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Abstract
Colorectal cancer (CRC) is the third highest frequent malignancy and ultimate critical source of cancer-associated mortality 
around the world. Regardless of latest advances in molecular and surgical targeted medicines that have increased remedial 
effects in CRC patients, the 5-year mortality rate for CRC patients remains dismally low. Evidence suggests that microRNAs 
(miRNAs) execute an essential part in the development and spread of CRC. The miRNAs are a type of short non-coding 
RNA that exhibited to control the appearance of tumor suppressor genes and oncogenes. miRNA expression profiling is 
already being utilized in clinical practice as analytical and prognostic biomarkers to evaluate cancer patients' tumor genesis, 
advancement, and counteraction to drugs. By modulating their target genes, dysregulated miRNAs are linked to malignant 
characteristics (e.g., improved proliferative and invasive capabilities, cell cycle aberration, evasion of apoptosis, and promo-
tion of angiogenesis). This review presents an updated summary of circulatory miRNAs, tumor-suppressive and oncogenic 
miRNAs, and the potential reasons for dysregulated miRNAs in CRC. Further we will explore the critical role of miRNAs 
in CRC drug resistance.
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Introduction

Cancer-related pathways that promote tumor aggressive-
ness and metastasis, like angiogenesis, vasculogenic mim-
icry, and neovascularization, are controlled mainly by non-
coding RNAs and communicate in a complicated manner. 
This cross-talk maintains the equilibrium of various neural 
networks. There is increasing evidence to suggest that non-
coding RNAs (ncRNAs), which include microRNAs and 
long-noncoding RNAs (lncRNAs), interact with each other 
directly, fine-tuning the effects of their control, in addition 
to influencing mRNA translation through separate processes 
[1]. Recent studies have concentrated on these lncRNAs, 
which act as competing endogenous RNAs (ceRNAs) to 
control gene expression by sponging miRNAs via com-
mon miRNA response domains. miRNAs are short non-
coding RNAs found to control gene expression by blocking 
and subjecting the degradation of target mRNAs. Cancer 
development may be linked to their aberrant expression 
[2–5]. Argonaute proteins, lipids, and microvesicles form 
complexes with miRNAs to preserve them from degrada-
tion and make them relatively long-lasting in storage [6–9]. 
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So they should be utilized as biomarkers. There have been 
several studies on serum or plasma miRNAs as diagnostic 
biomarkers for CRC [10, 11]. Lin4, the earliest miRNA, was 
found in Caenorhabditis elegans (C. elegans) in 1993 [12]. 
Reinhart et al. published the first mammalian miRNA, let-7, 
in 2000. They observed that let-7 suppresses the heterochro-
nic gene lin-41's expression by engaging with its mRNA’s 
3′-UTRs through a sequence-specific RNA-RNA interaction 
[13, 14]. Later in 2002, Dr Croce’s team was the first to show 
that miRNA has a role in human cancer genesis. The team 
also discovered that miR-16-1 and miR-15a on the 13q14 
chromosome are commonly disrupted in B-cell chronic lym-
phocytic leukemia (CLL) [15]. Many research investigations 
have highlighted the roles of miRNAs in numerous diseases, 
including cancer, throughout the last decade [16].

Colon cancer is a type of common malignant tumor that 
develops at the junction of the rectum and sigmoid colons. 
CRC has been identified as the third most frequent and sec-
ond most lethal cancer [17]. In 2018, CRC ranked second 
in mortality and fourth in occurrence [18]. People suffering 
from CRC showed a five-year survival rate of 65% [19]. In 
CRC, miRNA dysregulation causes broad changes in gene 
expression patterns, leading to apoptosis, abnormal cell pro-
liferation, metabolism, epithelial-mesenchymal transition 
(EMT), and treatment hindrance [20, 21]. Based on accu-
mulating data, miRNAs may be promising indicators for 
prognosis, diagnosis, and therapeutic targets in CRC [22]. 
This article contains a brief discussion of the deregulation of 
microRNAs in CRC and how microRNAs function as onco-
genes or tumor suppressors to manage the growth of CRC 
by ameliorating its various critical targets. In addition, we 
investigate the analytical, prognostic, and clinical prospects 
of miRNAs in colorectal cancer. In CRC patients, metasta-
sis is strongly linked to poor prognoses [23]. Metastasis is 
a crucial process that can disclose the malignant transfor-
mation of neoplasms and the clinical phases of malignant 
tumor’s to some extent [24]. Cancer metastasis has been the 
subject of several investigations. Epithelial-mesenchymal 
transition (EMT) [25], angiogenesis [26], hypoxia [27], and 
the tumor microenvironment (TME) are the most important 
variables influencing cancer spread. TME transformation is 
required for CRC carcinogenesis [28, 29]. Molecules that 
interact with the microenvironment (MET) may also have 
a role in metastasis [28]. EMT is controlled by a network 
of intricate molecular pathways that include microRNAs, 
epigenetic and posttranslational regulators, and alternative 
splicing processes [25]. These pathways are responsible for 
modulating EMT (Figs. 1 and 2). 

