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Abstract
Treatment with chimeric antigen receptor (CAR) T cells indicated remarkable clinical responses with liquid cancers such as 
hematological malignancies; however, their therapeutic efficacy faced with many challenges in solid tumors due to severe 
toxicities, antigen evasion, restricted and limited tumor tissue trafficking and infiltration, and, more importantly, immunosup-
pressive tumor microenvironment (TME) factors that impair the CAR T-cell function adds support survival of cancer stem 
cells (CSCs), responsible for tumor recurrence and resistance to current cancer therapies. Therefore, in-depth identification 
of TME and development of more potent CAR platform targeting CSCs may overcome the raised challenges, as presented 
in this review. We also discuss recent stemness-based innovations in CAR T-cell production and engineering to improve 
their efficacy in vivo, and finally, we propose solutions and strategies such as oncolytic virus-based therapy and combination 
therapy to revive the function of CAR T-cell therapy, especially in TME of solid tumors in future.
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PBMC	� Peripheral blood mononuclear cell
MDSCs	� Myeloid-derived suppressor cells
OV	� Oncolytic virus
TAAs	� Tumor-associated antigens
TAMs	� Tumor-associated macrophages
TILs	� Tumor-infiltrating lymphocytes
TME	� Tumor microenvironment

Introduction

Immunosuppressive tumor microenvironment (TME) due 
to molecular and cellular effectors, upregulation of inhibi-
tory signaling pathways versus activating responses, and 
poor antigenicity of tumor cells all limited the antitumor 
responses delivered by both host normal immune T cells 
and transferred TILs (tumor infiltrated lymphocytes) dur-
ing adoptive cell therapy (ACT) [1, 2]. These limitations 
have motivated immunologists and oncologists to introduce 
now approved immune checkpoint inhibitors (ICIs) and 
also to develop alternative ACT by engineering chimeric 
antigen receptors (CARs) expressed on T cells ex vivo to 
target tumor-associated antigens (TAAs) on the surface of 
tumor cells in vivo [2]. Over time and depending on the 
number and type of signaling domains, fourth-generation 
CAR T cells are developed that are enhanced to induce more 
enhanced cytolytic activity while producing inflammatory 
interleukins (ILs) (e.g., IL-12 and IL-15) and reprogrammed 
to have long-term survival of CAR T cells in the TME [3].

Until now, the CAR T-cell therapy was approved by 
FDA and limited only for hematologic tumors and targeting 
CD19 antigen on B cell (i.e., KYMRIAH and YESCARTA). 
KYMRIAH is a CD19-directed engineered autologous 
T-cell immunotherapy indicated for the treatment of adult 
patients with relapsed or refractory follicular lymphoma 
after two or more lines of therapy. YESCARTA is also a 
CD19-targeted autologous T-cell immunotherapy for adults 
with large B-cell lymphoma who are refractory to first-line 
chemo-immunotherapy or have relapsed within 12 months 
of first-line chemo-immunotherapy. However, preclinical 
studies indicated that the efficacy of CAR T-cell therapy 
of solid tumors is limited by several factors, including the 
selection of specific targetable antigens or epitopes, pro-
duction of potentiated CAR, effective lymphodepletion, 
and infiltration, tumor homing, and survival of CAR T cells 
in the TME [4]. Therefore, profound solutions are needed 
to increase the chances of treating solid tumors with CAR 
T-cell immunotherapy.

Considering the survival of administered CAR T cells 
in vivo, selection of sources with stemness properties and 
reprogramming of mature cells into stem cells are exam-
ples of promising strategies under investigation, as dis-
cussed in this review. Moreover, the development of CAR 

T cells targeting the population of cancer stem cells (CSCs) 
involved in tumorigenesis, metastasis, tumor recurrence, 
and resistance to conventional therapies is an alternative 
way to eradicate established solid tumors, as investigated in 
recent years and summarized here. Finally, combination of 
CAR T-cell therapy with powerful therapies such as ICIs, 
oncolytic virotherapy, and chemo/radiotherapy is perspective 
strategy for enhancing CAR T-cell functions against resistant 
solid tumors that we presented this review.

