitors in low-risk group were more 
than high-risk group (Fig. 5E).

Fig. 5   The landscape of TME. A The heatmap of tumor infiltrating 
immune cells expression. B Differentially analysis of 22 tumor infil-
trating immune cells by Wilcoxon test analysis. C and D The heat-
map of the expression of immune checkpoint molecules in low- and 

high-risk groups of TARGET and GSE21257. E The response to 
immune checkpoint inhibitors was predicted in osteosarcoma patient. 
(*P < 0.05; **P < 0.01; ***P < 0.001)
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Discussion

Osteosarcoma is the most common malignant tumors with 
a strong ability for invasion and metastasis in bone tissue, 
which tends to occur in children and adolescent [30]. The 
osteosarcoma patients are associated with lung metastasis. 
The overall survival of OS patients has been still far away 
from satisfactory. High throughput sequencing technologies 
and bioinformatics analysis have recently used the investiga-
tion of genetic alterations in osteosarcoma and given a use-
ful method to find potentially helpful markers [19, 27, 45]. 
In this present study, a total 197 DEGs were identified in 
between Metastasis group and Non-metastasis of osteosar-
coma, including downregulated genes (TP53, TPTEP1, IGJ, 
DDX43, NUDT10, HOXC12, et al.) and up-regulated genes 
(ACTA1, MYBPC1, NRAP, NEB, TNNC2, FOSB, et al.).

Eight MRGs were developed prognostic model, includ-
ing PDE1B, MAGEA11, HERC5, TNFRSF21, GADD-
45GIP1, ABCA4, TAC4, and MYC, all of them were risk 
factors in osteosarcoma. These MRGs have been reported 
as prognostic biomarkers in cancers. Metastasis related 
melanoma associated antigen-A11(MAGEA11) positive 
expression is an independent unfavorable prognostic factor 
in ESCC patients [29]. PDE1B was identified as potential 
prognostic biomarkers in osteosarcoma [32]. Weighted 
gene correlation network analysis identified HERC5 as 
prognostic candidate for breast cancer [33]. Lower expres-
sion of TNFRSF21 had a prominent advantage in survival 
and was correlated with a low level of immune infiltration 
in pancreatic adenocarcinoma [44]. Variation of ABCA4 
was associated with therapy response in breast cancer [14]. 
Previous study has shown that TAC4 mRNA expression 
in gliomas, indicating a possible involvement of HK-1 in 
glioma biology [4]. MYC was overexpressed in osteosar-
coma, and higher MYC expression related with metasta-
sis and poor prognosis [8]. The high expression of CR6-
interacting factor (CRIF1) is associated with unfavorable 
prognosis of hepatocellular carcinoma patients [6]. Almost 
all MRGs were highly related with cancer metastasis. As a 
result, 8 MRGs may be used as a metastasis related prog-
nostic biomarker in a variety of therapeutic applications.

Epithelial-mesenchymal transition (EMT) is major 
factor contributing to the metastasis of cancer cells [2]. 
Consequently, the metastasis related signatures are appro-
priate therapeutic targets in the treatment of metastasis. 
Previous study has found that CRIF1 promoted hepato-
cellular carcinoma metastasis by inducing cell EMT [6]. 
Overexpression of c-Myc oncogene has been implicated 
in EMT in pancreatic cancer, [1, 51] lung cancer [52], and 
hepatocellular carcinoma [41].

We used GSEA analysis to investigate the possible 
molecular pathways linked with the high-risk group to 

better explored the underlying biological process. HALL-
MARK pathways were mainly enriched in the MYC 
TARGETS, E2F TARGETS, MTORC1 signaling, and 
WNT/β-catenin signaling. Previous studies have reported 
that Wnt/β-catenin signaling pathway was correlated with 
the lung metastasis of osteosarcomas [53]. It was reported 
that MYC was related to metastasis of patients with oste-
osarcoma [31]. LncRNA UCA1 promoted osteosarcoma 
metastasis by activating mTOR signaling pathways [20]. 
Therefore, the upregulated MYC TARGETS, E2F TAR-
GETS, MTORC1 signaling, and WNT β-catenin signal-
ing in high-risk group promoted metastasis of patients 
with osteosarcoma. KEGG pathways were involved in the 
cell cycle in the high-risk group. For example, LncRNA 
LINC01296 promoted cell proliferation and metastasis of 
osteosarcoma through regulating cell cycle protein cyclin 
D1 [49]. KEGG pathways of low-risk group involved in 
the cell adhesion molecules (CAMs). Mounting studies 
have revealed that epithelial mesenchymal transition is a 
most important process of tumor metastasis, the cell adhe-
sion was weakened or disappeared to promote the invasion 
and migration of tumor cell [28, 37, 38].

