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Abstract
Targeted treatment of cancer hinges on the identification of specific intracellular molecular receptors on cancer cells to 
stimulate apoptosis for eventually inhibiting growth; the development of novel ligands to target biomarkers expressed by the 
cancer cells; and the creation of novel multifunctional carrier systems for targeted delivery of anticancer drugs to specific 
malignant sites. There are numerous receptors, antigens, and biomarkers that have been discovered as oncological targets 
(oncotargets) for cancer diagnosis and treatment applications. Oncotargets are critically important to navigate active anti-
cancer drug ingredients to specific disease sites with no/minimal effect on surrounding normal cells. In silico techniques 
relating to genomics, proteomics, and bioinformatics have catalyzed the discovery of oncotargets for various cancer types. 
Effective oncotargeting requires high-affinity probes engineered for specific binding of receptors associated with the malig-
nancy. Computational methods such as structural modeling and molecular dynamic (MD) simulations offer opportunities to 
structurally design novel ligands and optimize binding affinity for specific oncotargets. This article proposes a streamlined 
approach for the development of ligand-oncotarget bioaffinity systems via integrated structural modeling and MD simula-
tions, making use of proteomics, genomic, and X-ray crystallographic resources, to support targeted diagnosis and treatment 
of cancers and tumors.
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Introduction

Cancer is one of the most common non-communicable dis-
eases among humans. It is characterized by an abnormal 
growth of cells, with ability to spread to other parts of the 
body [1]. The International Agency for Research on Can-
cer (IARC) reported about 18 million new cases of cancer 
comprising of 36 cancer types in 185 countries in 2018. 
Further, IARC reported about 9.6 million deaths due to 
cancer in 2018 globally [2]. Cancers can be categorized 
as carcinomas, lymphomas or leukemias, and sarcomas. 

Carcinomas are commonly associated with any type of 
epithelial cell of the skin or lining of organs, and about 
90% of human malignancies are categorized as carcinomas 
[3]. Lymphomas and leukemias are malignancies of the 
immune cells and blood-forming cells, respectively. They 
constitute about 8% of human cancers. Sarcomas refer to 
any malignant tumor of connective tissues or non-epithelial 
cells, including bone, cartilage, fibrous, and muscle tissues. 
They account for less than 2% of reported cancer cases [4]. 
Cancers can also be further classified based on the affected 
cell type (e.g., erythroid leukemia, referring to red blood 
cell malignancy) or the affected tissues or organ (e.g., pros-
tate and breast cancer). Although cancer continues to be 
a major global health issue that accounts for one in every 
seven deaths [5], there are only a few cancer types com-
monly diagnosed. Table 1 presents the ten most common 
cancers and their estimated cases of mortality in the USA 
in 2019. GLOBOCAN in 2018 reported that lung cancer is 
the most common cancer type, representing about 11.6% of 
global cancer cases. The mortality rate of lung cancer was 
reported to be the highest (18.4%), followed by colorectal 
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Table 1   The ten most common cancers and their estimated cases of mortality in the USA in 2019

Type of cancer Characteristics Estimated 
mortality in 
2019

References

Lung and bronchus 1. Lung and bronchogenic carcinoma are developed from malig-
nant neoplasm which proliferate uncontrollably and irregularly 
from the atypical epithelial cells of bronchus or bronchiole. 
The neoplasm can spread into the bronchial wall or lumen and 
to other organs by invading the lymph nodes

2. Bronchogenic carcinomas include adenocarcinoma, squamous 
cell carcinoma, and bronchioloalveolar carcinoma

142,670 [26, 27]

Colon or rectum 1. Tumor formation starts from enhanced proliferation of colon 
epithelial cells and large-size benign adenomas. Consequently, 
tumor invasion occurs to the basal lamina, underlying connec-
tive tissues, other organs such as small intestine or bladder, and 
finally metastasizing to other body parts by invading blood and 
lymphatic vessels

51,020 [4]

Pancreas 1. Pancreatic cancers are divided into three types of non-invasive 
pancreatic neoplasia: mucinous cystic neoplasm, pancreatic 
intraepithelial neoplasia (the most common type in humans), 
and intraductal papillary mucinous neoplasm

2. Pancreatic cancers are mostly exocrine carcinomas such as 
heptoid, colloid, ductal, and acinar cell carcinoma. Ductal 
adenocarcinoma is the most prevalent type with moderately 
differentiated glandular structures and contributes to more than 
80% of all pancreatic cancers

3. Pancreatic tumor can metastasize and spread rapidly to lymph 
nodes, liver, and peritoneal cavity

45,750 [28]

Breast 1. Breast cancers are either invasive or non-invasive. Non-
invasive breast cancers do not invade away from the ducts or 
lobules where they are located. However, these ‘in situ’ breast 
cancers can proliferate and grow into invasive breast cancers. 
Non-invasive breast cancers include lobular carcinoma in site 
(LCIS) which grows into breast lobules; and ductal carci-
noma in situ, which grows into breast duct and forms ductal 
co-medo-carcinoma

2. Invasive breast cancers include infiltrating lobular carcinoma, 
medullary carcinoma, tubular carcinoma, and infiltrating ductal 
carcinoma. Invasive breast cancers are developed when tumor 
cells proliferate from the ducts or lobules into close proxim-
ity of breast tissues and further invade to other body parts via 
systemic circulation or immune system

42,260 [29]

Urinary system (e.g., kidney, urinary bladder, 
ureter carcinomas)

1. Renal cell carcinoma of renal parenchyma is responsible for 
more than 90% of kidney cancers. There are diverse kinds of 
kidney cancers. These include collecting duct, papillary, onco-
cytoma, and medullary

2. Bladder cancer usually occurs via urothelial cell proliferation 
in the bladder lining. The tumor cells can also develop into the 
ureters and renal pelvis as upper tract bladder cancers

3. Chromosome 3p deletion and the inhibition of VHL tumor 
suppressor gene can lead to kidney cancer. The inhibition of 
tumor suppressor genes such as p53, PTEN, and Rb can result 
in bladder cancer

33,420 [30]

Liver and intrahepatic bile duct 1. The primary liver cancers are cholangiocarcinoma (CCA) 
and hepatocellular carcinoma (HCC). Malignant CCA is 
transformed from cholangiocytes, the epithelial lining of both 
intra- and extra- hepatic biliary epithelium. HCC is usually 
developed from fibrosis to cirrhosis and finally transformed 
into tumor cells. It is usually caused by hepatitis B and C viral 
infections as well as alcohol-related liver injury

