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Abstract
In this review, the basic concepts and applications of design of experiments (DoE) in recombinant protein biotechnology 
will be discussed. The production of recombinant proteins usually begins with the construction of an expression vector 
that is then introduced into a microbial host. The target protein is overexpressed in the host’s cells and subsequently, it is 
isolated using a suitable purification method, its activity is assessed using a biological assay, while its crystallization is 
often required. Because each protein is unique and due to the complex interactions among the reagents in experiments, it 
is impossible that one set of reaction conditions would be optimal for all cases. Optimization of experimental conditions is 
usually carried out by the inefficient one-factor-at-a-time approach that does not take into account the combined effects of 
factors on a process. On the other hand, DoE approaches with a carefully selected small set of experiments, and therefore 
with a reduced cost and in a limited amount of time predict the effect of each factor and the effects of their interactions on 
a process. Importantly, several software packages are available that facilitate the choice of the DoE approach, design of the 
experiments, and analysis of the results.
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Introduction

Recombinant proteins are widely used in diverse fields in 
laboratory and industry, while many applications require 
sufficient amounts of high-quality proteins in terms of 
purity and activity [1]. In addition, the use of therapeutic 
recombinant proteins (biopharmaceuticals) has significantly 
increased since the introduction of recombinant human 
insulin in 1982 [2]. Nowadays, biopharmaceuticals are 
also being used for the treatment of a variety of diseases 
including cancer and metabolic disorders [3]. Interestingly, 
approximately 50% of all new medicines are classified as 
biopharmaceuticals [4, 5] and according to the report Biop-
harmaceuticals Market by Type and Application: Global 
Opportunity Analysis and Industry Forecast, 2018–2025 
(https ://www.resea rchan dmark ets.com/resea rch/qh3vx r/
globa l?w=4), in 2017 the total marker of biopharmaceuticals 

has reached US$186,470 million, while it is estimated that 
it will exceed $500,000 million by 2025. In addition, there 
are over 400 marketed recombinant pharmaceutical products 
while more than 1300 are undergoing clinical trials [4, 6]. 
Recombinant proteins are also a prerequisite and vital com-
ponent of several drug design projects while crystallographic 
studies in these projects require hundreds of milligrams of 
purified protein samples [6, 7]. Therefore, the main goal of 
industrial and academic research laboratories is to produce 
high amounts of pure and functional proteins at a reasonable 
cost [8, 9].

Even though recombinant proteins can be expressed in 
both prokaryotic and eukaryotic systems [10, 11], Escheri-
chia coli is the first choice for the production of non-glyco-
sylated recombinant proteins at industrial scale due to its 
ability to easily replicate, low cost, simplicity, and Food 
and Drug Administration (FDA)-approved status for human 
applications [12, 13]. In addition, PCR-based cloning repre-
sents one of the most essential tools in recombinant protein 
production technology. Theoretically, using E. coli as an 
expression host and PCR as a cloning method, the produc-
tion of a recombinant protein is a straightforward process, 
i.e., the gene of interest (GOI) is cloned into an expression 
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plasmid vector and, subsequently, it is inserted into an 
expression host. Following the induction of protein expres-
sion in the host’s cells with the appropriate inducer (e.g., 
IPTG), the recombinant protein is purified and, subsequently, 
its biophysical properties and activity are determined [14]. 
Moreover, recombinant DNA synthesis techniques and tech-
nologies facilitate the synthesis of recombinant DNA. The 
construction of a recombinant plasmid requires only a ther-
mocycler, primers, and DNA polymerases and, therefore, 
any basic molecular biology laboratory can synthesize sev-
eral kilobase pairs of DNA in less than a week [15]. How-
ever, in practice several things may go wrong: low amounts 
of PCR product, insufficient ligation, formation of inclusion 
bodies, background proteins during purification, low activ-
ity or difficulties to obtain protein crystals [16]. In addition, 
protein stability and low purification yields are challenges 
that must be resolved when E. coli and other microbes are 
used as hosts to produce recombinant proteins [17]. There-
fore, the optimization of reaction conditions may be needed 
in one or more of the following processes that are used in 
recombinant protein biotechnology: (i) amplification of the 
GOI using PCR; (ii) ligation of the GOI with an expression 
plasmid vector; (iii) expression of the target protein in high 
amounts and in a soluble form; (iv) isolation of the target 
protein in a pure and active form; (v) assessment of protein 
activity; (vi) identification of conditions to obtain a single 
protein crystal.

The majority of methods that are used in recombinant 
protein biotechnology are developed and subsequently 
optimized using the time-consuming and inefficient one-
factor-at-the-time (OFAT) approach [18], which examines 
the effect of only one factor at a time. However, several bio-
chemical processes are affected by the interactions of the 
experimental variables (factors). The best approach to exam-
ine the effect of multiple factors, as well as the effect of their 
interactions on a process, is the statistical design of experi-
ments (or simply Design of Experiments—DoE) approach. 
DoE approaches have been successfully used in the devel-
opment, optimization, and assessment of the robustness 
of many biochemical processes [19], including those that 
are employed in recombinant protein biotechnology [20]. 
However, when browsing through the literature using the 
keywords “optimization” and “recombinant proteins” from 
2017 to 2019, I found that more 2000 papers have in their 
title the word “optimization” or “effect of,” while less than 
10% of them used statistical-based approaches to optimize a 
process. Interestingly, the process optimization in most cases 
was carried out using the OFAT approach.

The aim of this review is to discuss the potential applica-
tions of DoE approaches at every step of recombinant pro-
tein biotechnology, from the construction of an expression 
plasmid vector to crystallographic studies, and the recent 
progress in this growing field is discussed. Initially, the 

basic principles of DoE are presented. Then, the main fac-
tors affecting each step of recombinant protein production, 
purification, and characterization are discussed. This review 
focuses on the production of recombinant proteins specifi-
cally in E. coli that is one of the organisms of choice for the 
production of recombinant proteins including biopharma-
ceuticals. This will probably be the first review that exten-
sively examines the use of DoE in all steps of recombinant 
protein biotechnology from the construction of a plasmid 
vector to crystallographic studies.

Optimization of a Process

An essential question, to begin with, is What is the optimiza-
tion of a process? According to the English Oxford diction-
ary [21], optimization is the action or process of making 
the best of something or the action or process of rendering 
optimal; the state or condition of being optimal. Moreover, 
the online business dictionary (http://www.busin essdi ction 
ary.com) defines optimization as Finding an alternative with 
the most cost effective or highest achievable performance 
under the given constraints, by maximizing desired factors 
and minimizing undesired one. Thus, according to these defi-
nitions, in order to optimize a process in recombinant protein 
biotechnology the experimenter should (i) examine the effect 
of multiple factors (variables) on the response (e.g., protein 
expression in a soluble form, purity, activity), in order to 
exclude the unimportant ones and subsequently (ii) find the 
optimum combination of the important factors that maxi-
mize the response.

Optimization Approaches: One‑Factor‑at‑a‑Time 
Approach Versus Statistically Designed Experiments

The majority of methods that are used in recombinant pro-
tein technology are developed and optimized using the tra-
ditional OFAT approach [18]. However, using the OFAT 
design, the experimenter gets information about one factor 
in each experimental trial [22] and, therefore, this approach 
is time-consuming especially when a large number of fac-
tors must be evaluated. The main disadvantage of the OFAT 
approach is that it does not examine the effects of the inter-
actions among the experimental factors on a process, i.e., 
whether one factor influences the effect of another factor on 
a process (response). On the other hand, optimization stud-
ies can be conducted by varying several factors at the same 
time and examining both their effects and the effects of their 
interactions on a process (response) using statistical-based 
experimental approaches [23]. Overall, DoE is an organized 
approach that provides more reliable and useful information 
per experiment compared to the OFAT approach.

http://www.businessdictionary.com
http://www.businessdictionary.com
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Theory and Steps of Design of Experiments

DoE approaches are employed in both the early and late 
stages of bioprocess development [24]. DoE uses statistical 
experimental methods and varies the factors that affect a 
process simultaneously over a specific set of experiments. 
The results are subsequently analyzed using a mathematical 
model, which gives significant information about the effect 
of each factor and the effect of the interactions between fac-
tors on the process (response) facilitating optimization of the 
process [25]. The main advantage of DoE approaches is that 
they use only a minimum number of experiments to exam-
ine simultaneously the effect of many parameters on a pro-
cess, while biases are avoided [26]. Most importantly DoE 
is not only cheaper but it is also faster than OFAT because 
it provides optimized information content by using a small 
number of experiments [26, 27]. The theory and potential 
applications of DoE approaches are extensively described in 
many textbooks [28–30].

