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Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. The advent of epidermal growth factor receptor 
tyrosine kinase inhibitors (EGFR-TKIs) has significantly improved survival rates of patients with EGFR-mutant non-small 
cell lung cancer (NSCLC). However, as with other antitumor drugs, resistance to EGFR-TKIs is inevitably develops over 
time. Exosomes, extracellular vesicles with a 30–150 nm diameter, have emerged as vital mediators of intercellular com-
munication. Recent studies revealed that exosomes carry non-coding RNAs (ncRNAs), including circular RNA (circRNA), 
microRNA (miRNA), and long noncoding RNA (lncRNA), which contribute to the development of EGFR-TKIs resist-
ance. This review provides a comprehensive overview of the current research on exosomal ncRNAs mediating EGFR-TKIs 
resistance in EGFR-mutated NSCLC. In the future, detecting exosome ncRNAs can be used to monitor targeted therapy for 
NSCLC. Meanwhile, developing therapeutic regimens targeting these resistance mechanisms may provide additional clinical 
benefits to patients with EGFR-mutated NSCLC.
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Introduction

Lung cancer is the second most common malignancy and 
the leading cause of cancer-related death worldwide, with 
a mortality rate of approximately 18% [1]. Non-small cell 
lung cancer (NSCLC) accounts for approximately 80–85% 
of all lung cancers, with adenocarcinoma being a common 
pathological subtype [2]. Epidermal growth factor recep-
tor (EGFR) mutations, such as exon 19 deletion and exon 
21 L858R insertion mutation, occur in approximately 10 to 
44% of lung adenocarcinoma patients [3]. EGFR-tyrosine 
kinase inhibitors (EGFR-TKIs) have been approved as first-
line therapy for advanced lung adenocarcinoma patients 
with EGFR mutation [4]. While approximately 70% of lung 

adenocarcinoma patients with EGFR mutation can benefit 
from EGFR-TKIs, about 30% do not respond due to primary 
resistance [4]. Furthermore, acquired resistance to EGFR-
TKIs is inevitable, and most patients treated with first-line 
EGFR-TKIs have a progression-free survival of only 10 to 
13 months [5].

The EGFR-T790M mutation is the common cause of 
acquired resistance to first- and second-generation EGFR-
TKIs [6]. Osimertinib and other third-generation EGFR-
TKIs have effectively overcome acquired resistance caused 
by EGFR-T790M mutation [7]. However, acquired resistance 
to third-generation EGFR-TKIs is also inevitable. Several 
previous studies [8] have revealed mechanisms of acquired 
resistance to the third-generation EGFR-TKIs, includ-
ing EGFR-dependent mechanisms (such as EGFR C797S 
mutation, EGFR L718Q mutation) and EGFR-independent 
mechanisms (such as mesenchymal-epithelial transition 
factor (MET) and human epidermal growth factor recep-
tor 2 (HER2) amplification, small cell transformation, and 
epithelial-mesenchymal transition (EMT)).

Exosomes, ranging in diameter from 30 to 150 nm, are 
a type of extracellular vesicle produced by the endoplasmic 
reticulum pathway. They carry various proteins, nucleic 
acids, metabolites, and lipids from their parent cell [9]. 
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Exosomes play a crucial role in intercellular communica-
tion, influencing the function and physiological state of tar-
get cells, and are closely related to the occurrence and devel-
opment of tumors [10]. Previous studies have shown that 
exosomes secreted by EGFR-TKI resistant cells can transfer 
resistance to EGFR-TKI sensitive cells [11].

Non-coding RNAs (ncRNAs), including circular RNA 
(circRNA), microRNA (miRNA), and long non-coding RNA 
(lncRNA), have been identified as important players in the 
development of lung cancer [12]. Valadi et al. [13] discov-
ered exosomes protected miRNAs from RNase degradation. 

These provide conditions for exosomes to transmit ncRNA-
mediated resistance between cells. In recent years, several 
studies have shown that ncRNAs carried by exosomes medi-
ated resistance to EGFR-TKIs (Table 1) [14–16].