31,780 [31]
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cancer (9.2%) and stomach/liver cancer (8.2%) [6]. Gener-
ally, the treatment of cancer is carried out by surgery to 
remove specific cancerous tissues [7], radiation therapy [8], 
and chemotherapy [9]. Surgeries are usually recommended 
if the spread of the cancer is rapid and difficult to control 
using conventional treatment methods [10]. Cancer relapse 
is associated with the presence of circulating tumor cells in 
cancer patients and this can result in unsuccessful surgery 
and patient mortality [11]. Chemotherapy is the most com-
mon cancer treatment method where chemical-based drugs 
at high concentrations are administered to inhibit rapidly 
growing cancer cells [12]. Even though chemotherapy has 
proven to be successful in retarding cancer cell growth, the 
lack of selectivity and specificity induce severe side effects 
through the inhibition of normal healthy cell growth [13]. 
General side effects of chemotherapy include hair loss, loss 
of appetite, diarrhea or constipation, nausea, fatigue, mouth 
sores, and skin problems [14]. Radiation therapy is intro-
duced to overcome the limitations of chemotherapy. The 
treatment utilizes high intensity radiation, targeted at the 
cancer-affected site or organ, to inhibit the growth of cancer 
cells. However, radiation therapy can lead to alterations in 
the DNA of neighboring healthy cells and this may lead to 
side effects [15]. Hyperthermia, cryosurgery and magnetic 
therapy are some of the novel methods developed to address 

the challenges of conventional cancer treatment approaches 
[16–18] though issues relating to toxicity, inhibition of 
healthy cells and cancer relapse persists [19, 20]. Targeted 
treatment of cancer hinges on the identification of specific 
molecular receptors on cancer cells to inhibit growth; the 
development of novel ligands to target biomarkers expressed 
by the cancer cells; and the creation of novel multifunctional 
carrier systems for targeted delivery of anticancer drugs to 
specific malignant sites. There are numerous oncotargets that 
have been discovered as receptors or biomarkers for targeted 
delivery of anticancer drugs to control the growth of cancer 
cells [21]. For example, the secretion of oncotargets such as 
vascular endothelial growth factor (VEGF) and glutathione 
peroxidases has been exploited for targeted delivery of anti-
cancer drugs to inhibit cancer cell growth and modulate 
metastasis [22, 23]. Genomics, proteomics, and bioinfor-
matics are effective tools to identify specific cancer inhibit-
ing molecular targets [24, 25]. Moreover, MD simulations 
offer opportunities to structurally design novel ligands and 
optimize binding affinity for specific oncotargets binding. 
This article discusses the development of ligand-oncotarget 
bioaffinity systems via integrated structural modeling and 
MD simulations, making use of proteomics, genomic, and 
X-ray crystallographic resources, to catalyze targeted cancer 
therapy.

Table 1   (continued)

Type of cancer Characteristics Estimated 
mortality in 
2019

References

Prostate 1. Prostate cancer forms when prostate cells multiply uncontrol-
lably in growth due to genetic mutation

2. Without proper diagnosis and treatment, prostate cancer can 
metastasize to other body regions such as the surrounding 
seminal vesicles and lymph nodes

31,620 [32]

Leukemia 1. Leukemia is a blood-related malignancy which comes from 
immature leukocytes such as myeloid and lymphoid. These 
abnormal blood cells grow rapidly and outnumber healthy 
blood cells due to genetic alterations and chromosomal abnor-
malities in lymphoid precursor cells

2. There are four types of leukemia depending on the malignant 
site (lymphoid or myeloid cells) and disease period. These are 
acute, chronic, lymphocytic and myelogenous

22,840 [33]

Lymphoma 1. Lymphomas include blood cancers originated from lympho-
cytes or cancer of the lymphatic system. There are two main 
types lymphoma; Hodgkin’s and non-Hodgkin’s lymphoma. 
Hodgkin’s lymphoma is caused by malignant mature B cells 
whilst non-Hodgkin’s lymphoma is caused by either B or T 
cells

20,970 [34]

Brain and nervous system (e.g., brain carcinoma) 1. Brain cancers originate from the central nervous system and 
remain as the primary malignant brain tumor

2. Malignant brain tumors can be categorized as either primary 
or secondary. Primary brain tumors originate from the brain 
and rarely invade to other body parts. Secondary brain tumors 
originate from other tumor cells, metastasizing from another 
body parts to the brain and surrounding nerve tissues

17,760 [35]
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Oncotargets for Different Cancer Types

The efficacy and specificity of cancer diagnosis and treat-
ment since the disease occurs at the cellular or tissue level 
[36, 37]. For example, chronic blood cancer is a common 
tumor disease among the elderly and it is attributed to the 
switching or reciprocal translocation of genetic materi-
als between chromosomes 9 and 22. There is a biomarker 
known as ph1, expressed by 95% of chronic blood cancer 
patients and synthesized from the combination of the gene 
Bcr and oncogene Abl as an activated protein kinase [38], 
which is effective for diagnosis. By targeting and inhibit-
ing the ph1 biomarker, the balance of cell proliferation and 
apoptosis is interrupted, and this facilitates the inhibition 
of tumor growth.

Several studies [39–41] have reported the potential of 
hypermethylated promoters as novel biomarkers for all 
human cancer diagnosis, prognosis, and therapy owing to 
their presence in specific CpG regions that affect cancer 
induction. CpG promoter is an ideal biomarker as it influ-
ences all cellular pathways with a cancer-type specific 
profile and it is associated with genes such as tumor sup-
pressor, microRNAs, and DNA repair genes with growth 
inhibitory effects [41]. The CpG islands of the CpG pro-
moter of these genes hypermethylate if the cell is undergo-
ing transformation, suggesting its suitability as a cancer 
biomarker.

A recent study by Whitwell et al. [42] has revealed the 
use of longitudinal multi-biomarker models to enhance 
the early diagnosis of ovarian cancer. The findings dem-
onstrated the high sensitivity, 85.7%, and high specificity, 
95.4%, of this model, which comprises of various over-
expressed biomarkers, including CA125, HE4, CHI3L1, 
PEBP4, and/or AGR2 to target ovarian carcinoma. This 
provided a better detection of ovarian carcinoma at early-
stage disease screening as compared to the conventional 
test that uses serum cancer antigen 125 (CA125) alone. 
The novel longitudinal model is capable of detecting cases 
of ovarian cancer, which were undiagnosable using CA125 
test alone, showing its enhanced detection lead times and 
performance up to 1 year prior to clinical diagnosis. It was 
also demonstrated in another study [43] that combined 
biomarkers (both cancer CA125 and immune interleukin 7, 
IL-7 biomarkers) can perform better in the early detection 
of ovarian cancer with improved cancer detection times 
as shown in Fig. 1.