Several statistical software packages, such as Design-
Expert (Stat-Ease Inc, MN, USA), JMP (SAS Institute 
Inc., Cary, NC, USA), Minitab (Minitab Inc, PA, USA), 
and ECHIP (ECHIP Inc, DE, USA), are available that lead 
the user during the design of experiments and analysis of 
the results. It should be noted that these software pack-
ages require only basic knowledge of statistics, design of 
experiments principles, elementary optimization methods, 
and regression modeling techniques. In addition, these soft-
ware packages are able to develop mathematical models 
that demonstrate the relationships between factors and the 
response(s). In my laboratory, we routinely use Design-
Expert software (https ://www.state ase.com/softw are/desig 
n-exper t/) to design the experiments, analyze the data, and 
visualize the results. Design-Expert has been specifically 
developed for performing DoE and includes a variety of 
experimental designs including full factorial, fractional fac-
torial, Plackett–Burman design, Taguchi Orthogonal Array, 
several types of response surface methodology, mixture 

designs, combined designs, etc., while it contains test matri-
ces for testing up to 50 factors. The statistical significance 
of the test factors on the response is assessed using analysis 
of variance (ANOVA). The data are fitted on a mathemati-
cal model and graphical tools are employed to identify the 
impact of each factor on the response and reveal abnormali-
ties in the data. It should be pointed out that other software 
packages, such as Minitab (http://www.minit ab.com), JMP 
(https ://www.jmp.com), and ECHIP (http://www.exper iment 
ation bydes ign.com), contain the same/similar tools and fea-
tures as Design-Expert and the selection of a software pack-
age for DoE purposes is a matter of personal choice.

Usually, a bioprocess is affected by a large number of fac-
tors and, therefore, DoE is carried out in two stages. During 
the first stage (screening experiments), the factors that have 
a statistically significant effect on the process are identified 
using a factorial design (discussed below), in order to reduce 
the number of factors to a manageable one [25]. Once the 
important parameters are identified, an optimization step is 
performed using the response surface methodology (RSM) 
in order to identify the optimum combination of factors that 
maximize the response (discussed below). The exclusion of 
insignificant factors during the first stage reduces the number 
of experiments and helps in the reduction of experimental 
effort required in the second step [31].

Before beginning the discussion on the applications of 
DoE in recombinant protein biotechnology, it is essential to 
give a short description of the terms that are widely used in 
DoE and they are summarized in Table 1.

The specific steps taken to optimize a process are 
described in the following paragraphs.

Stage 1: Screening Experiments—Identification 
of Significant Factors

A fundamental question that should be answered is which is 
the most suitable experimental design for optimization stud-
ies? The answer is that the choice of experimental design 

Table 1  Vocabulary of DoE

Term Description

Experimental design The actual experimental plan composed of the different combinations of the variables (factors) to be tested
Variable (or factor) An independent factor that may affect a process (response) and can take different values in different experiments
Categorical variable A qualitative variable that is non-numerical. Categorical variables do not have a logical order, e.g., the growth 

medium is either Luria broth or Terrific broth
Continuous variable A numerical variable that its values are numbers, e.g., the pH ofa buffer is either 7.0 or 7.5, etc.
Level The numerical value of a continuous factor or the type of a categorical factor
Response The response or depended variable is the quantity to be measured in an experiment (e.g., enzyme activity) and it 

depends on the independent variables
Run An experiment composed of a specific combination of variables and levels to be tested
Full factorial design A full factorial design examines all possible combinations of factors and levels
Fractional factorial design A fractional factorial examines only a fraction, e.g., 1/2, 1/4 of the full factorial design

https://www.statease.com/software/design-expert/
https://www.statease.com/software/design-expert/
http://www.minitab.com
https://www.jmp.com
http://www.experimentationbydesign.com
http://www.experimentationbydesign.com
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is dependent on the number and the type (categorical or 
continuous) of factors that have to be evaluated as well as on 
the previous knowledge about the protein of interest [18]. 
Another important question that should also be answered 
is what factors should be tested? In general, the choice of 
initial factors and the range of their values should be based 
on either literature examples with the same or similar pro-
teins or previous experience expressing recombinant pro-
teins [18].

Factorial Designs

Usually to identify the variables (factors) that significantly 
affect a process (response), a 2-level factorial approach is 
employed. In general, 2-level approaches are those in which 
all factors have only two values (a high- and a low-value) 
and these approaches are often referred to as “screening or 
preliminary experiments.” A 2-level approach could be either 
full or fractional depending on whether all or a fraction of 
all possible combinations of factors are tested. A 2-level full 
factorial design (2k, k is the number of factors and k > 2) 
examines all the possible combinations of factors. In a 2-level 
fractional factorial design ( 2k−p

R
 fractional factorial, k is the 

number of factors, p indicates the size of the fraction of the  2k 
full factorial, and R is the resolution of the method) only the 
(1∕2)p fraction of the total number (2k) of the combinations 
is examined (e.g., the 2k−1 and 2k−2 designs require only the 
half and the one quarter, respectively, of the experiments). 
The resolution (R) of the method illustrates how clearly the 
effects can be separated in a design (the higher the better) and 
resolution IV designs are usually employed.

Two-level approaches are useful for highlighting the criti-
cal factors for further detailed study using RSM (discussed 
further below). An example of a 27−4

III
 fractional approach 

that is widely being used in screening experiments and 
that requires only 8 experiments (a  27 full factorial design 
requires 128 experiments) is illustrated in Table 2. Using a 
fractional factorial approach is also beneficial when a large 
number (> 4) of variables must be examined, and thus a  2k 
full factorial demands a high number of experiments and, 
therefore, a high cost [32]. The fraction of experiments to be 
carried out is defined by the aforementioned software pack-
ages based on the number and type of variables that need to 
be examined. More details about fractional factorial designs 
could be found in Ref. [33].

A variety of algorithms, such as Plackett–Burman [34] 
and Taguchi orthogonal array [35], are also available which 
guide the selection of the fraction to be tested. Plackett–Bur-
man design (PBD) is a small-sized two-level factorial exper-
imental design that is widely used to identify large main 
effects. PBD identifies the important effectors from N num-
ber of variables in N + 1 experiments (where N is a multi-
ple of 4) without recourse to the interaction effects between 

and among the variables. Thus, PBD just screens the design 
space to detect large main effects [36]. As the number of 
factors increases, full and fractional factorial approaches 
become impractical and expensive since a large number of 
experiments must be carried out. To overcome this prob-
lem, Taguchi introduced the orthogonal array, a specially 
designed method, to study the entire space of variables using 
a smaller number of experiments. Taguchi proposed to use 
signal-to-noise (S/N) ratio as a measurable value instead 
of standard deviation because, as the mean decreases, the 
standard deviation also decreases and vice versa [37]. How-
ever, Taguchi designs are more complicated and should only 
be used by experimenters who are familiar with the complex 
aliasing issues behind the designs.