Tumor microenvironment (TME) play a critical effect 
on tumors incidence and development. It has been reported 
that tumor associated macrophages promoted angiogenic 
stromal remodeling and linked to the progression and prog-
nosis of osteoblastoma [5, 37, 38]. The results of this study 
showed that macrophages are the most important infiltrating 
immune cells in osteosarcoma, including undifferentiated 
M0 macrophages and M2 macrophages, and the role of M2 
macrophages in osteosarcoma microenvironment needs to 
be further studied. Previous studies have reported that the 
higher level of Macrophages M0 and lower CD8T cells are 
associated with worst overall survival [16]. We demonstrated 
that the infiltration of T cells CD8 and monocytes were 
upregulated in high-risk patients. Therefore, the higher T 
cells CD8 and monocytes are associated with poor prognosis 
in osteosarcoma patients.

In the past decade, the ICB immunotherapies has 
achieved positive response in osteosarcoma patients [10]. 
However, only a small proportion of osteosarcoma patients 
can respond to immunotherapies, and the major reason 
might be the limitations in their tumor immunity status 
[15]. To verify whether MGR was capable of predicting 
the efficiency of anti-cancer immunotherapies in osteo-
sarcoma patients, we analyzed the expression levels of 
immunomodulators (HAVCR2, LAG3, CTLA4, PDCD1, 
GZMA, NKG7, GZMM, IFNG) were significantly increased 
in low-risk group than high-risk group of TRAGET data-
set and GSE21257 dataset. These results suggested that 
osteosarcoma patients in the low-risk group might have a 
better response to anti-CTLA4 and anti-PDCD1 antibod-
ies. Besides, it is estimated that the low-risk group might 
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respond better to immunotherapies than those in the high-
risk group.

In this study, we explored the effect of MRGs on the gen-
esis, development of OS through comprehensive bioinfor-
matic analysis. We identified high-risk and low-risk groups 
of OS patients based on their MRGs expression matrix, and 
high-risk and low-risk groups showed different immune sta-
tus and prognosis. We developed a prognosis risk model 
for better prediction of OS patient survival. The findings 
of this study could provide a new perspective and direc-
tion for future research on molecular targeted therapy of 
OS. Despite MRGs were identified to predict the survival of 
osteosarcoma, our study has several limitations. First, this 
study is based on bioinformatics methods for analysis and 
interpretation, the exact conclusion still needs to be veri-
fied by further experiments. Second, the number of sam-
ples used in this investigation is restricted. Third, the lack 
of experiment validation limited the evidence level of this 
study. Next, more research will be required to investigate the 
molecular mechanism. The role of MRGs in OS cell, which 
will be addressed in future studies.

Conclusion

In conclusion, we analyzed differentially expressed mRNAs 
in between metastasis and non-metastasis osteosarcoma. We 
discovered a novel 8 MRGs in the diagnosis and prognosis 
of osteosarcoma patients.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s12033-​023-​00681-7.

Acknowledgements  None

Author Contributions  QZ conceived and designed this study. ZD and 
YY collected data and analyzed the data. QZ wrote the manuscript. QZ 
were responsible for the final modified version.

Funding  None.

Data Availability  The datasets analyzed during the current study are 
available from the corresponding author on reasonable request.

Declarations 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Ethical Approval  Not applicable.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 

included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Ala, M. (2022). Target c-Myc to treat pancreatic cancer. Cancer 
Biology & Therapy, 23, 34–50.

	 2.	 Babaei, G., Aziz, S. G., & Jaghi, N. Z. Z. (2021). EMT, cancer 
stem cells and autophagy; The three main axes of metastasis. 
Biomedicine & Pharmacotherapy, 133, 110909.

