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Abstract
Enzymes are essential biological macromolecules, which catalyse chemical reactions and have impacted the human civiliza-
tion tremendously. The importance of enzymes as biocatalyst was realized more than a century ago by eminent scientists like 
Kuhne, Buchner, Payen, Sumner, and the last three decades has seen exponential growth in enzyme industry, mainly due to 
the revolution in tools and techniques in molecular biology, biochemistry and production. This has resulted in high demand 
of enzymes in various applications like food, agriculture, chemicals, pharmaceuticals, cosmetics, environment and research 
sector. The cut-throat competition also pushes the enzyme industry to constantly discover newer and better enzymes regularly. 
The conventional methods to discover enzymes are generally costly, time consuming and have low success rate. Exploring 
the exponentially growing biological databases with the help of various computational tools can increase the discovering 
process, with less resource consumption and higher success rate. Present review discusses this approach, known as in-silico 
bioprospecting, which broadly involves computational searching of gene/protein databases to find novel enzymes.
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Introduction

Enzymes play an important role in our daily lives and are 
used in variety of industries and sectors like food, deter-
gent and medicine [1]. The demand of certain enzymes has 
increased exponentially, like lipases, proteases, hydrolases 
and polymerases. Research laboratories and industries are 
extensively working to find newer and better candidates. 
Major enzyme industries are regularly introducing new 
enzymes in the market. In the past two decades, several pat-
ents on enzymes have been filed and issued. Apart from 
this, there are ongoing efforts to substitute chemical reaction 
processes in industries with enzymatic processes, as they are 
greener and environment friendly alternatives. It has been 
widely accepted that a cleaner chemical synthesis process 
should be practiced to prevent pollution and avoid genera-
tion of toxic wastes [2]. Enzymatic synthesis of chemical 

compounds has emerged as a simple, better and competi-
tive route in comparison to chemical methods. Also, a high 
substrate specificity and better conversion rate with forma-
tion of low or no by-products makes enzyme a robust and 
efficient choice. Recently, Merck and Codexis developed a 
greener process for the synthesis of Sitagliptin, a drug used 
in diabetes treatment [3]. In the recent years, advancement 
in recombinant DNA technology has resulted in successful 
approaches to overexpress an enzyme in variety of host cells, 
which can help in producing the biocatalyst in high amount. 
To obtain an efficient enzyme candidate, stringent selection 
criteria are required to achieve high activity, specificity, and 
stability. In an industrial processes, the substrate, solvent, 
reaction conditions are important and an enzyme chosen 
should be able to withstand these components and condi-
tions. It is actually difficult to find a natural enzyme with all 
the properties desired in an industrial process. To fulfil the 
massive enzyme demand, various approaches are practiced 
to constantly explore different resources to obtain new and 
better enzymes. Among these, in-silico bioprospecting has 
come up as an efficient, cost and time effective approach to 
discover new enzyme candidates. Although this approach 
has been practiced at various laboratories [4–6], it has not 
been reviewed or discussed.
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In‑Silico Bioprospecting

New enzyme discovery can be accomplished using various 
conventional and contemporary methods as mentioned in 
Fig. 1. Common methods of screening to identify novel 
enzymes are performed by exploring natural sources like 
industrial waste or soil, but they require an established 
protocol for screening assay or selection method based on 
the desired properties of the enzyme. This process involves 
biochemical screening and isolating the organism on selec-
tive media, which is usually time and resource consuming 
and may or may not result in a novel candidate. From these 
screening assays, the selected organism further needs to be 
identified, followed by the identification of gene sequence 
which is coding for the desired enzyme and function. 
One approach is to perform random mutagenesis to cre-
ate enzyme mutant, and then sequence the DNA region. 
Another way is to perform targeted or whole genome 
sequencing to identify the desired enzyme gene sequence. 
As an alternative, amplification of target gene can be per-
formed using degenerate primers [7]. There are challenges 
involved in primer designing, which affects the success 
rate. The process is followed by PCR library cloning and 
screening for prospective candidates with desired proper-
ties, which again demands a well-established protocol for 
screening positive candidates. After selecting the desired 
clone, the responsible gene can be sequenced, cloned and 
expressed.