Identification of Significant Factors

As aforementioned, an essential step in the optimization 
of a process is the identification of the factors that have a 
statistically significant effect on the response. For example, 
the statistical significance of the seven variables of Table 2, 
i.e., A, B, C, D, E, F, and G on a response can be initially 
evaluated using a half-normal probability plot (Fig. 1a). A 
half-normal probability plot is a plot of the absolute value of 
the effect estimated with respect to their cumulative normal 
probabilities [38] and unimportant factors are those that have 
near-zero effects (i.e., they have a normal distribution cen-
tered near zero; factors D, E, C in the example of Fig. 1a), 
while important factors are those whose effects are signifi-
cantly removed from zero, i.e., factors A, G, B, and F in the 
example of Fig. 1a.

The magnitude of the effect of each factor on the response 
is more clearly illustrated in a Pareto chart (Fig. 1b) which 
is a bar chart that rank-orders the effect of each factor by its 
magnitude. Pareto charts establish the t-value of the effect 
that is examined by two limit lines, i.e., the Bonferroni limit 

Table 2  Experimental matrix of 
a 27−4

III
 fractional factorial for 7 

variables studied at two levels

Factors’ levels “−” and “+” 
indicate the minimum and max-
imum possible value for each 
factor

Run Factor

A B C D E F G

1 − + − − + − +
2 + + + + + + +
3 + − − − − + +
4 − − + + − − +
5 + − + − + − −
6 − − − + + + −
7 + + − + − − −
8 − + + − − + −
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line (top line) and t-limit line (bottom line). Coefficients 
with a t-value of effect above the Bonferroni line are the sig-
nificant factors; coefficients with a t-value of effect between 
Bonferroni line and t-limit line are termed as “coefficients 
likely to be significant,” while coefficients with a t-value of 
effect below the t-limit line are statistically insignificant and 
should be excluded from the analysis [39]. The Pareto Chart 
of the example in Fig. 1b shows that factors A, G, B, and F 
lie above the Bonferroni limit and are considered as highly 
probable to be statistically significant.

Stage 2: Optimization Experiments Using Response Surface 
Methodology

Following identification of factors that have a statistically 
significant effect on a process, RSM is usually applied to 
identify the best combination of these factors that maximize 
the response. The goals of RSM are to (1) develop a math-
ematical model that describes how the variables (factors) 
and the interactions between variables affect the response 
and (ii) determine the values of all variables that optimize 
the response [40].

Response surfaces are typical second-order polynomial 
models and the central composite design (CCD) is usually 
used. A CCD is composed of [1] a fractional factorial (or 
full factorial) design; [2] an additional design (often a star 
design in which experimental points are at a distance from 
its center); and [3] a central point. CCD is an efficient design 
that is ideal for sequential experimentation and allows a rea-
sonable amount of information to test the “lack of fit” using 
a small number of design points. Besides CCD, there are 
many experimental designs for RSM such as Box–Behnken 
design (BBD), and small composite design (SCD). In a 
CCD, all factors are studied at five levels (− α, − 1, 0, 1, + α) 
and for two, three, and four variables the value of alpha is 
1.41 (√2), 1.68 (√3), and 2 (√4), respectively. The theory 

Fig. 1  An example of identifica-
tion of the factors that have a 
statistically significant effect on 
a process (response). a Adjusted 
half-normal probability plot 
with significant factors selected: 
A, G, B, and F. The farther that 
a factor is from the diagonal 
line, the greater its influence on 
the response. b The Pareto chart 
identified factors A, G, B, and F 
lying above the Bonferroni limit 
and are designated as certainly 
significant coefficients

Table 3  Central composite 
design of 4 independent 
variables that are examined at 5 
levels (− 2, − 1, 0, + 1, + 2) for 
process optimization

Run Coded values of factors

A B C D

1 − 1 − 1 − 1 − 1
2 1 − 1 − 1 − 1
3 − 1 1 − 1 − 1
4 1 1 − 1 − 1
5 − 1 − 1 1 − 1
6 1 − 1 1 − 1
7 − 1 1 1 − 1
8 1 1 1 − 1
9 − 1 − 1 − 1 1
10 1 − 1 − 1 1
11 − 1 1 − 1 1
12 1 1 − 1 1
13 − 1 − 1 1 1
14 1 − 1 1 1
15 − 1 1 1 1
16 1 1 1 1
17 − 2 0 0 0
18 2 0 0 0
19 0 − 2 0 0
20 0 2 0 0
21 0 0 − 2 0
22 0 0 2 0
23 0 0 0 − 2
24 0 0 0 2
25 0 0 0 0
26 0 0 0 0
27 0 0 0 0
28 0 0 0 0
29 0 0 0 0
30 0 0 0 0
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and the mathematical part of DoE approaches including 
RSM are extensively discussed in many books (see [41] and 
references cited therein).

Table 3 illustrates the experimental setup of a four-factor-
five level CCD (four factors are examined at 5 levels; − 2, 
− 1, 0, 1, 2). It should be noted that a limitation of RSM is 
that only continuous factors can be examined, while if cat-
egorical factors are added the design will be duplicated for 
every combination of the categorical factor levels.

The experimental data obtained from the design (e.g., 
Table 3) are subsequently fitted on a second-order polyno-
mial model (Eq. 1).

where Y is the measured response variable, βο is a con-
stant, βi, βij, and βii are the regression coefficients of the 
model, and xi and xj represent the independent variables in 
coded values.

The second-order polynomial coefficients are estimated 
using a software package, e.g., Design-Expert. An example 
of a second-order equation (mathematical model) obtained 
during the optimization of a process is illustrated below 
(Eq. 2). In this example, the effects of four variables, namely 
A, B, C, and D, as well as the effects of their interactions, on 
the response (Y) were examined.

In Eq.  (2), plus (+) and minus (−) symbols show 
whether a model term has a positive or negative effect on 
the response.

(1)Y = �o +
∑

�ixi +
∑

�ijxixj +
∑

�iix
2
ii
,

(2)

Y
[

response
]

= + 12.41 − 0.86A − 1.39B − 1.61C

+ 1.04D + 0.076AB − 0.19AC − 0.14AD

+ 0.13BC − 0.71BD − 0.69CD − 1.09A2

− 0.18B2 − 1.90C2 − 0.79D2.

Graphical Representation of the Interactive Effects 
of Variables on the Response

After the generation of the mathematical model, it is pos-
sible to predict the response for any possible combina-
tion of the factors that are tested within the experimental 
region (domain) even for those experiments that have not 
been actually carried out. Thus, the response at any point in 
the experimental domain can be predicted and, therefore, a 
graphical representation can be easily obtained. Usually, the 
fitted second-order equations (e.g., Eq. 2) are presented as 
a two-dimensional representation (contour plots, Fig. 2a) or 
as a three-dimensional plot (response surface plots, Fig. 2b).

These plots are the graphical representation of the rela-
tionship among three variables, i.e., two independent vari-
ables (while the others are kept at their zero points) and the 
response. A 3D response surface plot (Fig. 2b) is obtained 
by plotting two independent variables on the x- and y-axes 
(the other are kept at their center points), while the response 
is shown by a smooth 3D surface plot. The plots indicate the 
direction in which the original design must be displayed in 
order to achieve the optimal conditions. By looking at the 
plots of Fig. 2, it is easy to understand that the best reaction 
time changes according to the reaction temperature (and vice 
versa), while a reaction time above 8 h and a temperature 
above 26 °C have a negative effect on the response.