	 3.	 Bagaev, A., Kotlov, N., Nomie, K., Svekolkin, V., Gafurov, A., 
Isaeva, O., Osokin, N., Kozlov, I., Frenkel, F., Gancharova, O., 
et al. (2021). Conserved pan-cancer microenvironment subtypes 
predict response to immunotherapy. Cancer Cell, 39(845–865), 
e847.

	 4.	 Berger, A., & Paige, C. J. (2005). Hemokinin-1 has substance 
P-like function in U-251 MG astrocytoma cells: A pharmaco-
logical and functional study. Journal of Neuroimmunology, 164, 
48–56.

	 5.	 Cersosimo, F., Lonardi, S., Bernardini, G., Telfer, B., Mandelli, 
G. E., Santucci, A., Vermi, W., & Giurisato, E. (2020). Tumor-
associated macrophages in osteosarcoma: From mechanisms to 
therapy. International Journal of Molecular Science, 21(15), 
5207.

	 6.	 Chang, H., Li, J., Qu, K., Wan, Y., Liu, S., Zheng, W., Zhang, 
Z., & Liu, C. (2020). CRIF1 overexpression facilitates tumor 
growth and metastasis through inducing ROS/NFkappaB path-
way in hepatocellular carcinoma. Cell Death & Disease, 11, 
332.

	 7.	 Fan, H., Wang, X., Li, W., Shen, M., Wei, Y., Zheng, H., & Kang, 
Y. (2020). ASB13 inhibits breast cancer metastasis through pro-
moting SNAI2 degradation and relieving its transcriptional repres-
sion of YAP. Genes & Development, 34, 1359–1372.

	 8.	 Feng, W., Dean, D. C., Hornicek, F. J., Spentzos, D., Hoffman, R. 
M., Shi, H., & Duan, Z. (2020). Myc is a prognostic biomarker 
and potential therapeutic target in osteosarcoma. Therapeutic 
Advances in Medical Oncology, 12, 1758835920922055.

	 9.	 Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization 
paths for generalized linear models via coordinate descent. Jour-
nal of Statistical Software, 33, 1–22.

	10.	 Ge, Y. X., Zhang, T. W., Zhou, L., Ding, W., Liang, H. F., Hu, 
Z. C., Chen, Q., Dong, J., Xue, F. F., Yin, X. F., et al. (2022). 
Enhancement of anti-PD-1/PD-L1 immunotherapy for osteosar-
coma using an intelligent autophagy-controlling metal organic 
framework. Biomaterials, 282, 121407.

	11.	 Goodman, A., Patel, S. P., & Kurzrock, R. (2017). PD-1-PD-
L1 immune-checkpoint blockade in B-cell lymphomas. Nature 
Reviews. Clinical Oncology, 14, 203–220.

	12.	 Gu, L., Sang, M., Li, J., Liu, F., Wu, Y., Liu, S., Wang, P., & Shan, 
B. (2019). Expression and prognostic significance of MAGE-A11 
and transcription factors (SP1, TFCP2 and ZEB1) in ESCC tis-
sues. Pathology, Research and Practice, 215, 152446.

	13.	 He, L., Wang, S., & Ma, X. (2021). The influence of ICAM1 
3’UTR gene polymorphism on the occurrence and metastasis 
of primary liver cancer. BioMed Research International, 2021, 
7377299.

	14.	 Hlavac, V., Vaclavikova, R., Brynychova, V., Kozevnikovova, R., 
Kopeckova, K., Vrana, D., Gatek, J., & Soucek, P. (2020). Role of 
genetic variation in ABC transporters in breast cancer prognosis 

https://doi.org/10.1007/s12033-023-00681-7
http://creativecommons.org/licenses/by/4.0/


1844	 Molecular Biotechnology (2023) 65:1836–1845

1 3

and therapy response. International Journal of Molecular Science, 
21(24), 9556.

	15.	 Katsuki, S., Takahashi, Y., Tamari, K., Minami, K., Takenaka, W., 
Ibuki, Y., Yamamoto, J., Tatekawa, S., Hayashi, K., Seo, Y., et al. 
(2022). Radiation therapy enhances systemic antitumor efficacy 
in PD-L1 therapy regardless of sequence of radiation in murine 
osteosarcoma. PLoS ONE, 17, e0271205.

	16.	 Le, T., Su, S., & Shahriyari, L. (2021). Immune classification of 
osteosarcoma. Mathematical Biosciences and Engineering, 18, 
1879–1897.