Bladder cancer is one of the most common cancers 
globally with high recurrence rates and, therefore, 
requires an effective biomarker for targeted treatment 
of malignant bladder tumor. It has been demonstrated 
that the competitive glucose metabolism can serve as a 

specific target to kill tumor cells in addition to improving 
the immune system, especially the therapeutic efficacy 
of the immune checkpoint inhibitors (ICIs) in the case of 
metastatic bladder cancer [44]. This is attributed to the 
presence of overlapping metabolic phenotypes between 
the activated immune T cells and cancer cells, which 
leads to the metabolic competition that impacts immune 
performance. By targeting the glucose metabolism in 
tumor cells, especially bladder tumor cells, glycolysis-
linked receptors can be effectively targeted and destroyed 
by various inhibitors of glucose metabolism [44]. This is 
probably due to the implication of both glycolytic signal-
ing pathways and metabolites in the bladder tumor, offer-
ing abundant putative therapeutic targets for the antican-
cer strategy.

Different cancer cells overexpress their own unique bio-
markers which are distinct from other cancer types due 
to varying genetic compositions. For example, the epi-
dermal growth factor receptor (EGFR)/ERBB2 kinase is 
associated with breast carcinoma [45]; vascular epidermal 
growth factor receptor (VEGFR) kinase for renal carci-
noma [46]; EGFR kinase and protein kinase ALK surface 
receptors are for non-small cell lung carcinoma (NSCLC) 
[47]; and BRAF kinase from melanoma [48]. Some other 
reported specific biomarkers or extracellular surface recep-
tors of different tumor cells are provided in Table 2. The 
presence of these surface biomarkers helps increase the 
targeting specificity for diagnosis as well as boost drug 
therapeutic indices by distinguishing between healthy and 
malignant cells for enhanced targeted treatment strategies.

Fig. 1   Schematics of interactions between immune effector and tumor 
cells. Reproduced with permission from [43], under the terms of the 
Creative Commons Attribution 4.0 International License
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Advanced Methods of Oncotarget Discovery

With advancements in both molecular and bioinformatics 
techniques, more gene data can be rapidly generated to probe 
genetic disorders, particularly the role of mutated genes in 
specific cancer cell formation and growth. This is crucial to 
identify novel tumor biomarkers for early cancer diagnosis 
and to deliver appropriate therapies. There are other compu-
tational approaches such as ligand–protein docking used to 
generate novel ligands for specific target binding as well as 
analysis of the binding characteristics to develop promising 
drug candidates for targeted delivery. Conventional meth-
ods often require pre-existing information about the protein 
sequences and structures and this creates significant chal-
lenges due to the similarities among protein structures [59]. 
Therefore, advanced technologies in detecting gene tran-
script diversity and the impact of individual protein isoforms 
of drug effects are important in the design and development 
of targeted therapies. Thomas et al. [60] described the effi-
cacy of high-throughput genotyping in querying 238 known 
oncogenes via a powerful mutation distribution spanning 17 
types of cancer across a thousand of human tumor samples. 
The findings indicated a new advancement in tumor genetics 
whereby multiple mutations associated with various tumor 
genes can be interrogated simultaneously on a large-scale 
mutation profiling in a ‘real-time’ scenario to detect previ-
ously unknown oncogene mutations as well as formulating 
cancer classification and cancer therapeutic interventions.

Intratumor heterogeneity plays a vital role in the dis-
covery of cancer biomarkers and clinical treatments, espe-
cially for targeted therapies. Intra-tumor heterogeneity is 
described as solid tumors consisting of cells with distinct 
genomic alterations within the same tumor. With the 
advent of sequencing technologies such as next-genera-
tion sequencing (NGS) technique, certain features of intra-
tumor heterogeneity have been used in routine pathologic 
evaluation to optimize therapeutic outcomes and patient 
care. For instance, Ding et al. [61] have sequenced the pri-
mary tumor and relapse genomes of several patients with 
acute myeloid leukemia and illustrated that the presence of 
a founding clone in the primary tumor has evolved in the 

relapsed tumor. By identifying the distinct genomic archi-
tectures and tumor evolution within multiple patients at 
different cancer stages (from primary to metastatic tumor 
and during therapy), it is possible to tackle the mecha-
nism of tumor recurrence for a better targeted therapy [36]. 
Also, a more tractable method and robust biomarkers such 
as the ‘actionable mutations’ which are ubiquitous and 
dominant driver events in all cancer sites can be developed 
for therapeutic targeting applications, based on the trunk-
branch model [62]. This is useful, particularly for tumors 
with lesser branched events.

‘Cell competition’ has been reported to have strength in 
triggering cancer cell killing and it can possibly be modi-
fied to develop novel anticancer treatments with tumor-
suppressive behaviors [63]. Cell competition is a type of 
cell-to-cell communication whereby competent cells are 
capable of eliminating neighboring cells within the micro-
environment in order to survive, expand, colonize, and grow 
into targeted tissues. Many reported studies have demon-
strated that gene mutation in cell signaling, cell growth, 
and endocytosis can induce cell competition whereby wild-
type cells behave as winners against mutant cells to prevent 
tumor growth [64–66]. Cell competition occurs via several 
mechanisms, including mechanical interactions and molecu-
lar exchange. Mechanical interaction is utilized to remove 
cells with a higher crowding sensitivity due to enhanced 
p53 activation and subsequent apoptosis [67, 68]. On the 
other hand, molecular exchange is based on the capability 
of cells in capturing and sequestering growth factors such 
as Wnt ligands [69] or TGFβ [70], in order to activate the 
death-triggering pathways in cells receiving lower signals. 
Studies by Rhiner, Lopez-Gay, Soldini, Casas-Tinto, Martin, 
Lombardia, and Moreno [71] and Madan, Pelham, Nagane, 
Parker, Canas-Marques, Fazio, Shaik, Yuan, Henriques, 
Galzerano, Yamashita, Pinto, Palma, Camacho, Vieira, Sol-
dini, Nakshatri, Post, Rhiner, Yamashita, Accardi, Hansen, 
Carvalho, Beltran, Kuppusamy, Gogna, and Moreno [72] 
showed a correlation between the Flower isoforms expres-
sion in Drosophila and the human cancer progression by 
investigating the human Flower protein expression and 
mouse cancer models. This further supports the promising 

Table 2   Examples of some overexpressed biomarkers of various cancer cells

Targeted biomarker Type of cancer cells References

Protein tyrosine kinase 7 (PTK 7) Colon, lung, esophageal, and gastric carcinoma [49, 50]
Prostate specific membrane antigen (PSMA) Kidney and prostate carcinoma [51, 52]
Nucleolin Breast, lung and gastric carcinoma; leukemia; melanomas [53, 54]
Epithelial cell adhesion molecule (EpCAM) Breast, ovarian, pancreas, hepatocellular, and bladder carcinoma [55, 56]
T cell immunoreceptor with Ig and ITIM domains 

(TIGIT)
Melanoma, acute myeloid leukemia, glioblastoma [57]

NK cell frequency Colorectal and prostate cancer, and melanoma [58]
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potential of cell competition as a target to develop novel 
anticancer approaches.