CAR T cells targeting resistant CSCs and TME

Similar to non-CSCs, CSCs express the cell surface antigens 
that could be targeted by CAR T cells in an HLA-independ-
ent manner, and preclinical and clinical studies have inves-
tigated to achieve an effective outcome [5, 6]. It should be 
noted that CSCs are heterogeneous cells for the expression 
or even non-expression of targeted antigens, different types 
of CSCs in many tumors express different pattern of TAAs, 
and moreover, CSCs may express the antigens shared with 
normal stem cell, which resulted in off-target toxicity [7] 
(Fig. 1a). Overcoming these challenges requires the develop-
ment of new generations of CAR T cells, such as the selec-
tion of antigens with high expression levels compared to 
normal or CSC-specific antigens and the discovery of new 
CSC surface antigens [8, 9]. There are some CSCs mark-
ers that can be specifically targeted by monoclonal antibod-
ies (mAb) for CSCs enrichment and identification and also 
immunotherapies by CAR T cells in clinical and preclinical 
studies (Table 1).

CD133, or prominin-1, is a transmembrane glycoprotein 
found in CSCs of human tumors and drive resistance to 
chemotherapeutic agents that treatment with CD133-targeted 
CAR T cells resulted eradication of glioblastoma CSCs as 
well as off-tumor toxicity, as CD133 is expressed on nor-
mal neural stem cells [10]. Epithelial cell adhesion molecule 
(EpCAM) or CD326 is frequently overexpressed in tumor-
initiating cells or CSCs and its overexpression is correlated 
with activation of Wnt/β-catenin signaling in CSCs [11, 12]. 
Therefore, EpCAM may represent a promising target for 
immunotherapy of EpCAM-expressing tumorigenic CSCs. 
For examples, CSC of liver and colorectal cancer express 
another transmembrane glycoprotein called EpCAM that 
its targeting by EpCAM-specific CAR T cells demonstrated 
the potential to inhibit tumor growth in EpCAM+ tumor 
xenografts while inducing secretion of cytotoxic cytokines 
such as TNF-α and IFN-γ [13]. In addition, CD123-directed 
CAR T cells have the potential to be highly effective in the 
elimination of CD123 + leukemic CSCs in a primary AML 
model [14].

However, targeting these markers has different safety 
issues and requires the identification and engineering of 
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CAR T cells targeting only potent CSC markers such as 
CD271, LGR5, TIM-3, CD13, and CD105 (Fig. 1b). Over-
expression of LGR5 (leucine-rich repeat-containing, G 
protein-coupled receptor 5) was strikingly correlated with 
human cancer recurrence, and application of the anti-LGR5 
mAb-drug conjugate demonstrated inhibition of tumor 
growth in both in vitro and in vivo models [22]. In addition, 
the low expression of critical CSC-specific antigens limits 
the efficacy of therapies, and thus targeting surface mark-
ers that drive stemness or reprogramming in cancer cells 
enhances the function of CAR T cells to selectively target 
and eliminate these CSCs. For example, c-Met is a recep-
tor tyrosine kinase that induces the expression of stem cell 
reprogramming factors (i.e., Nanog, SOX2, and CD133) 
and their targeting by kinase inhibitor [23] and CAR T 
cells [24] potently suppressed the growth of MET + CSCs 
in xenograft tumors. Considering the tumor-supportive 
role of tumor-associated macrophages (TAMs) in the TME 
of solid tumors, targeting antigens such as TIM-3 (T-cell 
immunoglobulin mucin-3) expressed on the surface of both 
TAMs and CSCs may be a promising approach for the treat-
ment of human tumors [25] (Fig. 1c). TAMs also support 
CSCs in breast cancer by upregulating stemness drivers 
such as SOX2, OCT4, and NANOG [26]. Human myeloid-
derived suppressor cells (MDSCs) are myeloid-originated 
progenitor cells that are classified into two subsets known 
as monocytic MDSCs and polymorphonuclear MDSCs. 
CD11b+ CD14− CD33+ MDSCs secrete cytokines and 
chemokines in TME providing immunosuppressive niche 
and thus reducing the efficacy of immunotherapy [6]. CSCs 
activating mTOR [27] and TGFβ1signaling pathways 