The direct screening and identification methods are pre-
ferred where molecular biology resources are inadequate. 
These experimental approaches are used commonly, but 
they are time and resource consuming, with low suc-
cess rate. However, in-silico bioprospecting is a simple, 
straightforward and promising approach to identify novel 
enzyme candidates with better enzymatic properties. A 
compilation of recent reports, where in-silico bioprospect-
ing approach has been used to find novel enzymes, is 
given in Table 1. The current fast paced, high-throughput 
whole genome/metagenome sequencing has tremendously 
increased the biological database and thus the enzyme 
diversity. This diversity in turn has increased the com-
plexity and difficulty of finding a novel candidate. The 
in-silico bioprospecting process can be broadly divided 
into two steps: (i) Searching databases (ii) Using Bioin-
formatics tools to screen, analyse and shortlist prospective 
candidates.

Step 1: Searching Databases

This can be performed by exploring databases using various 
search tools based on homology, conserved motif, consen-
sus guided approach, or simply keyword search. The search 
result can be further screened using filters, such as percent-
age identity, query coverage, e-value. For example, a key-
word search in NCBI protein database can be performed, 
followed by filtering the results to show candidates between 
30 and 80% identity with query coverage > 95%. Gupta 
et al. [11] used keywords such as ‘Hypothetical Protein of 
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Fig. 1  Methods of enzyme bioprospecting
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Table 1  In-silico bioprospecting approach used to find novel enzymes

Sr. no. Enzyme Approach/method Reference

1 Histidine acid phytase (HAP) Pfam identifier for the conserved domain Pfam00328 was used screen 
novel HAP metagenomes of the acidic peatland soil in Schlöppnerb-
runnen, in the Fichtelgebirge Mountains, Germany

Sequences were further manually analysed to examine the presence of 
the conserved motifs (RHGXRXP and HD) which were present in 
HAP phytase

Further Phylogenetic analysis and taxonomic affiliations given by using 
MAFFT online service, nBLAST, PhyloPythiaS online tool

Followed by Comparative homology modelling by using SWISS-
MODEL

Experimental validation

[8]

2 Aldehyde-deformylating oxygenase (ADO) Synechococcus elongatus PCC7942 used as the query sequence to 
screen for the presence of ado gene in the set of sequences of organ-
isms belonging to hot spring IMG/MER database

Structural and Functional analysis performed by using various 
Bioinformatics tools such as ExPASy translate tool for translating 
sequence, MEGA software for phylogenetic analysis

Adopted structure based protein engineering approach to improve 
thermostability

Experimental validation

[9]

3 Nitrilases Homology and motif based approach adopted for Genome screening
Insilico analysis of putative sequences
Experimental validation

[10]

4 Baeyer–Villiger and CYP153Monooxygenases Metagenomic dataset created by isolating DNA sample from 23 sedi-
ment samples from (i) Advent Fjord, Spitsbergen, Svalbard Archi-
pelago, Norway [NOR]; (ii) Port Värtahamnen, Stockholm, Baltic 
Sea, Sweden [SWE]; (iii) Ushuaia Bay, Tierra del Fuego Island, 
Argentina [ARG]; and (iv) Potter Cove, 25 de Mayo (King George) 
Island, Antarctica [ANT] was further submitted to IMG database

Pfam domains (PF00067 for Cytochrome P450 or PF00743 for Flavin-
binding monooxygenase-like) was used to screen this metagenomic 
dataset

Further Blastp analysis performed using well characterized enzyme 
and/or crystallized sequences as reference

Insilico characterization of putative sequences

[5]

5 Hypothetical protein Hypothetical Protein was searched using NCBI database using key-
words ‘Hypothetical Protein of Triticum aestivum’ or ‘Hypothetical 
Proteins of wheat’

Functional annotation of identified novel abiotic stress proteins of 
Triticum aestivum

[11]

6 Cellulose-and/or hemicellulose-degrading enzymes Functional metagenomics
Porcupine Microbiome metagenomic data created
Relevant protein sequences of interest were selected on the basis of 

domain conservation, low e-values- pHMMER & the Research Col-
laboratory for Structural Bioinformatics Protein Data Bank

Experimental validation of putative candidates

[12]