Validation of the Mathematical Model

The evaluation of the quality of the fitted mathematical 
model, as well as the effect of the factors that are exam-
ined and the effect of their interactions on the response(s), is 
usually carried out with the analysis of variance (ANOVA). 
Briefly, ANOVA uses F-tests (F = variation between sample 
means/variation within the samples) to compare the mean 
values between the factors that are examined and determines 
whether any of those means are statistically significantly dif-
ferent from each other (for more information above ANOVA 

Fig. 2  An example of a contour 
plot (a) and a response surface 
plot (b) showing the effect 
of reaction temperature and 
time on the response, adapted 
from [129] (modified). The 
figure illustrates that the one 
factor influences the effect of 
the other factor on the response. 
In this example, the maximum 
response (~ 13.3 relative units) 
was obtained at a reaction tem-
perature between 23 and 26 °C 
when the reaction time was set 
at ~ 8 h
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see Ref. [42]). To determine whether each main effect is 
statistically significant, the p value for each term is com-
pared to the significance level to assess the null hypothesis, 
while a significance level of 0.05 is usually used. Overall, 
the p value of each factor (term) should be < 0.05 to be 
significant while in several cases the insignificant factors 
(p > 0.05) are excluded from the model. Initially, the qual-
ity of the model is evaluated by the F value and p value of 
the model. In general, a high model F value indicates that 
more of the variance can be explained by the model (the 
higher the better), whereas the p value of the model should 
be strongly significant (< 0.05). The lack of fit is also used 
to determine whether the model fits the data well. If the 
model does not fit the data well, then the lack of fit will be 
significant (p > 0.05). The insight of mathematical model 
significance is also assessed from two determination coef-
ficients (R-squared or R2), namely “adjusted” R2 and “pre-
dicted” R2. The adjusted R2 indicates the amount of variation 
around the mean explained by the model, while the predicted 
R2 indicates how well a response value is predicted by the 
model. In general, the higher the R2, the better the model fits 
the data while an R2 > 0.6 is required. Finally, the quality of 
the model is evaluated by the Adequate Precision that is the 
signal-to-noise ratio and a ratio greater than 4 is required (for 
more information about ANOVA see https ://www.state ase.
com/docs/v11/navig ation /anova -rsm.html).

Overall, the adequacy of the mathematical model is eval-
uated using the “lack-of-fit” test and the “Adj R-squared,” 
as well as using:

 (i) The normal (%) probability plot of the “Studentized” 
residuals that shows whether the data are normally 
distributed or not. Figure 3a shows an example of the 
evaluation of a mathematical model using the normal 
(%) probability plot and, as can be seen, the errors 
are normally distributed.

 (ii) The “predicted vs actual” plot which shows whether 
the actual values (experimental data) are in agree-

ment with the predicted values. In other words, pre-
dicted vs. actual plots detect how well the model fits 
the data. For a perfect fit, all the points would be on 
a straight line [30, 43]. Figure 3b shows an example 
where experimental values and predicted values are 
in good agreement.

Incomplete Fractional Factorial Designs: 
An Alternative Approach

In several cases, a high number of variables have to be 
tested, and therefore a high number of experiments is 
required. Thus, performing a full or fractional factorial as 
well as RSM is impractical especially when a large number 
of categorical factors must be examined. To this end, incom-
plete factorial (IF) designs were developed to test only a 
part of a large full factorial design when a large number of 
combinations of factors must be examined [44, 45]. Thus, 
any design that is developed by removing experimental con-
ditions from a full factorial design is an IF. Even though 
according to this definition, a fractional factorial design can 
be designated as an IF design, a main dereference between 
the two designs is that the term “fractional factorial” refers 
to incomplete factorials that share the balance property 
of the corresponding full factorial approach, while an IF 
involves fewer experimental combinations which are not 
balanced. Thus, all fractional factorials are IF, but not all 
IF designs are fractional factorials [46]. IF that are not frac-
tional factorials involve fewer experimental conditions, and 
they provide an economical and effective way to assess the 
effect of different possible factors and identify those most 
likely to be essential, which is beneficial especially when 
experimental costs are high [46]. Another major advantage 
of IF designs is that both categorical and continuous factors 
can be simultaneously examined while each factor can be 
examined at more two levels [18, 47]. Most importantly, a 
freeware online software called SAmBA (http://www.igs.
cnrs-mrs.fr/samba ) has been developed for the design of IF 

Fig. 3  An example of diag-
nostic plots that are used for 
the evaluation of the accuracy 
of mathematical models in 
RSM adapted from [129]. a 
Normal (%) probability plot of 
the “Studentized” residuals for 
the model. b Predicted (by the 
model) values of the response 
versus actual values (experi-
mental)

https://www.statease.com/docs/v11/navigation/anova-rsm.html
https://www.statease.com/docs/v11/navigation/anova-rsm.html
http://www.igs.cnrs-mrs.fr/samba
http://www.igs.cnrs-mrs.fr/samba
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approaches. An example of an IF design is provided and 
discussed in section “Construction of Recombinant Plas-
mids”: Application of design of experiments in recombinant 
protein biotechnology; paragraph Ligation of the insert with 
the vector.

Application of Design of Experiments 
in Recombinant Protein Biotechnology

Table 4 summarizes the DoE approaches that are commonly 
employed in the optimization of processes that are used in 
recombinant protein biotechnology. It should be noted that 
for screening experiments, two-level factorial designs are 
very common and more economical compared to the 3- or 
higher level factorial designs, and due to do their simpler 
structure are more interpretable in practice [30]. IF designs 
are probably a better choice when the effect of 2 or 3 cat-
egorical factors must be examined; however, previous expe-
rience with the protein of interest is required. Overall, a sta-
tistical design should be carefully selected based on (1) the 

availability in resources and equipment and (2) the existing 
information about the protein of interest.

The potential applications of DoE designs in recombi-
nant protein biotechnology are extensively discussed in the 
following paragraphs.

Construction of Recombinant Plasmids

The first step in producing recombinant DNA is to iden-
tify and isolate the target DNA and vector DNA. Despite 
several techniques have been developed for generating 
recombinant DNA sequences including TA cloning [48], 
ligation-independent cloning [49, 50], recombinase-
dependent cloning [51–53], and PCR-mediated cloning 
[54–56], PCR-based cloning is routinely being used in 
molecular cloning [57–59]. In addition, PCR primers that 
introduce restriction enzyme sites on the insert’s sequence 
are usually employed. This review will be focused on the 
traditional PCR-based cloning and the basic steps that are 
followed during this technique are described below:

Table 4  DoE designs that are commonly used in recombinant protein biotechnology

Method Choose when Advantages Disadvantages

Full factorial – Limited information about the pro-
cess is available

– 4 or fewer factors must be examined

– Both categorical and continuous 
variables can be simultaneously 
tested

– Results from the whole set of 
experiments are utilized

– Can be only used for screening 
experiments

– Can only exclude the unimportant 
factors

Fractional factorial – 5 or more factors must be tested
– The number of  factors that are 

examined  must be reduced to the 
significant ones

– Both categorical and continuous 
variables can be simultaneously 
tested

– Information can be obtained by 
testing only a fraction of all pos-
sible combinations of factors (full 
factorial)

Plackett–Burman The gaps found in fractional factorial 
must be reduced

Plackett–Burman method screens the 
design space to detect a large main 
effect

Should only be used when is known 
that there are no interactions present 
in the design

Taguchi orthogonal Multiple factors at multiple levels 
must be examined

Taguchi orthogonal is a highly frac-
tional orthogonal design allowing 
to examine a selected subset of 
combinations of multiple factors 
at multiple levels with the fewest 
number of experiments

– Very complicated
– Specific knowledge about the 

complex aliasing issues behind the 
designs is required

RSM The optimum values of variables 
that significantly affect a process 
should be identified to maximize the 
response (process)

– The only “real” optimization process
– Can be used to fine-tune the opti-

mum conditions

– Only continuous values can be tested
– A high number of runs are needed
– Dedicated statistical packages are 

required
Incomplete fractional – Multiple factors must be tested

– A quick outcome is required
– Can easily be set up using a freeware 

package (SAmBA)
– Advance knowledge in statistics is 

not necessary
– Factors can be examined in more 

than two levels

Previous information about the process 
is required
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PCR Amplification of the Gene of Interest