In addition, a network-based method is emerging due 
to its effectiveness in discovering cancer drug target at the 
isoform level as shown in Fig. 2. Ma et al. [73] reported 
credible detection of target genes at the isoform level by 
integrating the isoform co-expression (IIC) networks with 
perturbed genes. This cancer-type-specific IIC network was 
built according to the isoform expression data integrated 
from both gCSI and CCLE datasets. Perturbed isoforms of 
target genes were selected based on the response of the cor-
responding genes to the applied drug. Further examinations 
via docking tests and comparison of proteomics data and 
expression status were carried out to determine the major 
protein isoform drug targets. This method is able to discover 
targets for cancer drugs as well as improve the drug targeting 
capability. The study also illustrated that major isoforms of 
targets can be identified to study the mechanism of action 
of the drug. Besides that, tumor classifications based on the 
evolution of different tumors using evolutionary index (Evo-
index) and ecological index (Eco-index) provide promising 
implications in cancer target discovery [74].

Furthermore, mathematical modeling is often employed 
together with computational methods to investigate the spe-
cific targets of different cancer cells. These methods can be 
used to study the biological mechanisms and interactions 
between tumor cells and complex immune systems as well 
as the effects on tumor cell biomarker expression [76–78]. 
As a result, numerous stochastic biomarker-network mod-
els have been developed and reported for the diagnosis of 
diverse cancer cells [79–81]. These networks are built up 
of a library of cancer-associated proteins and other protein 
types and are exploited to determine the most specific targets 
or biomarkers for cancer detection.

Multi-region exome sequencing (Mseq) is another prom-
ising approach used to examine therapeutic targets by study-
ing the cancer evolution based on multiple mutational pro-
files of spatially different regions of a tumor. Loga et al. [82] 

reported the application of MSeq in identifying the extreme 
intra-tumor heterogeneity and evolution of mismatch repair 
deficiency (dMMR) gastro-oesophageal cancer. The evolu-
tion analysis and MSeq data revealed the promising potential 
of MSeq in the discovery of biomarkers for highly heterog-
enous cancers. MSeq is capable of estimating the truncal 
mutation loads more accurately and robustly to prevent sam-
pling biases and illusion of clonality of driver mutations in 
order to develop effective immunotherapy biomarkers such 
as ‘mutation burden’ [82]. In short, advanced technologies 
in understanding the cellular and genetic characteristics of 
biological systems are a promising development in detecting 
powerful tumor biomarkers or therapeutic targets to boost 
the cancer target discovery, diagnosis, and therapy.

Role of Genomics, Proteomics, 
and Bioinformatics

The central theme of cancer medicine is prevention, detec-
tion, and treatment; and for these goals to be achieved, a 
clear understanding of the genomic and proteomic influ-
ences at the molecular level is critical. Such a knowledge 
is required to develop solutions in the treatment of cancer, 
especially in the areas of early detection and personal medi-
cine [83, 84]. Oncotargets are an essential part of this under-
standing and genomics play a crucial role in their discov-
ery, to revolutionize biomedical research with the promise 
of early diagnosis of cancer, identification of cancer risk, 
selection of required treatment therapy, and the detection 
of relapse as shown in Fig. 3 [85]. Two major categories of 
genomic oncotargets are prevalent: DNA and RNA biomark-
ers. DNA biomarkers include the measurement of serum 
DNA [sDNA] concentrations as an indication of the pres-
ence of cancer, and this can be used in the process of staging 
during detection and treatment of cancer. Researchers have 
demonstrated the feasibility of using serum DNA concentra-
tions as biomarkers for cancer detection. A study conducted 

Fig. 2   Network-based method 
for the identification of cancer 
biomarkers. Reproduced with 
permission from ©Yang et al. 
[75], under the Creative Com-
mons Attribution License.
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by Gal et al. [86] showed a four-fold difference in the median 
levels of circulating sDNA between breast cancer patients 
and healthy controls (medians of 221 and 63 ngml−1, respec-
tively) using a real-time polymerase chain reaction (PCR) 
quantitative method [86]. The researchers found that 72% of 
patients with breast cancer (69 out of 96) had DNA concen-
trations of more than 100 ngml−1, while only 12.5% of the 
control group had the same amount of sDNA concentration 
(3 out of 24). Again, using a receptor operating characteris-
tic (ROC) curve analysis, the researchers demonstrated that 
there was a strong relationship between the DNA concen-
tration and malignancy by observing an area of 0.92 under 
the ROC curve. Another group of researchers, Sozzi and 
coworkers, performed a similar experiment in lung cancer 
patients and discovered a similar correlation of circulating 
plasma DNA and cancer by using a ROC curve [87]. They 
obtained their results by comparing plasma DNA extracted 
from 84 patients with radically resected primary non-small 
cell lung cancer (NSCLC) (stages I–III) and that of 43 
healthy blood donors as control.

Apart from circulating DNA in plasma/serum being used 
as biomarkers, mutations in oncogenes, tumor suppressor 
genes, and mismatch repair genes can also serve as DNA 
biomarkers [85]. This is made possible by the discovery of 
the HRAS gene, a gene that causes a glycine-to-valine muta-
tion at codon 12, and subsequent identification of similar 
mutations in the family members of the KRAS and NRAS 
genes. Other genomic biomarkers have also been discov-
ered. The RAS family encodes small proteins with enzy-
matic GTPase activities that couple external growth signals 
governing cell proliferation, and thus, a mutation in the RAS 
gene encodes a protein with normal guanosine triphosphate 

(GTP] binding, but no GTPase activity, causing the result-
ing RAS protein to be activated all the time as seen, leading 
to unregulated cell division [84, 88]. It is worth noting that 
the gain-of-function mutations of the RAS oncogene occur 
in approximately 30% of all human cancers and its isoform. 
The KRAS gene is the most studied and most frequently 
mutated oncogene and constitutes 86% of RAS mutations 
[89]. Recent studies have shown strong indications that the 
KRAS gene (as a cancer biomarker) and its expressed KRAS 
protein are potential targets for drug discovery and develop-
ment for KRAS-targeted therapies [90]. Mutations can also 
occur in the tumor suppressor genes of cell to result in can-
cer. The detection of this defect can serve as an oncotarget. 
The pRb, p53, and p21 genes that make up the family of 
tumor suppressor genes encode proteins that restrain cell 
division. A defect in the RB1 gene (the gene that encodes 
pRb), for example, causes retinoblastoma in children and 
results in blindness if not removed.