This review provides a comprehensive summary of cur-
rent research on exosomal ncRNAs, including circRNA, 
miRNA, and lncRNA, and their role in mediated EGFR-
TKIs resistance in EGFR-mutated NSCLC (Fig.  1). In 
the future, the detecting exosomal ncRNAs may serve as 
a useful tool for monitoring targeted therapy for NSCLC. 
Meanwhile, developing therapeutic regimens targeting these 

Table 1   Exosomal non-coding RNAs-mediated EGFR-TKIs resistance in NSCLC with EGFR mutation

ROR1 RTK-like orphan receptor 1, EMT epithelial-mesenchymal transition, ATG7 autophagy-related protein 7, SOX2-OT SOX2 overlapping 
transcript, UCA1 urothelial carcinoma-associated 1, FOSL2 FOS-like 2, TAMs tumor-associated macrophages

Exosomal ncRNAs Origin Drugs Down/up Targets/Mechanisms References

cicrRNA
 circRNA_102481 PC9/GR and HCC827/ER cells Gefitinib/Erlotinib Up miR-30a-5p/ROR1 axis [14]

miRNA
 miR-214 PC-9GR cells Gefitinib Up Unknown [36]
 miR-21 H827R cells Gefitinib Up Unknown [15]
 miR-522-3p H1975 cells Gefitinib Up PI3K/AKT pathway [37]
 miR-210 HCC827-OR cells Osimertinib Up EMT [38]
 miR-564 PS-9/ZD cells Gefitinib Up Unknown [35]
 miR-658 PS-9/ZD cells Gefitinib Up MET gene [35]

lncRNA
 lncRNA MSTRG292666.16 M2-TAMs Osimertinib Up miR-6386-5p/MAPK8IP3 axis [68]
 lncRNASOX2-OT H1975 cells Osimertinib Up Macrophage M2-like polarization [16]
 lncRNA H19 HCC827 and HCC4006 cells Gefitinib Up Unknown [82]

HCC827 and A549 cells Erlotinib Up miRNA-615-3p/ATG7 axis [88]
 lncRNA UCA1 HCC827 and PC9 cells Gefitinib Up miR-143/FOSL2axis [96]

Fig. 1   Mechanisms of EGFR-
TKIs resistance mediated by 
exosomal non-coding RNAs. 
ROR1 RTK-like orphan receptor 
1, EMT epithelial-mesenchymal 
transition, ATG7 autophagy-
related protein 7, SOX2 OT 
SOX2 overlapping transcript, 
UCA1 urothelial carcinoma-
associated 1, FOSL2 FOS-like 2
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resistance mechanisms may provide additional clinical ben-
efits to patients with EGFR-mutated NSCLC.

Exosomal circRNA mediate EGFR‑TKIs 
resistance

Background

CircRNA is a covalent closed-loop non-coding RNA without 
3′ or 5′-end, which is not easily degraded by endonuclease 
and is stably expressed in vivo [17]. Various circRNAs are 
involved in lung cancer progression, metastasis, and drug 
resistance [18]. CircRNA can act as miRNA sponges to reg-
ulate the expression of target genes [19]. For instance, Han 
et al. [20] demonstrated that circRNA circRAD23B regu-
lates T-cell lymphoma invasion and metastasis 1 (TIAM1) 
and cyclin D2 (CCND2) by sponging miR-653-5p and 
miR-593-3p, respectively, and promotes the progression 
of NSCLC. In particular, exosomal circRNA derived from 
tumors plays a crucial regulatory role in developing and pro-
gressing neoplastic diseases [21].

Exosomal circRNA_102481 mediates gefitinib 
and erlotinib resistance

The expression of exosomal circRNA_102481 in the serum 
is significantly upregulated in NSCLC patients with gefi-
tinib and erlotinib resistance [14]. Moreover, the level of 
circRNA_102481 and miR-30a-5p in exosomes are closely 
related to tumor stage, tumor differentiation status, pro-
gression-free-survival (PFS), and overall survival (OS) in 
NSCLC [14]. MiR-30a-5p is considered a biomarker for 
NSCLC and has an anti-cancer effect in various tumors by 
attenuating the malignant phenotype of cells [22]. The RTK-
like orphan receptor 1 (ROR1) is a type-I membrane protein 
involved in tumor development [23]. ROR1 is overexpressed 
in various tumours and is associated with tumor growth and 
drug resistance [24]. Yang et al. [14] demonstrated that 
tumor-derived exosomal circRNA_102481 enhances ROR1 
expression by sponging miR-30a-5p, thereby promoting gefi-
tinib and erlotinib resistance (Table 1).