Because of the potential interactions among the components 
of PCR, usually optimization of PCR conditions is carried 
out by changing one or more factors that are known to affect 
the primer–DNA interaction and primer extension. The iso-
lation of pure, intact, and high-quality DNA is essential for 
molecular biology studies [60]. Although PCR cloning is 
routinely being used in molecular cloning [57], there are not 
general guidelines on setting up a PCR reaction. It is well 
known that the concentration of  Mg2+ ions, the pH of the 
reaction buffer, and the annealing temperature influence the 
amplification of a DNA fragment in PCR. In addition, the 
interactions of some reagents (factors) influence the ampli-
fication of the GOI (response). For example, dNTPs chelate 
 Mg2+ ions, and therefore an increase in the concentration 
of dNTPs will reduce the concentration of  Mg2+ ions in the 
reaction mixture [61]. To this end, DoE approaches have 
been successfully employed in many cases to optimize the 
reaction conditions of PCR reactions. Boleda et al. [62] used 
a two-step approach to optimize PCR of DNA blood spots. 
In the first step of optimization and by using a  25 fractional 
factorial approach, the DNA concentration and  Mg2+ were 
identified as the factors that significantly affect the response 
(DNA amplification). Subsequently, an RSM was employed 
to identify the optimum concentration of the two factors. In 
another study, the optimum concentrations of dNTPs,  Mg2+, 
and primers were identified by using a full factorial approach 
and by a three-dimensional Simplex [63]. DoE approaches 
have also been employed for the optimization of reaction 
conditions of quantitative PCR [64], real-time PCR [65, 66], 
and digital PCR [67] assays. Therefore, it is suggested that 
the conditions of any PCR assay, including cloning PCR, 
could be optimized by statistically designed experiments. 
Following PCR, the amplified GOI is analyzed on an aga-
rose gel and recovered using a commercially available gel 
extraction kit.

Digestion with Restriction Enzymes

Subsequently both the PCR-amplified GOI (insert) and vec-
tor are digested with the same restriction enzymes in order 
to create complementary cohesive sticky ends. Restriction 
digestions are carried out according to the manufacturer’s 
instructions and the optimization of at this point is limited to 
the duration of reaction and/or the amount of enzyme [68].

Ligation of the Insert with the Vector

This step is usually catalyzed by a DNA ligase and optimiz-
ing ligation efficiency is essential to cloning experiments 
[69]. Even though some ligation mathematical models have 
previously been reported [70–73], they are either too specific 

or too general to be used as a universal tool to improve liga-
tion efficiency. The factors that significantly affect ligation 
are the molar insert-to-vector ratio, the temperature, and 
duration of ligation, and total DNA concentration. How-
ever, optimization of ligation reactions is usually carried 
out using the OFAT approach. It has been suggested that a 
more generic but easily altered strategy is needed to improve 
DNA ligation [69]. In my laboratory, we have developed 
an IF design composed of 16 combinations of 3 insert-to-
vector ratios, 3 ligation temperatures, 3 durations of liga-
tion, and 3 total DNA amounts as illustrated in Table 5, to 
identify the best combination of these factors for the ligation 
of a plasmid vector with a PCR-amplified gene. The liga-
tion efficiency is monitored using the Lig-PCR method (i.e., 
the ligation reactions are monitored using PCR and primers 
that are present in the majority of vectors) as previously 
described in [74]. This straightforward approach examines 
all factors affecting ligation efficiency and provides in less 
than 2 days a positive answer to the ligation query. In the 
case of a negative result (no ligation), a significant amount 
of time can be saved.

Transformation of Competent Cells

The ligation product is subsequently inserted into a clon-
ing strain (e.g., DH5α), to ensure the stable amplification 
of recombinant DNA [75] using a standard transformation 
protocol (see [76] and references cited therein). In general, 
the introduction of foreign DNA into bacteria using either 
electroporation or chemical transformation is affected by 

Table 5  Incomplete factorial approach for the ligation of a plas-
mid vector with the gene of interest (insert)

Run Insert: vector Temperature
(°C)

Duration
(h)

DNA
(ng)

1 7:1 4 2 50
2 3:1 16 2 100
3 3:1 4 16 50
4 5:1 20 16 100
5 3:1 16 16 75
6 5:1 16 0.5 50
7 7:1 16 16 50
8 3:1 20 2 75
9 5:1 4 16 75
10 3:1 4 0.5 100
11 3:1 20 0.5 50
12 7:1 20 16 100
13 5:1 20 2 50
14 7:1 4 0.5 75
15 7:1 20 0.5 75
16 5:1 16 2 100
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many factors including electrical parameters [77] (only for 
electroporation), washing buffer, cell wall weakening agents 
[78], the cell density (optical density at 600 nm − OD600nm) 
[79], duration of heat-shock, medium composition, and by 
the presence of some co-factors (e.g., DMSO) [76]. How-
ever, optimization of transformation conditions is carried 
out using OFAT approaches. Even though the optimization 
of transformation conditions for cloning experiments using 
DoE has not been reported, fractional factorial approaches 
have been successfully employed to identify the factors that 
significantly affect the transformation efficiency of bacteria 
for other purposes (e.g., drug development). For example, 
Yildirim et al. [80] evaluated the effect of five factors (cell 
density, voltage, resistance, plasmid DNA concentration, and 
 Mg2+ concentration) on the transformation efficiency of Aci-
netobacter baumannii using a three-level fractional factorial 
approach and the transformation efficiency was increased by 
four times. Thus, DoE approaches could be probably used as 
a tool to maximize the transformation efficiency of bacteria 
during cloning experiments.

Expression of Recombinant Proteins in E. coli

E. coli expression systems provide an inexpensive, robust, 
and flexible platform appropriate for the production of 
recombinant proteins at both industrial and laboratory 
scales. Optimum expression conditions for each construct 
must be identified for the maximal production of soluble 
protein. A recombinant protein is expressed in the microen-
vironment of E. coli which may differ from that of its native 
source in terms of folding mechanism, pH, co-factors, ionic 
strength, and redox potential. These factors affect both pro-
tein stability and solubility, while in several cases recombi-
nant proteins are expressed in the form of inclusion bodies 
[81–83].

In general, soluble expression of recombinant proteins is 
affected not only by the expression host strain and expression 
vector, but also by expression conditions including induc-
tion temperature and time, the concentration of inducer, 
and the composition of the culture medium [18, 84]. The 
yield and solubility of recombinant proteins can be therefore 
increased by optimizing these factors and several expression 
conditions are usually tested [85]. One of the standard pro-
cedures, when setting out to express a recombinant protein, 
is to test different culture conditions and media because this 
is easy, cheap, and has been proven to have an impact on 
protein solubility levels [20]. Among the factors, affecting 
protein expression and/or solubility in E. coli, the induction 
temperature and time are probably the most important ones, 
because these variables, in most cases, interact. In bacterial, 
a slower and longer induction promotes the expression of 
several proteins in a soluble form, and this approach requires 
a low temperature [86]. The magnitude of induction is also 

an important factor that affects both the expression and solu-
bility of recombinant proteins. Insufficient concentration of 
inducer (e.g., IPTG) may result in low protein expression, 
whereas the addition of a high concentration of inducer can 
result in reduced cell growth and/or recombinant protein 
yield [87]. The soluble expression of recombinant protein 
is also affected by the expression host [88] and thus multiple 
E. coli strains that facilitate the expression of membrane 
proteins, proteins with rare codons, proteins with disulfide 
bonds, proteins that are otherwise toxic to the cell, etc., 
are commercially available (see [18] and references cited 
therein). Cell density before induction has also an impact 
on the soluble expression levels of recombinant proteins. 
Despite induction is usually performed at early mid-log 
phase, some proteins require induction at late-log phase [89] 
or stationary phase [90]. To facilitate recombinant protein 
expression in a soluble form and to accelerate the characteri-
zation of protein structure and function, a variety of affinity 
and solubility tags have also been employed [17], includ-
ing small peptides [e.g., hexahistidine (6 × His-tag), FLAG] 
and large peptides/proteins [e.g., Glutathione-S-transferase 
(GST), maltose-binding protein (MBP)] [91]. The main fac-
tors affecting recombinant protein soluble expression have 
been extensively reviewed elsewhere [14, 18].