RNA biomarkers have also gained traction in recent times, 
especially in the discovery of the functional and expression 
roles of piwiRNA (piRNA), messenger RNA (mRNA), small 
nucleolar RNA (snoRNA), long non-coding RNAs (lncR-
NAs), circular RNA (circRNA), and microRNAs (miRNAs), 
that can regulate gene expression by various mechanisms 
thus presenting a great potential for the development of diag-
nosis and therapeutic measures for several types of cancers 
[91–93]. For instance, miRNA in particular has been demon-
strated as a biomarker for cancer, either causing malignancy 
in certain types of cancer or acting as a tumor suppressor in 
others. A study conducted by Akao et al. [94] found a signifi-
cantly reduced expression of miRNA-143 and miRNA-145 
in colon cancer cells and that by transfecting each precursor 

Fig. 3   Pipeline for the valida-
tion and discovery of biomarker 
candidates for disease diagnosis. 
Reproduced with permission 
from [85], ©Elsevier, 2008
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miRNA into the cells, a notable growth inhibition of human 
colon cancer DLD-1 and SW480 cells was observed, indi-
cating that the miRNA-145 acts as a tumor suppressor [94]. 
Furthermore, another supporting study published by Link 
et al. [95] found that miR-21 expression was higher in stool 
samples from patients with colorectal neoplasia than those 
with normal colonoscopies, demonstrating the use of miR-21 
as an oncotarget [95]. These studies demonstrate the great 
role that genomics play or will play in the future of can-
cer classification, early detection, prognosis prediction, and 
therapeutic decision-making.

Cancer detection, diagnosis, treatment, monitoring, and 
prognosis have been bolstered by protein biomarkers under 
the broad area of proteomics. The underlying theme of onco-
logical proteomics relates to understanding distinct changes 
that occur during neoplasm and the available technologies 
for probing these changes. The prospects of this can be seen 
with the many approvals obtained from the US Food and 
Drugs Administration for the use of single proteins as can-
cer biomarkers. For instance, the human epidermal growth 
factor receptor-2 HER2/NEU, EGFR, and KIT are used 
clinically to determine whether or not breast cancers, colon 
cancers, or gastrointestinal stromal tumors would respond 
to trastuzumab, cetuximab, or imatinib, respectively, as 
membrane protein-targeting drugs. Similarly, breast cancer 
cells that are ER positive or PR positive inform clinicians 
which hormonal therapy will be more effective for treat-
ment [83, 96, 97]. Identification of protein biomarkers is 
done by techniques and assays including differential in-gel 
electrophoresis (DIGE), two-dimensional polyacrylamide 
gel electrophoresis (2D-PAGE), multi-dimensional protein 
identification technology (MudPIT), reverse phase micro 
arrays, mass spectrometry, and field effect transistors (FET) 
that are coupled with molecular probes. FET is a promising 
technique as it increases protein marker sensitivity to several 
orders of magnitude [83]. FET-based protein detection, for 
example, has been demonstrated by Ohno et al. [98] where 
they immobilized immunoglobulin E (IgE] aptamers onto a 
graphene surface FET and showed selective electrical detec-
tion of IgE protein [98]. Such a technique will play a huge 
role toward rapid detection of protein oncotargets.

Bioinformatic tools are essential to process and extract 
meaningful information from the large proteomic and 
genomic data. It is particularly useful for the discovery of 
sensitive and specific biomarkers in cancer research [96]. 
The importance of bioinformatics in understanding bio-
logical macromolecules and their relation to the activity of 
diseases, especially cancer, cannot be underrated. Public 
genomic datasets like GEO (https​://www.ncbi.nlm.nih.gov/
geo/) provide large micro-array data of complementary DNA 
that has been used by researcher to discover new biomarker 
for diseases. For instance, micro-array datasets GSE19665, 
GSE33006, and GSE41804 from GEO databases were used 

by Li et al. [99] together with the open source bioinformatics 
tools STRING and Cytoscape to identify a total of 273 defer-
entially expressed genes (DEGs) and 16 hub genes involved 
in the carcinogenesis of hepatocellular carcinoma (HCC) 
and have been used as potential biomarkers for diagnosis 
and treatment [99]. Finally, apart from proteomics, which is 
well researched in the development of cancer drugs targeting 
expressed proteins, genomics research and applications in 
cancer therapy has a number of key challenges, both scien-
tific and non-scientific, that have to be addressed in order to 
fully exploit the knowledge of cancer genomics to develop 
targeted therapeutics and informative biomarkers. The chal-
lenges mostly relate to logistical and regulatory issues asso-
ciated with data acquisition and privacy as well as scientific 
challenges, such as the incorporation of early preneoplastic 
or intra-tumoral heterogeneity. The genomic data sharing 
policy of the National Institute of Health (NIH), for example, 
requires that publishers only make genomic data available 
after a period of time post publication or after an embargo 
period has been expended [84]. These policies, particularly, 
become bottlenecks in fields, including pediatric cancer 
research, that deal with rare tumor types and require a quick 
flow of available data to increase understanding of the dis-
ease characteristics and create new and improved theranostic 
strategies. Furthermore, it has been shown in recent times 
that genomic data can raise serious privacy concerns among 
individuals [100–102].

Role of Molecular Dynamics Simulation 
and Experimental Validation

Molecular dynamics (MD) simulations are well-established 
techniques for investigating the time-resolved motions of 
biological macromolecules at the atomic level. It provides 
information about the characteristics, stability, and bind-
ing features through fluctuations in the relative positions of 
atoms in protein and DNA macromolecules as a function 
of time [103, 104]. An understanding of these molecular 
motions is important in the area of drug discovery and pro-
vides the foundation for experimental validations, helping 
to refine experimentally determined structures of macromol-
ecules (for instance, biomarkers) and performing conforma-
tional analysis and protein homology modeling as well as 
docking of biomolecular complexes.