promoted infiltration, accumulation, and expansion of 
MDSCs in tumor site [28], which followed by impairment 
of T-cell responses. Reciprocally, MDSCs contribute to the 
stemness and survival of CSCs through the production of 
tumor-supportive PEG-E2 (prostaglandin E2) [29]. Regu-
latory T cells (Treg) are a T-cell-derived subset that has 
been shown to have multiple mechanisms of crosstalk with 
CSCs to promote an immunosuppressive TME [6]. Similar 
to MDSCs, PEG-E2 induces FOXP3+ CD4+ CD25+ Tregs 
to generate COX-2, suppressing the failure of effector T 
cells in cancer immunotherapy [30]. Tregs, mainly by 
secreting inhibitory cytokines such as TGF-β and IL-10, 
suppress CAR T cells, endogenous T cells and a variety of 
other immune cells [31]. Therefore, depleting (e.g., using 
cyclophosphamide or fludarabine) and targeting Tregs 
(e.g., CTLA-4 inhibition or CD25-targeting) may become 
an important aspect of CAR T-cell therapy for PDAC. 
These findings revealed that the TAM/Treg/MDSC-CSCs 
interaction reshapes the stemness in tumor cells resulting in 
tumor formation and progression and also opens the field for 
enhancing the antitumor potentials of CAR T cells targeting 
stemness markers in CSCs.

Challenges and perspectives approaches 
to improve CAR T cells targeting CSCs

CAR production and CAR T‑cell expansion

Moreover, produced adenosine in hypoxic solid tumor 
mediated the reduction of IFN-supported CD8+ or CAR 

Fig. 1   Development of CAR T 
cells targeting CSCs. a Convec-
tion CAR T cells developed to 
target common TAA on CSCs 
and induce apoptosis. b Modi-
fied CAR T cells developed to 
target specific stemness markers 
or antigens on CSCs and induce 
apoptosis. c Engineering CAR T 
cells to dual-target CSC-specific 
antigens and markers of any 
immunosuppressive cells in the 
TME such as Tregs, MDSCs, 
and TAMs. CAR​ chimeric anti-
gen receptor, CSCs cancer stem 
cells, MDSCs myeloid-derived 
suppressor cells, TAAs tumor-
associated antigens, TAMs 
tumor-associated macrophages, 
TME tumor microenvironment
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T-cell cytotoxicity. Therefore, the production of adenosine 
receptor-negative CAR T cells by applying CRISPR/Cas9 
technology resulted in the generation of adenosine-resist-
ant CAR T cells with enhanced antitumor function in vivo 
[32]. The antitumor responses of infused CAR T cells are 
also limited by their poor persistence in vivo, which could 
be improved by producing CAR T cells with memory or 
stem-like phenotypes that have long-term survival in vivo 
(Fig. 2a). These phenotypes could be achieved by stemness-
related factor, metabolic, marker-based reprogramming of 
CAR T cells ex vivo. In clinical trials, CAR T cells that 
utilize oxidative phosphorylation (OXPHOS) have shown 
improved patient responses. Metabolically, strategies that 
redirect metabolism from glycolysis to OXPHOS/FAO or 
enhance mitochondrial fusion by blocking fission factors 
have shown promise. Restriction of glycolysis in favor of 
OXPHOS and FAO can be achieved by limiting glucose 
uptake, blocking glycolytic enzymes, or inhibiting positive 
regulators of glycolysis. Loss-of-function strategies, small 
molecule inhibitors, or upregulation of negative regulators 
are used in such approaches [33]. For example, glutamine 
promotes the differentiation of memory T cells into mature 
T cells and thus incubation of the source of CAR T cells 
with the inhibitor of glutamine uptake maintained these cells 
in memory-like phenotype with long persistence and better 
cytotoxic function in vivo [34].

Interestingly, transduction of αβ or γδ TCR into induced 
pluripotent stem cells (iPSCs) resulted in the production 
of iPSC-derived T-cell products with low cytotoxic func-
tion but long-term persistence due to their reprogrammed 
stemness properties [35, 36] (Fig. 2b). Indeed, the low 

cytotoxic function of CAR T-iPSCs is due to the rearrange-
ment of TCR genes during iPSC manipulation, which sub-
sequently produces the antigen specificity of effector T cells. 
This challenge could be overcome by using genome editing 
tools such as CRISPR to knock out RAG2 (recombinase gene 
2), which is responsible for additional TCR rearrangement 
in T-iPSCs [37]. Overall, stem cell-like T cells and CAR 
T-iPSCs appear to be attractive products for fractionated cell 
therapy given their potentials to differentiate cells presenting 
long-term persistence in vivo such as memory and effector 
T cells as well as introducing a powerful resource toward 
improving current CAR T-cell therapy in the clinic.