Even though several criteria must be considered when 
expressing recombinant proteins in E. coli, optimization 
experiments are usually carried out using the traditional 
OFAT approach [92]. On the other hand, DoE approaches 
have successfully been employed for the identification of 
factors that have a statistically significant effect on the solu-
ble expression of recombinant proteins. Usually, optimiza-
tion of soluble expression goes from screening experiments 
to ascertain what variables have an effect (i.e., a full or frac-
tional factorial design is initially employed looking at cell 
line, and possibly media and additives, along with  OD600nm 
at induction, temperature, time and IPTG concentration, as 
variables to determine which factors are significant) and then 
to RSM to determine the optimum values (levels) of the 
most significant variables [16, 18].

DoE designs and especially RSM have been successfully 
employed to optimize the culture conditions and/or culture 
medium composition for a variety of recombinant proteins 
such as recombinant scFv antibody [93], human Interferon-
beta [94], DT386-BR2 [95], receptor activator of nuclear 
factor (NF)-κB ligand (RANKL) [96], superoxide dismutase 
[97], pneumolysin from Streptococcus pneumoniae [32], 
pneumococcal surface adhesin A [98, 99], TaqI endonucle-
ase [100], pyruvate oxidase [101], sea anemone neurotoxin 
[102], heparinase I [103], lipase KV1 [104], and glutaryl-
7-aminocephalosporanic acid acylase [105]. The potential 
applications of DoE in the soluble expression of recom-
binant proteins have been extensively reviewed elsewhere 
[2, 116]. In my laboratory, we have successfully employed 
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RSM for the optimization of soluble expression of several 
recombinant proteins including tumor necrosis factor-alpha 
(TNF-α) [106], RANKL [107], heme oxygenase-1 (HO-1) 
[108], and human rhinovirus-3C protease (HRV3CP) [109]. 
In each case, preliminary experiments were performed in 
order to identify the best expression host for each target pro-
tein as well as to identify the factors that have a statistically 
significant effect on both the yield and soluble expression 
of the protein of interest. Subsequently, the culture condi-
tions that maximize the soluble expression of each recom-
binant protein (i.e., TNF-α, RANKL, HO-1, and HRV3CP) 
were identified using RSM. The use of DoE approaches in 
recombinant protein expression with examples of media and 
culture conditions optimization has been recently reviewed 
in Ref. [40].

Even though RSM has been successfully employed to 
maximize the soluble expression of several recombinant 
proteins, this design has several limitations, especially 
when the number of the test variables is high [98]. Moreo-
ver, RSM is a fine-tuning technique, i.e., it is used to iden-
tify the optimum combination of the independent variables 
that maximize the response. Therefore, as mentioned above, 
preliminary experiments are essential to identify the factors 
that significantly affect the response, while only continuous 
factors can be examined [11]. To this end, in my laboratory 
we have recently developed an IF approach that we called 
IF-STTI (Incomplete Factorial-Strain/Time/Temperature/
Inducer) [109] to identify the best combination of the four 
most important factors (i.e., expression host, temperature 
and duration of induction, and IPTG concentration) affecting 
the soluble expression of recombinant proteins in E. coli [18] 
in a single experiment. In detail, IF-STTI is composed of 
24 different combinations of three expression strains, three 
post-induction temperatures, four induction times, and three 
IPTG concentrations. The design was validated with three 
GST-tagged recombinant proteins, i.e., TNF-α, RANKL, 
and HRV3CP. The results obtained from this design were 
subsequently compared with those obtained using RSM and 
interestingly the soluble expression levels of the three tested 
proteins were close to those obtained by RSM. Most impor-
tantly, we demonstrated that the IF-STTI design is an accu-
rate and straightforward method as it provides, in only 24 
experiments, the same information regarding the interactions 
of variables on the soluble expression of recombinant pro-
teins, as would do a full factorial design (108 experiments) 
or RSM (30 experiments). Another advantage of the IF-SSTI 
compare to the  2k factorial designs is that all variables may 
be examined in more than two levels.

Two incomplete factorial designs called “InFFact” [110] 
that is made of 12 combinations of 4 E. coli strains, 3 media, 
and 3 expression temperatures (full factorial 36 combina-
tions) and “Fusion-InFFact” [111] that is composed of 24 
combinations of 4 expression strains, 3 media, 3 expression 

temperatures, and 5 N-terminal tags (full factorial 180 com-
binations) have also been reported. Both methods have been 
successfully employed to determine the conditions that max-
imize the soluble expression of several recombinant proteins 
in E. coli.

Purification of Recombinant Proteins

The ultimate objective of protein purification for therapeutic 
or analytical applications is to achieve both high yield and 
purity [112]. Thus, it has been suggested that the protein 
of interest should be produced as a fusion to an affinity tag 
because tags facilitate the purification of any protein, in one 
step, without any prior knowledge about the protein of inter-
est and do not affect its biochemical or biological activity 
[113]. To this end, a variety of affinity purification methods 
have been developed (for a review on affinity tags see Ref. 
[17]). In general, affinity purification of recombinant pro-
teins depends on two factors: (i) the ability of a protein to 
bind to an affinity matrix which is composed of a substrate 
attached to a solid support, e.g., Sepharose, agarose, or resin 
and (ii) the ability to recover the protein from the affinity 
matrix. Elution is usually carried out either using a soluble 
substrate that competes for binding sites (competitive elu-
tion) or, in some cases, by cleavage between the protein and 
affinity matrix with a specific protease [114, 115].

A typical protein purification includes several operating 
parameters that can affect the yield and purity of the pro-
tein of interest. To achieve both high purity and yield of 
the target protein, it is essential to examine the relationship 
between these two goals and the purification factors and 
to optimize purification conditions accordingly. The final 
yield and purity of a protein are affected by multiple factors 
including the composition of the sample to be loaded, chro-
matography medium, purification method, binding, wash, 
and elution conditions [116]. Moreover, the final purity 
and recovery of the protein can be optimized by controlling 
the operating conditions such as flow rate, ionic strength 
gradient, sample load, physical properties of the adsorbent 
matrix, column dimensions, and the ratio of the protein to 
the column size [112]. In addition, it is important to take 
into account the effect of buffer composition in protein sta-
bility and purification yield while it is beneficial to decide 
what the ideal final buffer would be. Therefore, optimiza-
tion of purification processes can be time-consuming [116] 
and despite the obvious advantages of DoE approaches over 
OFAT approach, optimization of purification conditions of 
recombinant proteins is usually carried out using the latter 
method. For example, during optimization of immobilized 
metal affinity chromatography (IMAC) protocols using the 
OFAT approach, a different volume of metal-chelated resin 
and concentration of imidazole in the washing and elu-
tion buffer are tested in each experiment. However, OFAT 
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approach does not take into account the effect of interactions 
among purification factors, on purity and yield of the tar-
get protein. Because every protein is different, the optimum 
purification conditions must be identified for each protein 
[9].

Nevertheless, the significant advantages of DoE over 
OFAT approach in recombinant protein purification are high-
lighted in recent publications. A two-step DoE approach has 
been used for the affinity purification of recombinant 6 × His 
human erythropoietin (hEPO). During the first step of this 
approach, it has been demonstrated that the ratio of loaded 
protein to resin significantly affects both protein purity and 
yield. Subsequently, in the second step, the optimal purifica-
tion conditions (i.e., the amount of resin and wash/elution 
conditions) of 6 × His- hEPO were identified using RSM. 
This two-step DoE-optimized purification approach resulted 
in a 45% yield and a 90% purity of recombinant 6 × His-
tagged hEPO [117].