Currently, miR-30a-5p shows the potential to enhance the 
efficacy of EGFR-TKIs. Wang et al. [25] showed that miR-
30a-5p can improve EGFR-TKIs resistance in NSCLC by 
inhibiting the phosphatidylinositol-3-kinase/protein kinase B 
(PI3K/AKT) pathway. Yan et al. [26] demonstrated that miR-
30a-5p exerts inhibitory effects on the EMT and invasion 
of NSCLC by negatively regulating profilin-2. Therefore, 
miR-30a-5p may improve EGFR-TKIs resistance in NSCLC 
through multiple mechanisms based on current evidence. 
On the other hand, previous studies [27] have shown that 
ROR1 is also a potential target for improving EGFR-TKIs 

resistance. Liu et al. [28] demonstrated that ARI-1, a ROR1 
inhibitor, can improve the resistance of NSCLC to EGFR-
TKIs by modulating the PI3K/AKT/mammalian target of 
rapamycin (mTOR) signaling pathway. Notably, targeting 
ROR1 can also improve EGFR resistance by inhibiting 
EMT [29]. In conclusion, further investigation is warranted 
to explore the targeting of miR-30a-5p or ROR1 in NSCLC 
patients.

Exosomal miRNAs mediate EGFR‑TKIs 
resistance

Background

MiRNAs are small non-coding RNAs with 18 to 24 nucleo-
tides in lengths that regulate gene expression [30]. MiRNA 
can function as both oncogene and tumor suppressor gene 
[31]. MiRNA can regulate various biological processes, 
including cell proliferation, differentiation, and apoptosis 
[30]. MiRNAs can be used as cargo carried by exosomes 
and transported between cells to participate in tumor resist-
ance [32]. Previous studies [33] have shown that exosomal 
miRNA could affect the gene expression profile of cells and 
increase the drug resistance of donor cells. Importantly, 
exosomal miRNA can predict EGFR-TKIs resistance [34]. 
Azuma et  al. [35] demonstrated that exosomal miRNA 
from gefitinib-resistant cells can induce resistance in gefi-
tinib-sensitive cells. Several exosomal miRNAs carried by 
exosomes play an important role in EGFR-TKIs resistance 
[15, 36–38].

Exosomal miR‑214 mediates gefitinib resistance

MiR-214 is frequently upregulated in various tumor types, 
including ovarian cancer and esophageal squamous cell 
carcinoma, promoting tumor progression and drug resist-
ance [39]. Zhang et al. [36] discovered that miR-214 exhib-
ited significant upregulation in gefitinib-resistant cells and 
exosomes. Moreover, they demonstrated that the transfer 
of exosomal miR-214 from gefitinib-resistant cells to gefi-
tinib-sensitive cells could confer the resistant phenotype, 
ultimately leading to the development of gefitinib resist-
ance [36]. However, the signaling pathway through which 
exosomal miR-214 confers resistance to gefitinib remains 
unidentified [36]. Further clarification is necessary to eluci-
date the mechanisms by which exosomal miR-214 mediates 
resistance to gefitinib.

Previous studies [40] have shown that miR-214 medi-
ates gefitinib resistance by regulating the phosphatase and 
tensin homolog/AKT (PTEN/AKT) pathway. Liao et al. 
[41] demonstrated that miR-214 expression was higher in 
erlotinib-resistant cell lines compared to erlotinib-sensitive 
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cell lines in NSCLC. Down-regulation of miR-214 could 
reverse erlotinib resistance by enhancing homo sapiens LIM 
homeobox 6 (LHX6) expression [41]. Subsequently, Wang 
et al. [42] found that LHX6 affected EGFR-TKIs resistance 
by inhibiting Wnt/β-Catenin signaling pathway. These stud-
ies partially elucidate the mechanism underlying exosomal 
miR-214-mediated resistance to EGFR-TKIs.

It is worth mentioning that miR-214 has been reported 
to promote EMT and metastasis in lung adenocarcinoma 
[43]. Interestingly, Zhao et al. [44] proposed that miR-214 
functions as a suppressor in lung cancer by targeting car-
boxypeptidase D. Chen et al. [45] discovered that miR-214 
exerts inhibitory effects on the proliferation and progres-
sion of lung cancer by targeting Janus kinase 1 (JAK1). This 
paradoxical finding highlights the intricate role of miR-214 
in lung adenocarcinoma.