	17.	 Lei, Y., Chen, Y., Lin, Z., Tian, D., & Han, P. (2020). Comprehen-
sive analysis of key biomarkers, immune infiltration and poten-
tial therapeutic agents for ulcerative colitis. Life Sciences, 260, 
118437.

	18.	 Liu, S., Wang, Z., Zhu, R., Wang, F., Cheng, Y., & Liu, Y. (2021). 
Three differential expression analysis methods for RNA sequenc-
ing: limma, Edger, DESeq2. Jornal of Visualized Experiments, 
18(175), e62528.

	19.	 Lo Giudice, C., Pesole, G., & Picardi, E. (2021). High-throughput 
sequencing to detect DNA-RNA changes. Methods in Molecular 
Biology, 2181, 193–212.

	20.	 Ma, H., Su, R., Feng, H., Guo, Y., & Su, G. (2019). Long non-
coding RNA UCA1 promotes osteosarcoma metastasis through 
CREB1-mediated epithelial-mesenchymal transition and activat-
ing PI3K/AKT/mTOR pathway. Journal of Bone Oncology, 16, 
100228.

	21.	 Mahdi, M. A., Yousefi, S. R., Jasim, L. S., & Salavati-Niasari, 
M. (2022). Green synthesis of DyBa_2Fe_3O_(7.988)/DyFeO_3 
nanocomposites using almond extract with dual eco-friendly 
applications: Photocatalytic and antibacterial activities. Interna-
tional Journal of Hydrogen Energy, 47, 14319–14330.

	22.	 Miller, B. J., Cram, P., Lynch, C. F., & Buckwalter, J. A. (2013). 
Risk factors for metastatic disease at presentation with osteosar-
coma: An analysis of the SEER database. Journal of Bone and 
Joint Surgery. American Volume, 95, e89.

	23.	 Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, 
W., Xu, Y., Hoang, C. D., Diehn, M., & Alizadeh, A. A. (2015). 
Robust enumeration of cell subsets from tissue expression profiles. 
Nature Methods, 12, 453–457.

	24.	 Niu, J., Yan, T., Guo, W., Wang, W., Zhao, Z., Ren, T., Huang, Y., 
Zhang, H., Yu, Y., & Liang, X. (2020). Identification of potential 
therapeutic targets and immune cell infiltration characteristics in 
osteosarcoma using bioinformatics strategy. Frontiers in Oncol-
ogy, 10, 1628.

	25.	 Park, M., Kim, D., Ko, S., Kim, A., Mo, K., & Yoon, H. (2022). 
Breast cancer metastasis: Mechanisms and therapeutic implica-
tions. Intenatinal Journal of Molecular Science, 23(12), 6806.

	26.	 Postow, M. A., Callahan, M. K., & Wolchok, J. D. (2015). Immune 
checkpoint blockade in cancer therapy. Journal of Clinical Oncol-
ogy, 33, 1974–1982.

	27.	 Qian, H., Lei, T., Hu, Y., & Lei, P. (2021). Expression of lipid-
metabolism genes is correlated with immune microenvironment 
and predicts prognosis in osteosarcoma. Frontiers in Cell and 
Development Biology, 9, 673827.

	28.	 Ruh, M., Stemmler, M. P., Frisch, I., Fuchs, K., van Roey, R., 
Kleemann, J., Roas, M., Schuhwerk, H., Eccles, R. L., Agaimy, 
A., et al. (2021). The EMT transcription factor ZEB1 blocks oste-
oblastic differentiation in bone development and osteosarcoma. 
The Journal of Pathology, 254, 199–211.

	29.	 Sang, M., Gu, L., Liu, F., Lian, Y., Yin, D., Fan, X., Ding, C., 
Huang, W., Liu, S., & Shan, B. (2016). Prognostic significance of 
MAGE-A11 in esophageal squamous cell carcinoma and identi-
fication of related genes based on DNA microarray. Archives of 
Medical Research, 47, 151–161.

	30.	 Sheng, G., Gao, Y., Yang, Y., & Wu, H. (2021). Osteosarcoma and 
metastasis. Frontiers in Oncology, 11, 780264.

	31.	 Shi, Y., He, R., Zhuang, Z., Ren, J., Wang, Z., Liu, Y., Wu, J., 
Jiang, S., & Wang, K. (2020). A risk signature-based on metasta-
sis-associated genes to predict survival of patients with osteosar-
coma. Journal of Cellular Biochemistry, 121, 3479–3490.