7 β-Glucosidase Metagenomic DNA library constructed
Search in the existing databases
Experimental validation

[13]

8 b-(1,3) Galactosyltransferases 20 putative b-(1,3)-GalT genes identified by performing tblastn using 
three Homo sapiens b-(1,3)-GalT sequences: GalT1 (Q9Y5Z6), 
GalT2 (O43825), GalT4 (O96024) against Arabidopsis thaliana 
sequence database at NCBI

Insilico characterization and experimental validation performed

[14]

9 Polyhydroxyalkanoate (PHA) synthase Complete or nearly full-length PHA synthase genes retrieved from 
MG-RAST database mangrove soil metagenomic data

Experimental Validation of novel and wide substrate specific PHA

[15]
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T. aestivum’, ‘Hypothetical Proteins of wheat’ in NCBI data-
base followed by manual screening to get unique protein 
candidates. After removing redundant entries, unique can-
didates were further subjected to physicochemical, locali-
zation, function and domain analysis. In another database 
search, keywords such hydroxybutyrate, hydroxyalkanoate, 
hydroxyalkanoic, PHA and PHB were used as input [15]. 
Another common approach practiced by researcher is 
to search biological databases using a known candidate 
enzyme sequence. While choosing a potential enzyme 
gene sequence, it is of utmost importance to select a full 
length protein sequence having conserved domains, as many 
incomplete sequences annotated in database do not code for 
a functional protein, when checked experimentally. Also, in 
the search result, the selected candidate’s sequence similar-
ity should not be very high with known sequence. This is to 
ensure that a novel candidate is shortlisted and not a close 
homologue of a known sequence. In the similarity search 
result, the hits with > 90 identity are very closely related, 
sources like different species of same family, and it is more 
likely that they are very similar. But, the hits with ~ 80% 
identity or lower are those candidates who are different from 
the query candidates, not closely related, but do have con-
served sequences similar to known candidates. This ensures 
that novel candidates are chosen, which is predicted to retain 
the enzyme activity but is different from the search query. 
There have been reports where researchers had selected 
candidates with sequence similarity as low as 40 percent. 
Sharma et al. [10] searched novel sources of nitrilases from 
microbial genomes by adopting homology-based approach 
and selected sequences which exhibited > 30% and < 80% 
identity. The shortlisted search results need to be confirmed 
for a complete coding sequence or sequences. For example, 
shortlisted candidates of nitrilase were checked by GenMark 
S tool to verify complete coding sequences or sequences 
[10]. Since the protein length information is available for 
the input sequence, the search results should be restricted 
to length closer to the input sequence length. In case of 
nitrilases, sequences with less than 100 amino acids were 
considered as false positive and were discarded [10]. In 
another instance, sequences less than 250 amino acids were 
excluded to find novel BVMO (Bayer-Villiger Monooxy-
genases) enzyme [5]. For PHA synthase, sequences with 
~ 120 to 260 bp were considered as prospective candidate in 
a database search [15]. These search filters along with others 
like e-value, can aid in gathering positive sequences which 
could code for functional enzyme of appropriate length and 
reduces the chance of false discovery or random or irrelevant 
search result.

In certain cases, designing motif from selected pro-
tein sequences [e.g. by using MAST (Motif Alignment and 
Search Tool) at MEME suite] can be used to search bacterial 
genome. For example, Homology-based approach and motif 

search resulted in the identification of 138 putative/hypotheti-
cal protein sequences which had potential to code for nitrilase 
[10]. Vaquero et al. [16] also adopted homology-based strat-
egy to screen for novel CalB-type lipase in fungal genomes 
using blastp algorithm, against JGI and NCBI databases, 
with e-value cut-off as  10−2. In the same study, conserved 
motif approach failed to identify putative lipase gene due to 
absence of conserved sequence motif generated by MEME 
software. Therefore, different individual strategies or combina-
tions should be implemented in the process of finding novel 
putative enzymes. Consensus-guided approach, using Pfam 
domain, can also be used to search databases for the presence 
of particular enzyme family. Consensus-guided approach was 
adopted by Shakeel et al. [9] to obtain heat stable alkane-pro-
ducing enzymes, using ado gene from Synechococcus elon-
gatus PCC7942 as a query to search IMG/MER hot spring 
database. A consensus sequence was generated from the list of 
homologous sequences using Bioinformatics tools, which was 
further validated computationally and experimentally.