Exosomal miR‑21 mediates gefitinib resistance

MiR-21 can promote the progression of NSCLC [46] and 
can be used as a biomarker for tumor diagnosis and progno-
sis [47]. MiR-21 is overexpressed in gefitinib-resistant cells 
and patients with acquired EGFR-TKIs resistance [48]. The 
anti-tumor effect of EGFR-TKIs is mainly achieved through 
inhibition of EGFR downstream pathway, particularly the 
PI3K/AKT pathway [49]. Li et al. [48] demonstrated that 
miR-21 was involved in acquired resistance of EGFR-TKIs 
in NSCLC by downregulating PTEN and programmed cell 
death 4 (PDCD4) and activated the PI3K/AKT pathway. On 
the other hand, Liu et al. [37] showed that exosomes medi-
ate EGFR-T790M mutation-mediated EGFR-TKIs resistance 
by activating the PI3K/AKT signaling pathway. Jing et al. 
[15] demonstrated that gefitinib-resistant cells can affect 
gefitinib-sensitive cells by secreting exosomes, with miR-21 
being a crucial medium. Thus, exosomal MiR-21 can medi-
ate acquired resistance to gefitinib, possibly by activating the 
PI3K/AKT signaling pathway.

The mechanism underlying exosomal miR-21-mediated 
resistance to EGFR-TKIs may be complex [50]. Firstly, 
exosomal miR-21 can induce resistance to EGFR-TKIs 
by promoting an immunosuppressive tumor microenvi-
ronment (TME). Studies [51] have shown that exosomal 
miR-21 derived from hypoxia pre-challenged mesenchymal 
stem cells can promote the progression of NSCLC and the 
M2-like polarization of macrophages. Furthermore, miR-21 
plays a crucial role in an essential pathway associated with 
resistance to EGFR-TKIs. Huang et al. [52] discovered that 
the MAP kinase-ERK kinase/extracellular-signal-regulated 
kinase/miR-21 (MEK/ERK/miR-21) signaling pathway pro-
motes resistance to osimertinib in NSCLC. Finally, miR-21 
has been confirmed to be associated with EMT in lung can-
cer [53], which may represent one of the potential mecha-
nisms underlying exosomal miR-21-mediated resistance to 

EGFR-TKIs. Targeting miR-21 may be a potential strategy 
for overcoming EGFR-TKIs resistance in NSCLC. Consist-
ent with this hypothesis, Zhang et al. [54] demonstrated the 
improvement of EGFR-TKIs resistance in NSCLC by target-
ing miR-21.

Exosomal miR‑522‑3p mediates gefitinib resistance

The expression of miR-522-3p in H1975 cells and exosomes 
was significantly higher than in PC9 cells and exosomes 
[37]. Liu et al. [37] demonstrated that H1975 cells secreted 
exosomes carrying miR-522-3p to induce gefitinib resist-
ance through the activation of the PI3K/AKT signaling 
pathway. Notably, EMT is also one of the mechanisms of 
acquired resistance to EGFR-TKIs [55]. The wound healing 
experiment by Liu et al. [37] showed that gefitinib resistance 
induced by exosomes secreted by H1975 cells was unrelated 
to EMT. Small clusters of drug-resistant cells may transmit 
drug-resistant phenotypes via exosomes in patients with 
NSCLC, and miR-522-3p may be one of the key mediators, 
which needs to be verified in further trials [56]. Importantly, 
Jin et al. [57] found that Bufalin could inhibit the progres-
sion of NSCLC by regulating the circ_0046264/miR-522-3p 
axis. Targeting miR-522-3p represents a potential strategy 
for improving the resistance of EGFR-TKIs in NSCLC.

Exosomal miR‑210 mediates osimertinib resistance

Transforming growth factor-beta (TGF-β), as a strong 
inducer of EMT [58], leads to acquired resistance to EGFR-
TKIs by inducing EMT [59]. Recent research has found that 
miR-210-3p could induce EMT in HCC827 cells indepen-
dently of TGF-β [38]. Hisakane et al. [38] found that exo-
somal miR-210 was highly expressed in osimertinib-resist-
ant cells and their exosomes, and the transfer of exosomal 
miR-210 secreted by osimertinib-resistant NSCLC cells can 
induce EMT and drug resistance in osimertinib-sensitive 
cells. This indicates that exosomal miRNA can cause EGFR-
TKIs resistance by transferring resistance phenotypes and 
mediating EGFR-TKIs resistance by modulating the TME 
[60].