	32.	 Tan, J., Liang, H., Yang, B., Zhu, S., Wu, G., Li, L., Liu, Z., Li, 
L., Qi, W., Li, S., et al. (2021). Identification and analysis of three 
hub prognostic genes related to osteosarcoma metastasis. Journal 
of Oncology, 2021, 6646459.

	33.	 Tang, J., Yang, Q., Cui, Q., Zhang, D., Kong, D., Liao, X., Ren, 
J., Gong, Y., & Wu, G. (2020). Weighted gene correlation net-
work analysis identifies RSAD2, HERC5, and CCL8 as prognostic 
candidates for breast cancer. Journal of Cellular Physiology, 235, 
394–407.

	34.	 Tian, H., Guan, D., & Li, J. (2018). Identifying osteosarcoma 
metastasis associated genes by weighted gene co-expression net-
work analysis (WGCNA). Medicine (Baltimore), 97, e10781.

	35.	 Wan, Q., Liu, C., Liu, C., Liu, W., Wang, X., & Wang, Z. (2020). 
Discovery and validation of a metastasis-related prognostic and 
diagnostic biomarker for melanoma based on single cell and gene 
expression datasets. Frontiers in Oncology, 10, 585980.

	36.	 Wang, J. S., Wang, Y. G., Zhong, Y. S., Li, X. D., Du, S. X., 
Xie, P., Zheng, G. Z., & Han, J. M. (2019). Identification of co-
expression modules and pathways correlated with osteosarcoma 
and its metastasis. World Journal of Surgical Oncology, 17, 46.

	37.	 Wang, Y., Hao, W., & Wang, H. (2021). miR-557 suppressed the 
malignant behaviours of osteosarcoma cells by reducing HOXB9 
and deactivating the EMT process. Artificial Cells Nanomedicine 
and Biotechnology, 49, 230–239.

	38.	 Wang, Z., Wu, H., Chen, Y., Chen, H., Yuan, W., & Wang, X. 
(2021). The Heterogeneity of infiltrating macrophages in meta-
static osteosarcoma and its correlation with immunotherapy. Jour-
nal of clinical Oncology, 2021, 4836292.

	39.	 Wei, S., Zang, J., Jia, Y., Chen, A., Xie, Y., Huang, J., Li, Z., Nie, 
G., Liu, H., Liu, F., et al. (2020). A gene-related nomogram for 
preoperative prediction of lymph node metastasis in colorectal 
cancer. Journal of Investigative Surgery, 33, 715–722.

	40.	 Whelan, J. S., & Davis, L. E. (2018). Osteosarcoma, chondrosar-
coma, and chordoma. Journal of Clinical Oncology, 36, 188–193.

	41.	 Xia, P., Zhang, H., Xu, K., Jiang, X., Gao, M., Wang, G., Liu, Y., 
Yao, Y., Chen, X., Ma, W., et al. (2021). MYC-targeted WDR4 
promotes proliferation, metastasis, and sorafenib resistance by 
inducing CCNB1 translation in hepatocellular carcinoma. Cell 
Death & Disease, 12, 691.

	42.	 Xie, R., Chen, X., Cheng, L., Huang, M., Zhou, Q., Zhang, J., 
Chen, Y., Peng, S., Chen, Z., Dong, W., et al. (2021). NONO 
inhibits lymphatic metastasis of bladder cancer via alternative 
splicing of SETMAR. Molecular Therapy, 29, 291–307.

	43.	 Xie, X., Wang, J., Shi, D., Zou, Y., Xiong, Z., Li, X., Zhou, J., 
Tang, H., & Xie, X. (2019). Identification of a 4-mRNA metas-
tasis-related prognostic signature for patients with breast cancer. 
Journal of Cellular and Molecular Medicine, 23, 1439–1447.

	44.	 Xu, H., Yin, L., Xu, Q., Xiang, J., & Xu, R. (2022). N6-methyl-
adenosine methylation modification patterns reveal immune pro-
filing in pancreatic adenocarcinoma. Cancer Cell International, 
22, 199.