Specific datasets like metagenomes from various eco-
systems can also be searched for obtaining novel enzymes. 
Around 264 putative monooxygenases were obtained when 
Pfam domain and blastp search were used to search BVMO 
[5] from ~ 14 million protein-coding sequences present in 
metagenomic dataset of cold marine sediments [5]. Metage-
nome data of mangrove soil were explored to find polyhy-
droxyalkanoate (PHA) synthase genes [15]. Adam et al. [17] 
reported a novel activity-based approach to screen  H2-uptake 
enzyme from hydrothermal Metagenome. Toyama et al. [13] 
reported a novel β-glucosidase from microbial Metagenome 
of a lake in Amazon. Tan et al. [6] reported a novel ther-
mostable phytase using bioinformatics approach which was 
screened from Metagenome database. Various steps and 
approaches used in gene mining from Metagenome data have 
been discussed and reviewed recently and reader is referred 
to these articles and reviews [18, 19] for details.

The steps of in-silico bioprospecting can be modified 
as per the desired property of enzyme. For example, if a 
thermostable enzyme is desirable, but the known enzyme 
reported is not thermostable, the similarity searches in 
thermophiles will be useful to find putative thermostable 
enzymes. It has been commonly observed that the thermo-
stable enzyme sequences are different from their mesophilic 
counterpart. The putative thermophilic candidates searched 
this way should be further analysed (discussed in Step 2) to 
make sure that residues important for structure and functions 
are conserved.

Step 2: Using Bioinformatics Tools to Screen, 
Analyse and Shortlist Prospective Candidates

Once the primary list has been generated using vari-
ous database search approaches, the next step will be to 



57Molecular Biotechnology (2019) 61:53–59 

1 3

analyse their physiochemical, phylogenetic and functional 
properties using different bioinformatics tools. ProtParam 
software using ExPASy server is widely used to access 
physiochemical properties (such as the molecular weight, 
theoretical pI, amino acid composition, atomic composi-
tion, extinction coefficient, estimated half-life, instability 
index, aliphatic index, and grand average of hydropathicity 
(GRAVY) of putative candidates [10, 11, 20]). Predicted 
values of all parameters of putative enzyme(s) are com-
pared to the well characterized enzyme which affects the 
confidence level to study the putative enzyme(s) experi-
mentally. For example, ProtParam predicted physiochemi-
cal properties of 138 putative nitrilases with in the range 
of well-characterized nitrilases [10]. All the parameters 
are based on protein sequence i.e. sequence-dependent 
analysis; therefore, it is necessary to get complete or nearly 
complete sequence for accurate analysis and prediction of 
various physiochemical properties.

Phylogenetic analysis can be performed using tools like 
Molecular Evolutionary Genetics Analysis (MEGA) [11, 
15, 16, 21]. For example, phylogenetic analysis of selected 
putative candidates belonging to CalB-family grouped 
putative lipases in to different clusters of known lipases 
depending upon its evolutionary closeness [16], thus help-
ing in deciding on novel and unique candidates. Struc-
tural modelling of putative candidates can be performed 
using SWISS-MODEL server or MODELLER v9.15 soft-
ware [21]. Vaquoro et al. [16] used CalB as template to 
model PlicB, which exhibits 30% sequence identity and 
44% similarity. The information about structure and resi-
due conservation prediction is only possible if structural 
data of protein homologues are available through crystal 
structures. Hence, persistent exploration and enrichment 
of databases are necessary for in-silico bioprospecting of 
novel enzymes.