Exosomal miR‑564 and miR‑658 mediate gefitinib 
resistance

Azuma et al. [35] compared miRNA expression between 
exosomes secreted by gefitinib-sensitive cells and those 
secreted by gefitinib-resistant cells and found that miR-564 
and miR-658 could confer a gefitinib-resistant phenotype. In 
addition, exosomal miR-658 may be involved in the upregula-
tion of MET expression in gefitinib-sensitive cells, which may 
be one of the mechanisms by which exosomal miR-658 leads 
to EGFR-TKIs resistance [35]. Thus, future experiments are 
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needed to clarify how exosomal miR-564 and miR-658 medi-
ate gefitinib resistance phenotypes. Importantly, Yang et al. 
[61] found that miR-564 expression was downregulated in lung 
cancer and that miR-564 inhibited lung cancer progression 
by targeting zic family member 3 (ZIC3). This suggests that 
miR-564 may not be a viable target for improving EGFR-TKIs 
resistance in NSCLC.

Overall, the role of exosomal miRNAs in mediating 
EGFR-TKI resistance is complex and multifaceted. Under-
standing the underlying mechanisms and identifying poten-
tial therapeutic targets will be crucial for overcoming resist-
ance and improving the efficacy of EGFR-TKIs in NSCLC.

Exosomal lncRNA mediate EGFR‑TKIs 
resistance

Background

LncRNA is a type of non-coding RNA with a length of 
more than 200 nucleotides, which plays an important role 
in tumor development and drug resistance [62]. LncRNAs 
are involved in the regulation of various biological processes 
[63]. Exosomes can carry lncRNA to participate in informa-
tion exchange between cells, including in NSCLC patients 
[16, 64]. Exosomal lncRNAs form tumor patients can reflect 
the tumor progression in real time [65], and may be involved 
in remodeling the TME [66].

Exosomal lncRNA MSTRG292666.16 mediate 
osimertinib resistance

The expression of lncRNA MSTRG292666.16 in serum 
exosomes is upregulated in osimertinib-resistant NSCLC 
patients compared with osimertinib-sensitive patients [67]. 
Deng et al. [67] showed that exosome-delivered lncRNA 
MSTRG292666.16 might be associated with osimertinib 
resistance. However, Deng et al. [67] did not reveal how 
exosomal lncRNA MSTRG292666.16 promoted osimerti-
nib resistance. Furthermore, Wan et al. [68] showed that 
exosomes secreted by M2-type tumor-associated mac-
rophages (TAMs) promoted osimertinib resistance via the 
MSTRG.292666.16/miR-6386-5p/MAPK8IP3 axis. This 
reveals the complexity of the origin of exosomal ncRNA 
mediating EGFR-TKIs resistance. On the other hand, target-
ing TAMs may be a potential way to improve EGFR-TKIs 
resistance in NSCLC [69]. Repolarization of TAMs may 
decrease the secretion of exosomes that induce resistance 
to EGFR-TKIs.

Exosomal lncRNA SOX2 overlapping transcript 
mediates osimertinib resistance

Macrophages, as a heterogeneous group of immune cells, 
can be classified into M1 and M2 macrophages based on 
their functions. M1-type macrophages secretes pro-inflam-
matory cytokines (such as IL-1β, IL-6, IL-12, and TNF-α), 
while M2-type macrophages secretes anti-inflammatory 
cytokines (such as IL-10 and TNF β) [70]. M2-type mac-
rophages play a role in promoting cancer and can promote 
EGFR-TKIs resistance in lung cancer [71–73]. Blocking 
the crosstalk between M2-type macrophages and tumor 
cells can reduce the EGFR-TKIs resistance in tumor cells 
[66].

LncRNA SOX2 overlapping transcript (SOX2-OT) is 
highly expressed in serum exosomes of lung squamous 
cell carcinoma [74]. LncRNA SOX2-OT can regulate the 
expression of AKT/ERK and SOX2/ glioma-associated 
oncogene homolog 1(GLI-1) and promote the progression 
of lung cancer [75, 76]. Zhou et al. [16] showed that exo-
somal LncRNA SOX2-OT from H1975 cells targeted miR-
627-3p, upregulated the expression of Smad2, Smad3, and 
Smad4, and promoted the M2-like polarization of mac-
rophages. Finally, exosomal lncRNA SOX2-OT promotes 
osimertinib resistance in NSCLC cells by promoting the 
M2-like macrophage polarization [16]. Thus, the devel-
opment of drugs targeting exosomal lncRNA SOX2-OT 
or inhibit M2-like macrophage polarization pathway may 
help partially reverse osimertinib resistance in NSCLC 
patients.