A two-step DoE approach has also been employed for 
the optimization of purification conditions of recombinant 
single-chain variable fragment against type 1 insulin-like 
growth factor receptor (IGF-1R) using the capto-L affinity 
chromatography medium [118]. In an initial step, the effect 
of seven variables including the pH value of the buffer, and 
the concentration of the following additives: NaCl, urea, 
arginine, trehalose, polyethylene glycol (PEG), and dextran 
on both IGF-IR aggregation and recovery were evaluated 
using a 2-level fractional factorial approach. Trehalose con-
centration and pH were identified as the main factors and, 
subsequently, the purification conditions were optimized 
using a central composite circumscribed design. Overall, 
a total yield of 77% and a 98.5% purity of the final product 
were achieved.

In another study, Amadeo et al. [119] employed RSM in 
order to identify the best combination of the critical factors, 
i.e., sample pH, the ratio of loaded protein to resin, and resi-
dence time, that affect the purity and yield of recombinant 
human erythropoietin using Blue Sepharose as an affinity 
matrix. An 88% recovery and a 71.5% purity of the protein 
of interested were achieved after optimization of purification 
conditions. RSM has been successfully employed for the 
optimization of purification conditions (PEG and salt con-
centration, pH value and/or concentration of the purification 
buffer), with aqueous two-phase system of several enzymes 
including glucose dehydrogenase (GDH) from Bacillus sub-
tilis [120] and d-galactose dehydrogenase (GalDH) from 
Pseudomonas fluorescens AK92 glucose [120, 121].

In my laboratory, we have recently reported an IF 
approach composed of 16 different combinations of three 
resin volumes, three glycerol and four DTT concentrations 
in purification buffers, and three incubation times of cell 
lysate with resin, in order to determine the optimal purifi-
cation conditions for GST-tagged HRV3CP [109]. The 16 

combinations of these factors were selected out of the 108 
combinations (3 × 3 × 4 × 3) of the full factorial design using 
the SAmbA freeware. The results revealed that the recovery 
of the protease was increased by 15% (compared to the pro-
tease recovery before optimization), while the proteins that 
were previously co-purified (before optimization of purifica-
tion conditions) with the target protein (GST-HRV3CP) were 
eliminated. Our method was validated further using another 
two GST-tagged recombinant proteins, i.e., GST-TNF-α and 
GST-RANKL and the yields of two proteins were increased 
by 11% and 10%, respectively [109].

Based on the examples described above, DoE approaches 
could overcome the limitations of the traditional OFAT 
approach for the optimization of purification conditions of 
any recombinant protein. As purification of any protein is 
affected by multiple factors (variables), the OFAT approach 
often fails to identify the optimal purification conditions 
because this approach examines only a limited part of the 
experiment space and most importantly it does not examine 
the combined effects of all the factors involved. The specific 
steps that are followed during the optimization of purifica-
tion conditions of recombinant proteins using DoE, as well 
as specific guidelines for execution and analysis of experi-
ments, are described in Ref. [116].

Assessment of Protein Activity

Following purification of the target protein, in several 
cases, its activity should be assessed. Moreover, enzymes 
are important drug targets and in areas such as drug devel-
opment, clinical diagnosis, and biotechnology research the 
determination of kinetic parameters of enzymes is essential. 
To identify potential therapeutics that inhibit the function 
of proteins/enzymes that have been implicated in the patho-
genesis and development of diseases is essential to design, 
develop, and validate biological assays for high-throughput 
screening (HTS). Developing sensitive biological assays 
suitable for HTS requires identification of factors affecting 
assay performance and robustness and the correct design of 
a biological assay is essential to derive the correct informa-
tion and to collect data suitable for analysis and modeling 
[122]. Thus, the development of reliable biological assays 
for the identification and validation of potential therapeu-
tics is essential in the various stages of drug development 
[123–125].

Depending on the assay format and the nature of the 
protein that is studied in each case, different variables, i.e., 
assay conditions, should be examined. For example, typical 
factors that affect the enzyme activity include the composi-
tion, concentration, and pH of the reaction buffer, type and 
concentration of enzyme, ionic strength, as well as the type 
and concentration of substrate, reaction conditions (assay 
incubation time and temperature), and appropriate assay 
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technology. Likewise, in non-enzymatic protein assays, e.g., 
ligand-binding assays, several factors should also be exam-
ined including the dilution of the protein, assay incubation 
time and temperature, viscosity, and ionic strength, while 
in several cases buffer additives should be included in order 
to facilitate protein stability or to improve ligand solubil-
ity [126, 127]. Several factors can be optimized during the 
development, optimization, and assessment of the robustness 
of ELISA-based ligand-binding assays including conditions 
associated with samples and calibrators and conditions asso-
ciated with the detection of the analyte, such as substrate 
development time [125, 128].

A major concern during the development and optimiza-
tion of a biological assay is the selection of factors to be 
tested as well as their ranges to be used. In general, assay 
optimization determines how a range of experimental condi-
tions can affect assay performance and is an essential step to 
find the value that each variable should have to produce the 
best possible response. Usually, if there is literature avail-
able, the experimenter begins with the reaction conditions 
and factors published previously to be needed for the activity 
of the same or a similar protein/enzyme. The reaction condi-
tions and the concentration range of the selected factors to 
be examined should then be selected carefully and should 
be large enough to cause a clear alteration in the measured 
response, but not so large that the process will ‘fall off a 
cliff’ and produce unusable data [129].

Despite methodologies for assays have been extensively 
reviewed, however, because each protein/enzyme is differ-
ent, a further modification of procedure is often required, (i) 
to adjust the assay conditions to the special features of the 
protein/enzyme of interest or (ii) in order to develop an assay 
for a newly discovered protein/enzyme [130]. It has been 
suggested that a DoE study must be carried out before the 
validation of an assay for early identification of factors that 
significantly affect assay performance and robustness [128]. 
However, a survey carried out by HTStec in 2009 [131] 
revealed that optimization of assays is carried out using the 
traditional OFAT approach because most researchers believe 
that DoE designs are very difficult to be employed. However, 
using the traditional OFAT approach usually takes at least 4 
months to develop an assay, and therefore assay development 
can become a bottleneck in drug discovery projects [122]. To 
this end, we have recently reported the steps any researcher 
could follow to develop, optimize, and define the design 
space for determination of enzyme activity using a two-step 
DoE methodology, including guidelines for (i) identification 
of factors that significantly affect the activity of the enzyme 
to be studied, and (ii) execution of experiments and data 
analysis, using HRV3CP in a 96-well plate format assay, as 
an example [129]. Briefly, a  28−4 fractional factorial design 
was initially employed to assess the effect of seven factors: 
one categorical factor, i.e., buffer composition (Tris–HCl 

and HEPES) and seven continuous factors including reaction 
pH, temperature, and time as wells as the concentration of 
NaCl, DTT, EDTA, and glycerol on protease activity. The 
results of the screening DoE were used to eliminate non-sig-
nificant factors using the half-normal probability and Pareto 
charts as described in section Theory and steps for design of 
experiments and particularly in paragraph Identification of  
significant factors. Our analysis revealed that only the pH 
of the buffer, the incubation time, and the concentrations of 
both DTT and glycerol produced significant effects on the 
activity of HRV3CP. Subsequently, we employed RSM to 
determine the optimal combination of the four statistically 
significant variables that produce the maximum HRV3CP 
activity and a 1.5-fold increase in the activity of the protease 
was achieved [129].

It should be noted that the quality of an HTS assay is 
usually assessed using the Z-prime (Z′) statistical test that 
takes into account both the signal window and assay viabil-
ity [132]. The Z′-factor is calculated based on the following 
equation (Eq. 3):

where σp and σc are the stand deviations of the positive 
and negative controls, respectively, and μp and μn are their 
respective average values.