There are other tools which can predict structural infor-
mation such as signal peptide (e.g. Signal P) or disulphide 
linkages (e.g. DiANNA). DiANNA 1.1 web server predicted 
two disulpfide bonds in PlicB whereas CalB and Uml2 lacks 
disulfide bonds [16]. Protein functional domains and fam-
ilies are studied by comparing list of putative enzyme(s) 
against databases like Pfam, CATH, SVM-Prot, CDART, 
SMART. In one study, hypothetical proteins (HPs) were 
explored using tools based on domain architecture and pro-
files [11]. Out of 124 HPs, 77 sequences were annotated with 
high confidence by using Pfam, CATH, SVM-Prot, CDART, 
SMART and ProtoNet, and among them, 16 were predicted 
as enzymes. Functional protein network provides informa-
tion about the association of hypothetical/putative protein(s) 
with the known functional protein, which can be generated 
by STRING database. In the study conducted by Gupta et al. 
[11], it was found that the predicted HPs such as HAV22 
(Q7XAP6) and F-box protein (D0QEJ9) were interacting 

with other proteins of the STRING database such as protein 
4,345,793 of Oryza sativa subsp. Japonica.

Analysing the putative candidates using bioinformatic 
tools provides clarity and help in selecting those candidates 
which are structurally and functionally more suitable, novel 
and unique. Following the sequence selection, candidates 
are validated for desired properties by cloning and express-
ing them in artificial expression systems followed by physi-
ochemical characterization of enzyme [6, 13]. Apart from 
in-silico bioprospecting, enzymes with desired properties 
such as high activity [22, 23], substrate specificity [24] 
and stability [25, 26] can also be obtained by modifying 
the existing enzyme using mutagenesis via directed evolu-
tion, rational or semi-rational approaches [27–35]. Random 
mutagenesis of a single gene can be done by chemical, error 
prone-PCR or saturation mutagenesis, or by using mutator 
strains. On the other hand, gene recombination approach 
can be applied with more than one related gene sequences, 
using tools like DNA shuffling, Random Chimeragenesis on 
Transient Templates (RACHITT), Exon shuffling, incremen-
tal truncation for the creation of hybrid enzymes (ITCHY), 
Sequence Homology-Independent Protein Recombination 
(SHIPREC). The reader is referred to review by Rubin-pital 
et al. [31] for details about these processes, their advantages 
and drawbacks. Recent developments along with additions 
of rational component have resulted in faster selection meth-
ods and maximized qualities of libraries with more relevant 
mutations [36]. Rational mutagenesis to improve enzyme 
property has been attempted in recent years to obtain the 
desired property; however, the phenotype of certain muta-
tions is still beyond the current understanding of enzyme 
structure and function.

Conclusion

In the past few years, enzyme production and research have 
taken a major leap and a vast number of potential enzymes 
are available in market and are produced at industrial scale. 
Reports are being continuously published related to the 
screening and finding newer and better enzymes. How-
ever, it is generally observed that wild-type enzymes are 
not directly applicable for an industrial process. In the com-
ing years, it is expected that more industrially important 
enzymes will be discovered or engineered that can satisfy 
the ever-growing demand of enzymes. The availability of 
various expression vectors, host and systems has increased 
the possibility of expressing a gene artificially in a host of 
our choice. However, protein expression even in bacterial 
host like E. coli can be challenging many times [37, 38]. 
The diversity of enzymes present in databases indicates 
that the present knowledge of structure and function is 
vast but far from complete. The last two decades has seen 



58 Molecular Biotechnology (2019) 61:53–59

1 3

tremendous growth in protein structural information, and 
expression systems and tools have enriched in large, but we 
still require more information to understand and utilize it 
to its full potential. With the rise in molecular techniques, 
enzyme improvement by protein engineering has taken a big 
leap [35]. Drastic improvement in enzymatic properties like 
activity and stability has been witnessed by using methods 
of directed evolution or rational mutagenesis. With the cur-
rent knowledge of enzyme structure and function, it is still 
a challenging task to pursue a rational approach of enzyme 
engineering in every case to improve their properties. Efforts 
should be more focussed towards solving enzyme crystal 
structures and expanding our knowledge and understanding 
of enzyme function and properties. The pace of structure 
information cannot be compared with the way new genes or 
proteins are being discovered, but attempts can be made to 
improve it further. Generating and analysing diverse crys-
tallographic data will help in understanding the enzymes in 
greater details, and also, will help in rational engineering 
of the enzyme for improved properties. There is an urgent 
demand for developing new tools and pipelines which can 
handle and analyse the exponentially growing database, 
and related experimental literature, with minimal manual 
intervention. This will help in discovering novel and better 
enzymes comparatively faster with high success rate.
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