Combination therapy

The immunosuppressive TME impaired the activity of 
transfused CAR T cells in vivo, which could be addressed 
by applying combination therapies. Oncolytic viruses are 
another live platform that is being considered as an immu-
notherapy approach within the ability to infect and lyse can-
cer cells [38]. OVs induce antitumor immune responses by 
releasing pathogen-associated molecular patterns (PAMPs) 
and damage-associated molecular patterns (DAMPs) in 
tumor niches, followed by interaction of AMPs/DAMPs 
and pattern recognition receptors (PRRs) in cancer or innate 
immune cells and expression of proinflammatory cytokines 
to activate immunosuppressive TME [39, 40]. OVs can pro-
mote the intratumoral infiltration and expansion of effector 
immune cells [41], which could be used in cancer therapy 
to enhance the efficacy of CAR T-cell therapy (Fig. 3a). In 
addition, OVs engineered to express chemokines such as 

Fig. 2   Prospective methods to 
improve CAR T-cell persistence 
against CSC-specific antigens. a 
Short-lived T cells isolated from 
tumor mass, expanded ex vivo, 
and genetically CAR engineered 
plus induction of stemness 
factors to generate stem-like 
CAR T cells with long-term 
persistence in vivo while target-
ing CSC-specific markers. b 
T-iPSC-derived CAR T cells 
can be generated by repro-
gramming, differentiation, and 
genetic CAR engineering of 
TILs to present long and supe-
rior anti-CSC activity in vivo
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CCL5, CXCL11, and CXCR3 ligand recruited CAR T cells 
to the tumor site and facilitated their antitumor activity [42, 
43].

OVs directly lyse tumor cells, and with respect to CSCs, 
the Zika virus (ZIKV) and herpesvirus (HSV) have dem-
onstrated the potential to target and kill glioblastoma CSCs 
[44]. OVs also induce the secretion of proinflammatory IFNs 
and ILs in the immunosuppressive TME or with cytokine-
armed OVs, both of which contribute to the survival and 
expansion of CAR T cells and enhance their cytotoxic effects 
[38, 45, 46] (Fig. 3b). In fact, OVs activate apoptosis or 
lysis of tumor cells, resulting in the release of PAMPs and 
DAMPs, which are recognized by PRRs such as Toll-like 
receptors (TLRs) on immune cells, as well as the produc-
tion of proinflammatory cytokines (such as type I IFNs, 
IL-1β/6/12, TNF-α and GM-CSF) and chemokines (such 
as CCL2/3/5 and CXCL10), all leading to the formation of 
a proinflammatory TME [47]. In addition, some CSCs are 
negative for markers that are selected for CAR, and OVs 
as carriers can provide expression of that specific marker 

on the surface of CSCs or tumor cells to enhance the anti-
tumor activity of CAR T-cell therapy [48] (Fig. 3c). OVs 
also induce the expression of PD1/PD-L1, which sensitizes 
tumor cells to ICI therapy [44] and provides the combination 
therapies of OV, ICI, and CAR T cells. Taken together, OVs 
induce a switch from “cold” TME to “hot” TME by facilitat-
ing the recruitment of effector immune cells and activating 
systemic antitumor adaptive immunity to suppress tumor 
growth [49, 50]. Promising results of oncolytic virotherapy 
in combination with CAR T cells in preclinical studies for 
solid tumors lead to initiation of related ongoing clinical 
trials (Trials ID: NCT03740256 and NCT01953900).

Considering the plasticity of CSCs and the insufficiency 
of CAR T-cell monotherapy to completely and potently 
eliminate resistant tumor cells or CSCs, combination ther-
apy with other standard radio/chemotherapy regimens may 
also be highly effective for CSC eradication. For example, 
treatment with local radiotherapy followed by infusion of 
NKG2D CAR T cells produced synergistic antitumor activ-
ity in a glioma model, indicating that radiotherapy promoted 

Fig. 3   Prospective pathways that Oncolytic virus (OV) and CAR 
T cells combination therapy can target and kill the CSCs in solid 
tumors. a OVs converted immunosuppressive and cold TME to the 
immunosuppressive and hot once by recruiting inflammatory immune 
cells and thus may promoted the infiltration of CAR T cells into 
tumor site for targeting and elimination of CSCs. b Co-treatment 