MD simulations initially start with an understanding of 
the biological system followed by the acquisition of struc-
tural information from X-ray crystallographic or nuclear 
magnetic resonance (NMR) spectroscopy. This structural 
information contains all the possible atoms and their initial 
spatial coordinates. Publicly available databases such as 
the protein databank (RCSB PDB—with about 159,230 
submitted structures as of January 2020), which collect 
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structures from X-ray crystallography and NMR spectros-
copy, are the usual sources for such initial structures [105, 
106]. The availability of these structures plays a major 
role in the modeling of numerous oncotargets, existing 
ligands, or druggable molecules. Force fields are used to 
calculate the accelerations of atoms, new coordinates, and 
velocities at each time-step of the simulation using spe-
cial software, such as NAMD [107], CHARMM [108], 
AMBER [109], and GROMACS [110]. Rampogu et al. 
[111] applied molecular docking and molecular dynamics 
techniques to obtain a potential ligand that can repress 
cancer angiogenesis and growth [111]. The study demon-
strated the role of MD simulations in predicting the behav-
ior of macromolecules under various conditions in silico. 
We have recently proposed that aptamers can be a potential 
oncotargeting molecular probe for targeted inhibition of 
specific cancer cells [112]. The article also recommended 
that MD simulations can play a significant role in design-
ing aptamers as probes to specifically target cancer cells 
for improved treatment and reduced side-effect to the 
normal healthy cells. Danquah et al. [113] proposed an 
integrated structural MD simulation approach to design 
RNA and DNA aptamers for targeting the outer membrane 
domain of CD19 protein as a biomarker for acute lympho-
blastic leukemia [113]. Several other applications of MD 
simulations have been demonstrated by researchers. For 
instance, Kumar et al. [114] used MD simulations to detect 
the phenotypic characteristics of Single Nucleotide Poly-
morphism. The authors used a long time scale simulation 
of 200 ns to study the stability of a mutated Aurora-kinase 
protein and demonstrated the atomic alterations relating 
to the mutant protein in comparison with the native form 
using several assessment techniques including RMSD 
and RMSF that show unique structural conformations and 
adaptations associated with the expression of cancer. MD 
simulations have been used to refine top hit molecularly 
docked protein–protein or protein–ligand complexes in 
cancer research. Weako et al. [115] successfully exam-
ined the stability and efficacy of the unbound form of 
MetAP2 (an isoform of Methionine Aminopeptidases 
that is upregulated in various cancers), its complexes with 
fumagillin, spiroepoxytriazole, and the two best promis-
ing compounds (N-(4-[2-(2,5-Dimethylbenzyl)-1-pyrro-
lidinyl]sulfonyl phenyl and 1-(4-Benzyl-1-piperazinyl)-
2-[3-(2-methylphenyl)-1,2,4-oxadiazol-5-yl] ethanone) 
obtained from molecular docking with compounds from 
the non-academic version of the OTAVA Chemical Library 
(https​://www.otava​chemi​cals.com). Further, Reddy et al. 
[116] also used MD simulation to explore the stability of 
gefitnib (a highly effective kinase inhibitor) and its deriv-
ative with Epidermal Growth Factor Receptor (EGFR) 
after docking in AutoVina [117] and found the best pro-
tein–ligand hits based on the highest binding affinity. MD 

simulations are a highly beneficial tool in drug discovery 
processes for identifying novel drugs for the treatment of 
non-small cell lung cancer.

However, it should be noted that computational simu-
lations do not displace experimental methods as both are 
relevant to realize the full potential of MD simulations in 
the discovery of cancer oncotargets. Techniques such as 
surface plasmon resonance (SPR] analysis and circular 
dichroism spectroscopy are well suited to probe target bind-
ing relationships and thus serve as indispensable tools to 
verify computational results [118]. For instance, Suenaga 
et al. [119] used SPR analysis to verify the binding free 
energies of the interaction between the SH2 domain of the 
growth factor receptor-binding protein 2 (Grb2) and ErbB 
receptor-derived phosphotyrosyl peptides after performing 
MD simulations in Amber [120]. The comparative analysis 
indicated that the computationally estimated binding free 
energies were larger than that of the experimental data; how-
ever, both were highly consistent. Further analysis indicated 
that the dipartites in the data were as a result of the short 
simulation timescale of 1 ns and hence can be resolved by 
performing MD simulations at a higher timescale. Further-
more, Amiri et al. [121] also used various spectroscopic and 
electrochemical methods in addition to MD simulations to 
investigate the interaction between three oxovanadium (IV) 
Schiff base complexes (anticancer drugs) with bovine serum 
albumin (BSA). Experimentally, the authors used UV–vis-
ible absorption spectroscopy, fluorescence quenching, and 
circular dichroism to study the molecular interaction of the 
complexes and compared it to the computational data. They 
observed a good agreement between the experimental and 
computational results.

Latest Trends in Targeted Cancer Treatments

Currently, there are a significant number of cancer treat-
ment technologies that are under extensive preclinical 
research or in transition states to clinical studies. Nano-
medicines and genetic modification methods are widely 
employed in lab-based research that targets cancer cells 
and inhibits their growth. Rao et al. [122] reported that 
nanosized hyaluronic acid can be a potential therapeutic 
agent carrier for targeted tumor treatment. The efficient 
receptor-binding features and the biodegradable and bio-
compatible properties of hyaluronic acid conjugates make 
them effective carriers for controlling delivery of drug to 
target cancer cells. For example, biodegradable hyalu-
ronic acid conjugates have been demonstrated to possess 
the ability to deliver small interfering ribonucleic acid to 
targeted cancer cells for treatment [122]. Plant indole-
3-acetic acid (IAA) hormone activated horseradish per-
oxidase (HRP) enzymes are used for in vitro anticancer 
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agents. However, utilizing these enzymes in direct prodrug 
therapy has led to adverse effects in animal models. The 
plant enzymes are noticed to contain isoenzyme mixtures 
with a heterogeneous pattern of glycosylation that are not 
compatible with human systems. Bonifert et al. [123]. 
demonstrated that the recombinant variants of HRP can be 
a potential anticancer drug for targeted treatment of cancer 
complications. Two HRP isoenzymes C1A and A2A were 
recombinantly produced in Pichia pastoris strain after 
α‐1, 6‐mannosyltransferase (OCH1) was knocked out to 
limit hypermannosylation, producing a glycol-engineered 
strain. The results revealed that the recombinant isoen-
zyme HRP C1A is a promising targeted cancer treatment 
agent [123]. Dong et al. [124] showed that hydrophobic 
metal–organic framework can be a significant nanoplat-
form for targeted delivery of anticancer drugs. The authors 
introduced a novel strategy to fabricate camptothecin@
zeolitic imidazolate framework-8 that is modified with 
Arginine-glycine-aspartic acid (RGD) as a hydrophobic 
nanoplatform-based drug delivery system. The results 
showed that the metal–organic nanoplatform framework 
possesses an excellent pH-mediated controlled and tar-
geted delivery properties and improves the intracellular 
generation of reactive oxygen species (ROS) to inhibit 
cancer growth [124]. Gavande et al. (2016) discussed the 
potential of DNA repair targeted therapy as a next-genera-
tion cancer treatment method. It is worthy to note that can-
cer cells have the ability to repair DNA damages that are 
induced by therapies, affecting the efficacy of treatment 
modalities. Thus, the development of anticancer agents 
to target pathways of DNA and protein repair is useful for 
targeted and efficient cancer treatment compared to con-
ventional chemotherapy [125]. Wang and Mooney [126] 
recently described biomaterial-assisted immune cell mod-
ulation as a potential targeted cancer treatment method. 
They reported that dendritic cells, tumor-associated mac-
rophages, B cells, T cells, myeloid-derived suppressor 
cells and natural killer cells can be targeted and modulated 
using immuno-materials as a cell-targeted immunomodu-
lated treatment strategy. These biomaterial-based targeted 
cancer treatment method can address several existing treat-
ment limitations, including side effects and reduced patient 
response and are a promising replacement for chimeric 
antigen receptor-T cell therapy and immune checkpoint 
blockade therapy [126]. Even though, nanomedicines and 
genetic modification methods are proposed to be promis-
ing, there are some limitations. The lack of risk assessment 
procedures, and in vivo studies showing alterations in the 
anticancer ability and potential toxicity-based side effects 
are some of the challenges hindering the transition of these 
treatment approaches [127, 128]. The combinations of the 
latest, a novel and advanced aptamers and CRISPR tech-
nologies along with pre-existing methods may improve the 