In general, the Z′ test is the most important statistical test 
to assess the quality of an assay. A Z′ equal to 1 is ideal, 
though an assay can never have a Z′ of 1.00000, while Z′ can 
never be greater than 1.0. When an assay has a Z′ between 
0.5 and 1.0, it means that it is excellent, while when Z′ is 
between 0 and 0.5 it means that the assay is marginal. A Z′ 
factor less than 0 means that the assay is not suitable for 
HTS screening [132]. In the aforementioned example, an 
increase of Z′ factor from 0.78 (before optimization) to 0.92 
(after optimization) was achieved and thus the assay is suit-
able for HTS of HRV3CP inhibitors [129].

Even though DoE designs have significant advantages 
over the OFAT approach in assay optimization and in assess-
ing the robustness of a method, there are only a limited num-
ber of publications in the literature that utilize these designs 
in assay development, optimization, and validation. Never-
theless, DoE approaches have been successfully used for the 
optimization of several assay conditions and for the deter-
mination of kinetic constant of various enzymes including 
glucose oxidase [133], the enzymes involved in the synthesis 
of precorrin-2 [134], and hydrolases [135], for the develop-
ment and validation of a cell-based bioassay for the detection 
of anti-drug neutralizing antibodies in human serum [136], 
for the optimization of various immunoassays [137–140], 
as well as to evaluate the robustness of a ligand-binding 
assay [128] and other assays [141]. A detailed tutorial that 

(3)Z� = 1 − 3 ×
�p + �n

�p − �n

,
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describes the use of DoE approaches in non-enzymatic assay 
optimization has been previously reported [122].

Protein Crystallography

In drug discovery projects, crystallization of the target 
protein(s) that is (are) implicated in the pathogenesis of a 
disease with a potential therapeutic is an essential step in 
order to identify the interactions between the two molecules. 
These interactions are translated into a picture where a drug 
molecule binds to the target protein(s) and acts as an inhibi-
tor, an agonist or a modulator [142].

A major issue in protein crystallization is that a high 
number of parameters must be tested to identify the condi-
tions that yield a single large crystal for the collection of 
X-ray data [143, 144]. Biochemical, chemical, and physi-
cal factors such as genetic modifications of the protein, the 

type of precipitants, type of salts, concentrations, pH value 
of the buffer, and the temperature of the environment may 
have an impact on the crystallization process. Because each 
protein has a unique primary structure it is quite challenging 
to determine the crystallization conditions that can yield a 
crystal for a protein a priori [145], and therefore adapted 
methods are employed to enable the growth of the appropri-
ate crystals [146].

To this end, the conditions for protein crystallization have 
been traditionally identified using two DoE designs, namely 
incomplete factorial experiments (IFE) [145, 147] and sparse 
matrix sampling (SMS) [144, 148]. The incomplete factorial 
approach was introduced in protein crystallography in 1979 
[44] as a powerful tool for identifying the factors and condi-
tions that need to be varied to obtain crystals. The goals of 
this approach are to (i) identify the important factors that 
influence the crystallization of the target protein and (ii) 

Table 6  Applications of DoE in the main processes that are used in recombinant protein biotechnology

Step/method Examples of factors that should 
be optimized

Proposed optimization strategy

PRC amplification 1.  Mg2+ concentration
2. Annealing temperature
3. Template DNA (ng)
4. Concentration of primers

– Incomplete factorial approach that examines all factors at more than 2 levels
or
– Small composite design (RSM; 15 runs)

Ligation 1. Insert-to-vector ratio
2. Temperature
3. Duration
4. Total DNA amount

– Incomplete factorial approach that examines all factors at more than 2 levels in 16 
experimental runs (see also Table 5)

or
– Small composite design (RSM; 15 runs)

Expression in E. coli 1. Vector type
2. Expression host
3. Affinity Tag
4. Temperature of induction
5. Duration of induction
6. Culture medium
7. IPTG concentration
8. Cell density before induction

– Information about the protein is not available:
Identification of the factors that significantly affect soluble expression (or purity and 

recovery) of the target protein using a fractional factorial design and then optimiza-
tion of the most important factors using RSM

– Information about the protein is available:
Incomplete factorial approach that examines the main factors affecting the soluble 

expression (or purity and recovery) of the protein in more than 2 levels

Purification 1. Column size
2. Buffer composition
3. Buffer pH
4. Protein-to-resin ratio
5. Buffer additives
6. Flow rate
7. Ionic strength

Functional assay 1. Buffer composition
2. Buffer pH
3. Buffer additives
4. Ionic strength
5. Co-factors
6. Incubation time
7. Reaction temperature
8. Substrate concentration

Identification of factors that significantly affect the activity of the protein/enzyme of 
interest using a fractional factorial design and subsequently optimization of most 
important factors using RSM

Crystallography 1. Type of precipitant
2. Type of salt
3. Concentration of salt
4. Buffer type
5. Buffer pH
6. Temperature

– Incomplete factorial experiments (IFE)
or
– Sparse matrix sampling (SMS)
Note several crystallization screening conditions are commercially available; however, 

crystallization conditions may be further optimized
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reduce the total number of crystallization conditions com-
pared to full factorial designs [44]. The IFE is an essential 
tool especially in the case there is not enough protein to 
test a high number of crystallization conditions while at the 
same time it provides sufficient information regarding the 
important factors in a small number of experiments [149]. 
The SMS method was initially reported in 1991 by Jancarik 
and Kim [144], and interestingly their original screen, plus 
a wide range of variations, has been commercialized [150]. 
The sparse matrix approach uses three categories of major 
variables: pH and buffer materials, additives, and precipitat-
ing agents. These ranges of the buffer, pH, additives, and 
precipitant conditions are empirically derived based on past 
experience to have resulted in protein crystallization.

Following screening crystallization experiments, a set 
of optimization methods are usually applied to improve the 
quality of the crystals. Further details regarding the IFE and 
SMS methods and optimization techniques can be found in 
the literature and are beyond the scope of this review. Impor-
tantly, crystallization techniques that are based on DoE 
are continually optimized. For example, Dinć et al. [151] 
reported the “Associative Experimental Design (AED)” 
approach for the optimization of crystallization conditions 
for proteins. The main advantage of this approach is that 
following analysis of preliminary experiments, the AED 
generates candidate cocktails, i.e., novel conditions, lead-
ing to crystals (see also [151] and references cited therein).

Conclusion

Recombinant proteins are essential tools in biomedical, 
pharmaceutical, and biological industries and the produc-
tion of soluble and functional recombinant proteins is the 
ultimate goal in protein biotechnology. Several recom-
binant proteins are being used as drugs (biopharmaceuti-
cal) and their demand in the pharmaceutical industry will 
be increased in the next years because biopharmaceuticals 
have been successfully used for the prevention, detection, 
and treatment of diseases. To meet the growing demand for 
recombinant proteins, it is essential to produce them in high 
amounts and in a pure and active form. Due to the unique 
properties of each protein and the complex interactions 
among the reagents in the experiments, it is almost impos-
sible that one set of reaction conditions would be optimal 
for all cases. Optimization of several processes that are used 
in recombinant protein biotechnology is usually carried out 
using the traditional OFAT approach that is not only time-
consuming, but also incapable of identifying the true optimal 
conditions as it does not examine the interactions between 
the factors affecting the desired response(s). On the con-
trary, DoE designs are gaining success for optimization of 

all processes of recombinant protein biotechnology includ-
ing construction of recombinant plasmid vector, protein 
production, expression, purification, assessment of activity, 
and crystallography as summarized in Table 6, because they 
require fewer experiments and therefore less time, for the 
amount of information obtained, while in the case of nega-
tive results a significant amount of time can be saved. Most 
importantly, DoE designs can provide models that may assist 
to (i) identify the factors that have a statistically significant 
effect on a process and (ii) study interactions between dif-
ferent variables and predict the maximized response in all 
processes of recombinant protein technology.
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