of cancer cells with oncolytic viruses lead to overproduction of 
cytokines (ILs and IFNs) that augmented the antitumor activity of 
infused CAR T cells. c Genetic engineering of oncolytic viruses with 
DNA encoding the CSC-specific marker can promote effector func-
tions of CAR T cells to bind and kill CSCs
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the infiltration of CAR T cells to the tumor site to exert 
their effector functions [51]. Similar to OVs, the combina-
tion of CSC-targeted CAR T-cell therapies with agents that 
induce the expression of CSC-specific antigens may over-
come the obstacle posed by CSCs’ loss of the target antigen 
[52]. Finally, PD-1/PD-L1 overexpression resulted in CAR 
T-cell exhaustion in the TME [53], and the combination of 
CD19 CAR T-cell therapy and PD-1 blockade improved the 
survival and function of immunosuppressive-resistant CAR 
T cells in vivo [54]. In addition, M2 macrophages expressing 
PD-L1 limited the CAR T-cell activity that PD-L1 blockade 
in combination with CAR T-cell therapy resulted in a phe-
notypic shift toward more M1-like subsets and a loss of M2 
macrophages through IFN-γ signaling, leading to enhanced 
antitumor activity of CAR T cells [55]. The combination 
of CAR T cells and ICI has proven to be safe and effec-
tive in hematological malignancies. However, the efficacy 
and safety of combining ICI and CAR T-cell therapies in 
advanced solid tumors has not been well established. With 
regard to the aforementioned advantages, several trials 
(NCT04003649, NCT03726515) are underway to evaluate 
the safety and efficacy of CAR T cell and ICI combinations 
in solid tumors, including glioblastoma. Overall, combina-
tion therapies provide durable expansion and function of 
CAR T cells in tumor-supportive TME, while limiting resist-
ance mechanisms and toxicities at low desired doses of CAR 
T-cell infusion.

Safety issues

Besides the side effects such as cytokine release syndrome 
(CRS), the VH and VL domains of CAR, the scFv of a mAb 
or, can induce the production of anti-scFv antibodies and 
thus reduce their antitumor effect. Instead of the complete 
scFv, the construction of an extracellular domain consist-
ing of a single variable domain on a heavy chain (VHH) 
resulted in nanobody as the targeting domain of CARs with 
the required functions for recognition and binding of cell 
surface-expressed target antigens while overcoming the 
obstacle of neutralizing antibodies [56]. CAR T cells are 
indicated to target and eradicate CSCs, but CSCs express 
antigens that are shared with normal stem cells and other 
normal cells, leading to off-tumor toxicity. One strategy to 
overcome this challenge is the direct or intratumoral admin-
istration of CAR T cells [57]. However, this method is not 
possible for non-surface available in tumor tissues. Other 
strategies involve the development of multi-CAR T cells that 
target more than one marker in heterogeneous CSCs [58] or 
modified CAR T cells expressing inhibitory CARs (iCARs) 
such as PD-1 and CTLA-4, which are switched off when 
bound to normal cells in vivo [59, 60], or the production of 
suicide-inducible CAR T cells to overcome off-tumor toxic-
ity after infusion of CAR T cells [61]. Given the low density 

of TAA in normal cells, engineering CAR T cells with low 
affinity binding to TAA resulted in unbinding to normal cells 
and reduced cytotoxicity [62].

With regard to OV theory, patient safety is of paramount 
importance in cancer treatment, and treatment with onco-
lytic viruses appears to be the most promising in this regard. 
Completed trials have shown no dose-limiting toxicity. The 
major disadvantages of oncolytic viruses include fevers and 
flu-like symptoms, pre-existing antibodies, and OV replica-
tion in normal tissues, particularly the brain, especially in 
immunosuppressed cancer patients, which may hinder sys-
temic delivery of the virus [63]. To overcome this problem, 
it is necessary to deliver the OVs to their target using a cel-
lular vehicle, to suppress intracellular pathways associated 
with innate immunity by encoding one or two immunosup-
pressive genes of the wild-type OV in the OV vaccine, and to 
combine oncolytic therapy with immunosuppressive drugs 
[64].

Conclusion

Collectively, the suppressive TME impairs the cytotoxic-
ity of CAR T cells, whose therapeutic potential could be 
enhanced by designing CAR T cells to target multiple anti-
gens, re-expressing T engagers on the surface of memory T 
cells or iPSCs, reactivating the stemness or memory-induced 
pathway or genes in mature T cells, and combining them 
with other therapeutic modalities such as ICIs and OVs to 
enhance CAR T-cell trafficking and expansion at the tumor 
site, and combining them with other therapeutic modalities 
such as ICIs and OVs to enhance CAR T-cell trafficking 
and expansion at the tumor site, and also reprogramming 
the immunosuppressive TME at the molecular and cellular 
level into immunosuppressive once. Of note, the introduc-
tion of controllable keys to manage CAR T cells in case of 
adverse events is a critical safety recommendation for clini-
cal establishment.
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