	45.	 Xu, J., Liao, K., Yang, X., Wu, C., & Wu, W. (2021). Using single-
cell sequencing technology to detect circulating tumor cells in 
solid tumors. Molecular Cancer, 20, 104.

	46.	 Yang, Y., Qi, S., Shi, C., Han, X., Yu, J., Zhang, L., Qin, S., & 
Gao, Y. (2020). Identification of metastasis and prognosis-associ-
ated genes for serous ovarian cancer. Bioscience Reports. https://​
doi.​org/​10.​1042/​BSR20​194324

https://doi.org/10.1042/BSR20194324
https://doi.org/10.1042/BSR20194324


1845Molecular Biotechnology (2023) 65:1836–1845	

1 3

	47.	 Yousefi, S. R., Alshamsi, H. A., Amiri, O., & Salavati-Niasari, M. 
(2021). Synthesis, characterization and application of Co/Co3O4 
nanocomposites as an effective photocatalyst for discoloration of 
organic dye contaminants in wastewater and antibacterial proper-
ties. Journal of Molecular Liquids, 337, 1164.

	48.	 Yousefi, S. R., Ghanbari, M., Amiri, O., Marzhoseyni, Z., Meh-
dizadeh, P., Hajizadeh-Oghaz, M., & Salavati-Niasari, M. (2021). 
Dy2BaCuO5/Ba4DyCu3O9 09 S-scheme heterojunction nano-
composite with enhanced photocatalytic and antibacterial activi-
ties. Journal of the American Ceramic Society, 104, 2952–2965.

	49.	 Yu, X., Pang, L., Yang, T., & Liu, P. (2018). lncRNA LINC01296 
regulates the proliferation, metastasis and cell cycle of osteosar-
coma through cyclin D1. Oncology Reports, 40, 2507–2514.

	50.	 Zeng, D., Li, M., Zhou, R., Zhang, J., Sun, H., Shi, M., Bin, J., 
Liao, Y., Rao, J., & Liao, W. (2019). Tumor microenvironment 
characterization in gastric cancer identifies prognostic and immu-
notherapeutically relevant gene signatures. Cancer Immunology 
Research, 7, 737–750.

	51.	 Zhao, Y., Wang, Y., Chen, W., Bai, S., Peng, W., Zheng, M., 
Yang, Y., Cheng, B., & Luan, Z. (2021). Targeted intervention of 

eIF4A1 inhibits EMT and metastasis of pancreatic cancer cells 
via c-MYC/miR-9 signaling. Cancer Cell International, 21, 670.

	52.	 Zhong, Y., Yang, L., Xiong, F., He, Y., Tang, Y., Shi, L., Fan, S., 
Li, Z., Zhang, S., Gong, Z., et al. (2021). Long non-coding RNA 
AFAP1-AS1 accelerates lung cancer cells migration and invasion 
by interacting with SNIP1 to upregulate c-Myc. Signal Transduc-
tion and Targeted Therapy, 6, 240.

	53.	 Zhu, H., Chen, D., Xie, X., Li, Y., & Fan, T. (2021). Melittin 
inhibits lung metastasis of human osteosarcoma: Evidence of 
wnt/beta-catenin signaling pathway participation. Toxicon, 198, 
132–142.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Metastasis-Related Signature for Clinically Predicting Prognosis and Tumor Immune Microenvironment of Osteosarcoma Patients
	Abstract
	Introduction
	Materials and Methods
	Collection of Osteosarcoma Datasets
	Screening Metastasis Related Differentially Expressed Genes
	Construction of Metastasis Related Prognostic Signature
	Diagnostic Curve ROC Analysis
	Functional Analyses and Mechanism Exploration
	Cibersort Analysis
	Immune Checkpoint Molecules Expression
	Immunotherapeutic Response Prediction
	Statistical Analysis

	Results
	Identification of DEGs in Metastasis and Non-metastasis Patients of Osteosarcoma
	Construction of Metastasis Related Prognostic Model Based on the TARGET Dataset
	Validation of the MRGs Related Prognostic Model in the External Databases
	Functional Enrichment Analysis
	Comparison of the Immune Microenvironment and the Immune Checkpoint Molecules Expression in the Between High-Risk and Low-Risk Groups

	Discussion
	Conclusion
	Anchor 22
	Acknowledgements 
	References