cancer targeting ability and address some of the existing 
limitations.

There are various novel oncotargets and methods that are 
under preclinical and clinical trial to demonstrate efficacy for 
targeted cancer treatment applications. Vassilev et al. [129] 
validated the toxicity and biodistribution of chimeric onco-
lytic adenovirus named ONCOS-102 to obtain a regulatory 
approval for Phase I clinical studies. The toxicology and 
biodistribution profile were evaluated using 300 hamsters 
and revealed no adverse effects on body weight, hematol-
ogy, food consumption, histopathology, clinical chemistry 
parameters and bio-accumulation even after repeated admin-
istration of ONCOS. The study confirmed that ONCOS-102 
is highly safe with enhanced double targeting and granu-
locyte–macrophage colony-stimulating factor (GM-CSF) 
expressing property for advanced NCT01598129 cancer-
type therapy [129]. Massacesi et  al. [130] showed that 
phosphoinositide 3-kinase (PI3K) inhibitor, which inhibits 
the PI3K enzyme in PI3K/protein kinase B (Akt)/mTOR 
pathway, responsible for cell cycle regulation, can be a novel 
targeted anticancer agent. These inhibitors have been for-
mulated into pan-PI3K buparlisib inhibitor (BKM120) and 
PI3Kα-selective alpelisib inhibitor (BYL719) by Novartis 
Oncology as a superior anticancer agent [130]. The article 
reported some glitches in the clinical development of PI3K 
inhibitors and the challenges in overcoming target enrich-
ment and stratification based on the activation state of PI3K 
pathway [130]. Mirzaei et al. [131] discussed the potential of 
boron neutron capture therapy as an important targeted can-
cer treatment modality. This therapy is carried out by irra-
diating a stable boron-10 isotope with low thermal energy 
neutrons to obtain stripped nuclei of lithium-7 and helium-4, 
which eventually causes toxic reactions in cancer cells. The 
clinical and preclinical studies of this therapy showed effi-
cacy in curing head, neck, thyroid cancer, melanoma and 
brain tumors [131]. Furthermore, polyethylene glycol (PEG) 
formulated anticancer drugs named as PEGylated advanced 
drug delivery systems are also under clinical development 
for effective targeted cancer treatment. The retention time 
enhancement property of PEGylation protects therapeutic 
agents such as enzymes, liposomes, small molecular drugs, 
proteins and nanoparticles from degradation in biologi-
cal fluids. Additionally, PEGylation is proven to alter the 
pharmacokinetics of anticancer drug to enable adjustment 
to target site pathophysiological environment without any 
toxic reactions [132]. Li et al. [133] revealed via various 
cell and animal studies that combinations of the cancer stem 
cell targeting agents and chemotherapy are highly benefi-
cial targeted cancer treatments. These targeting agents, along 
with chemotherapy, possess the ability to block signaling 
pathways of self-renewal, reduce drug and ATP-binding cas-
sette transporter efflux expression, promote cancerous stem 
cell differentiation and modulate epigenetic aberrations. 



177Molecular Biotechnology (2021) 63:167–183	

1 3

Improvements in the pharmacokinetics, efficacy and safety 
of combinatorial therapy are the objectives of ongoing 
research in this area [133]. Belfiore et al. [134] discussed that 
ligand-functionalized liposomes can be used as a targeted 
cancer agent. It is noteworthy that ligand-directed liposomes 
can be engineered to possess active targeting ability toward 
cell receptors of the tumor cell surface, facilitating uptake of 
anticancer drugs into the tumor or tumor-associated stromal 
cells with enhanced selectivity [134]. However, translation 
from preclinical to clinical studies faces several hurdles, 
including cytotoxicity, ineffective characterization of active 
anticancer drugs, and the nonexistence of in vivo preclini-
cal tumor models to evaluate the performance of anticancer 
drugs.

In spite of various hurdles from lab to preclinical and 
clinical studies, there are few targeted cancer treatments 
and prevention methods that are currently available on the 
market. Cancer vaccines such as T cell vaccines (TPIV200) 
from Marker Therapeutics, Inc. are currently available on 
the market to prevent ovarian and breast cancers. This vac-
cine consists of five peptide antigens of folate receptor alpha 
(FRα), which is overexpressed in the surface of ovarian and 
triple-negative breast cancer cells [135]. Similarly, Panacea 
Pharmaceuticals and 3 M Drug Delivery Systems recently 
developed a cancer vaccine, which can prevent cancers via 
the hollow microstructure transdermal system. This micro-
structure system is proven to possess enhanced ability to 
deliver cancer vaccines into highly vascularized dermis 
with enhanced reproducibility of direct delivery [136]. Hill 
et al. [137] reported that imatinib, lapatinib, erlotinib and 
sorafenib are the four types of tyrosine kinase inhibitors 
available on the market for the targeted treatment of can-
cer. However, economic barriers affect the mass production 
of these drugs [137]. Moreover, antibody–drug conjugates 
such as Polatuzumab Vedotin-piiq, Brentuximab Vedotin, 
Ado-trastuzumab emtansine, Inotuzumab ozogamicin, and 
Gemtuzumab ozogamicin are approved by FDA and are 
available on the market for targeted inhibition of cancer cells 
[138]. Additionally, Herceptin® for targeting human epider-
mal growth factor receptor-2 protein for breast and stomach 
cancer treatment [139], Zelboraf® for targeting BRAF pro-
tein for metastatic melanoma treatment [140], and Gleevec® 
for targeting BCR-ABL protein for promoting leukemia cell 
growth [141] are anticancer drugs that are currently avail-
able on the market for effective targeted cancer treatment.