Exosomal lncRNA H19 mediate gefitinib 
and erlotinib resistance

LncRNA H19 is an imprinted gene located on human chro-
mosome 11 [77]. It is an oncogene that promotes cell pro-
liferation and drug resistance in NSCLC [78–81]. Lei et al. 
[82] found that gefitinib-resistant cells express highly levels 
of lncRNA H19 and can secrete RNA-carrying exosomes to 
promote gefitinib resistance. On the others hand, autophagy-
related protein 7 (ATG7), a member of the autophagy-related 
proteins (ATGs) family, which is closely related to tumor 
progression and drug resistance [83–85]. ATG7 can regu-
late tumor progression and drug resistance by promoting 
autophagy [86]. ATG7 can promote chemotherapy resistance 
through autophagy in NSCLC [87]. Pan et al. [88] found that 
ATG7 may be a downstream target of miR-615-3p, and exo-
somal lncRNA H19 could regulate the expression of ATG7 
through miR-615-3p. Furthermore, Pan et al. [88] showed 
that exosomal lncRNA H19 could promote erlotinib resist-
ance via the miRNA-615-3p/ATG7 axis.
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Interestingly, Chen et al. [89] discovered a significant cor-
relation erlotinib resistance and downregulation of lncRNA 
H19. Furthermore, Xu et al. [90] discovered that β-Elemene 
can enhance the effectiveness of erlotinib by up-regulating 
lncRNA H19. Further investigation is required to elucidate 
this contradictory outcome.

Exosomal lncRNA UCA1 mediate gefitinib resistance

lncRNA UCA1 (urothelial carcinoma-associated 1) can reg-
ulate the Wnt pathway by mediating the interaction between 
DNA, mRNA, miRNA, and protein, thereby participate in 
tumor initiation and development [91]. LncRNA UCA1 can 
promote cisplatin and gefitinib resistance in NSCLC [92, 
93]. Zhang et al. [93] showed that knockout of lncRNA 
UCA1 could inhibit gefitinib resistance by targeting the 
signal transducer and activator of transcription 3 (STAT3) 
signaling pathway in NSCLC. Additionally, FOS-like 2 
(FOSL2), a member of the AP-1 transcription factor family 
[94], play a role in promotes TGF-β1-induced migration by 
regulating Smad3 in NSCLC [95]. Chen et al. [96] showed 
that exosomal lncRNA UCA1 targets FOSL2 by sponging 
miR-143 to promote gefitinib resistance in NSCLC. Based 
on the existing evidence, lncRNA UCA1 represents a poten-
tial target for improving EGFR-TKI resistance in NSCLC.

Overall, exosomal lncRNAs have emerged as important 
mediators of EGFR-TKI resistance in NSCLC. Their role in 
promoting resistance and modulating the TME highlights the 
complexity of the resistance mechanisms. Understanding the 
specific functions and mechanisms of exosomal lncRNAs in 
mediating resistance will be crucial for developing effective 
strategies to overcome EGFR-TKI resistance in NSCLC.

Conclusions

Exosomal ncRNAs have emerged as mediators of EGFR-
TKIs resistance. This may be as a future exploration direc-
tion for the mechanisms of EGFR-TKIs resistance. How-
ever, several important areas require further investigation. 
Firstly, the origin of exosomal ncRNAs mediating EGFR-
TKIs resistance is complex. Whether other sources exist 
beyond a small population of resistant tumor cells in TME 
[56] and M2-type TAMs remains to be further investigated 
[68]. Exploring the therapeutic potential of reducing the 
secretion of these exosomes is necessary [97]. For exam-
ple, YAP 5-methylcytosine modification was observed to 
enhance exosome secretion and confer resistance to EGFR-
TKIs in lung adenocarcinoma [98]. And Chen et al. [99] 
reversed gefitinib resistance by targeting YAP in NSCLC. 
Secondly, the mechanisms of EGFR-TKIs resistance medi-
ated by exosomal ncRNAs are complex. Exosomal ncRNAs 

can act directly on tumor cells to induce resistance [37] and 
can act on M2-type macrophages in the TME, causing mac-
rophage polarization and inducing EGFR-TKIs resistance 
[16]. Targeting these resistance mechanisms is a potential 
approach to enhance the efficacy of EGFR-TKIs. Finally, 
the binding mechanism of exosomes and tumor cells is not 
clear. Blocking the binding of specific exosomes to tumor 
cells may improve patient resistance to EGFR-TKIs to some 
extent.

Exosomal ncRNAs play an important role in EGFR-TKIs 
resistance. In the future, detecting exosomal ncRNAs could 
potentially serve as a means to monitor targeted therapy for 
NSCLC in the future. Meanwhile, developing therapeutic 
regimens targeting these resistance mechanisms may provide 
additional clinical benefits to patients with EGFR-mutated 
NSCLC.
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