Future Outlook

It is speculated that the combination of genomic, proteomics, 
bioinformatics, and MD simulations, along with advance-
ments in the field of nanomedicine and genetic engineering, 
will be beneficial in developing the next-generation targeted 

treatment modalities for cancer [142]. Bioinformatic tools 
are currently used to probe the genomics as well as prot-
eomics of cancer patients and will be essential in designing 
and evaluating the molecular efficiency of patient-specific 
targeted treatment strategies. The combinatorial efforts of 
bioinformatics and MD simulations form a novel compu-
tational oncological field, which reduces the number of 
experiments and ease the optimization process via in silico 
approaches [143, 144]. The development in these computa-
tional oncological approaches has led to the emergence of 
machine learning methods to facilitate precise and controlled 
delivery of cancer drugs at the target site. Ding et al. [145] 
suggested that the combination of omics data and machine 
learning approaches can be useful in precision oncology to 
identify specific tumor-treating drugs and prescribe opti-
mal regimens for clinical treatment. They also reported 
that machine or deep learning approaches are beneficial 
in extracting genomic information and train classifiers to 
predict optimal cancer drugs for improved therapy [145]. 
Bibault et al. [146] recommended that big data and machine 
learning will be beneficial in combining electronic health 
record and genomic phenotypic profiles to generate high-
quality precision medicine in radiation oncology [146]. Sim-
ilarly, Majumder et al. [147] showed that machine learning 
methods can help in the chemical screening of cancer-cell-
specific lethality via a network of degrading specific protein 
target. In addition, they discussed that machine learning-
based computational chemical screening approaches are use-
ful in recognizing pathways of protein-targeted networks, the 
anticancer potency of specific compounds with enhanced 
cell-specific activity, and drug combinations for targeted 
inter- or intra-type heterogenous cancer treatment [147].

The introduction of nanotechnology-based approaches 
has shifted the conventional therapeutic approaches of can-
cer into the molecular and genetic level, targeting cancer 
cells without altering the metabolism of normal healthy 
cells. Nano-aptameric sensors have been developed for 
early and rapid diagnosis of cancer [148, 149]. Dehghani 
et al. [150] discussed the ability of aptamer-based biosen-
sors and nanosensors in monitoring vascular endothelial 
growth factor (VEGF) for the effective cancer diagnosis 
[150]. Further, Hao et al. [151] showed that aptameric gra-
phene-based nanosensors are beneficial for high-sensitivity 
detection of biomarkers of lung cancer with improved sta-
bility [151]. Liu et al. [152] revealed that multifunctional 
aptamer-based nanoparticles are highly potent for targeted 
delivery of cancer drugs against circumvent resistant can-
cer cells [152]. Ouyang et al. [153] recently demonstrated 
via in vitro and in vivo studies that DNA nanostructures 
with guidance control and warhead can be highly beneficial 
in the aptamer-mediated delivery of anticancer drugs into 
targeted cancer cells via precision-guided missile approach 
[153]. Thus, nanoparticles with aptamers that are designed 
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via computational approaches are proposed to a promising 
next-generation strategy for cancer theranostic applications.

In recent times, nanorobots are recommended for targeted 
cancer theranostic applications. Nanorobots designed with 
nanoparticles, anticancer drugs, and biosensors can detect 
cancer biomarkers released by specific cancer cells, navigate 
to the target cell, internalize, and release the drug payload 
to inhibit cancer cell growth [154]. Li et al. [155] reported a 
novel DNA nanorobot that can function as a self-assembled 
cancer treatment agent via in vivo molecular trigger. The 
nanorobots are fabricated using a DNA origami method 
with nucleolin-targeting DNA aptamer and thrombin pro-
tein for programmed delivery of the drug payload at the 
tumor-associated endothelial cells. The nanorobots can 
deliver the thrombin in tumor-affected blood vessels after 
intravenous administration to cause necrosis and inhibit 
tumor growth by inducing intravascular thrombosis. Fur-
ther, the nanorobots proved to be immunologically safe in 
mice and Bama miniature pigs, showing the efficacy of these 
nanosized molecular robots in targeted cancer therapy [58]. 
Iron-palladium-based mobile magnetic nanocatalysts [156], 
intelligent DNA nanorobot with enhanced protein lysosomal 
HER2 degradation [157], and magnetically actuated multi-
functional nanoplatforms [158] are the other nanorobots that 
are under extensive studies for targeted cancer cell inhibi-
tion. Correspondingly, multicompartmental nanoformula-
tions are introduced as a mechanism to encapsulate multiple 
anticancer drugs in a single platform for controlled release 
programs. Such a system may contain anticancer phyto-
chemicals, nanoparticles, nanosized conventional enzyme 
inhibitors and genes in a single polymer formulation such 
as dendrimers and coated with aptamers for programmed 
targeting and release of drug payloads [159–161]. This novel 
nanoformulation concept along with nanorobotics and nano-
medicine approaches can be a highly efficient, targeted can-
cer treatment opportunity to improve existing cancer treat-
ment methods.

Conclusion

Cancer continues to be a major life-threatening disease 
among humans. The complex process of identifying the 
type of cancer, delivering anticancer drugs to target cancer 
cells, avoiding toxicity toward healthy cells, and the prev-
alence of lateral cancer emergence are some of the chal-
lenges hindering complete eradication of the disease. The 
discovery and development of oncotarget-based drugs could 
offer promising opportunities that would catalyze the treat-
ment of cancer. Computational in silico techniques such as 
genomics, proteomics, and bioinformatics as well as MD 
simulation tools for probing ligand-target interactions play 
a key role in identifying and designing targeting strategies 

and smart cancer drug formulations and their interactions 
with cancer and tumor cells. Additionally, the combina-
tion of in silico methods with treatment methods such as 
chemotherapy, nanomedicine, or gene therapy would offer 
improved treatment modalities. However, challenges includ-
ing chronic toxicity to healthy cells and chances for cancer 
re-emergence via a minimal residual disease (MRD) must 
be addressed to create more promising oncotarget-mediated 
treatment approaches.
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