PubMed, Web of Science, and EMBASE databases were 
used for this study for this review. Our search terms included 
“colorectal cancer” and its variants, “CRC” and its variants, 
“colon cancer” and its variants, and “rectal cancer” and its 
variants, as well as “metastasis,” “miRNA,” “microRNA,” 

and their variants”, miRNA signaling in CRC. After that, we 
reviewed the most recent developments in miRNA research 
in the metastatic phase of CRC and various signaling path-
ways. We also discussed their potential as therapeutic targets 
or biomarkers in treating CRC. We hope this review will 
contribute to better-comprehending metastasis, dysregula-
tion, and signaling in CRC and future research in the field.

mi‑RNA and cellular progression in colon 
cancer

MiRNA dysregulation in colon cancer alters crucial cellular 
mechanisms that promote tumor growth. Identifying treat-
ment targets and establishing new diagnostic and prognostic 
indicators for colon cancer requires understanding miRNA 
regulation. Depending on their target genes and malignancy, 
miRNAs can be oncogenes or tumor suppressors [30, 31]. 
Modifying particular miRNAs may decrease tumor devel-
opment, suppress metastasis, and improve colon cancer 
treatment. Abnormal miRNA expression is linked to vari-
ous biological changes, including death, cell differentiation, 
and carcinogenesis [30, 32]. Colon cancer links to several 
miRNAs; e.g., MiR-21, an oncogene that promotes cell pro-
liferation, inhibits apoptosis, and enhances tumor invasion 
and metastasis, is often elevated. However, miR-34a is com-
monly downregulated in colon cancer and suppresses tumors 
by reducing cell proliferation, cell cycle arrest, and death. 
MiRNAs regulate epithelial-mesenchymal transition (EMT), 
a critical tumor metastatic pathway. EMT lets cancer cells 
invade nearby tissues and spread to other organs. MiR-200 
family members and miR-155 regulate colon cancer cell 
EMT. MiRNAs affect colon cancer cell response to chemo-
therapy and targeted therapies. 5-fluorouracil (5-FU) resist-
ance links to altered miRNA expression [12, 33–37]. The 
activities of TS-miRNA and onco-miRNA in connection to 
cancer characteristics like tumor start, EMT, and metastasis 
are discussed in the next section.

mi‑RNAs and epithelial‑mesenchymal transition 
(EMT) process

Epithelial-mesenchymal transitions (EMTs) are observed in 
various biological processes, including embryonic develop-
ment, adult tissue regeneration, and cancer progression [38, 
39]. While EMT is tightly regulated in normal development, 
it becomes dysregulated during tumor growth, particularly 
in cancer metastasis [40]. EMT is a crucial step in the meta-
static cascade, where epithelial cells lose their adherence and 
acquire a mesenchymal phenotype [41]. Specific miRNAs 
have been identified as critical players in driving EMT and 
promoting tumour progression [42]. The molecular pathways 
involved in EMT, including miRNAs, can vary significantly, 
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and different classification systems have been proposed. 
Indicators commonly used to assess EMT include the loss of 
E-cadherin expression and the upregulation of EMT-related 
transcription factors such as ZEB1 [24, 25]. Recent studies 
have highlighted the interplay between EMT and miRNAs 
or tumor-associated immune cells [27]. In colorectal cancer 
(CRC), miR-141, miR-200b, and miR-200c directly target 
ZEB1 and ZEB2, activating EMT and metastasis [43]. Addi-
tionally, various signaling pathways associated with miR-
NAs have been implicated in inducing EMT [44]. For exam-
ple, miR-4775 has been shown to enhance metastasis and 
EMT by targeting the SMAD7/TGF-b axis [45]. Another 
direct target of miR-496 is Ras association domain family 
member 6 (RASSF6), whose hypermethylation can enhance 

migration and EMT through the Wnt signaling pathway in 
CRC [46]. Conversely, a subset of miRNAs can suppress 
metastasis by inhibiting the EMT process. Studies have 
shown that miR-192 and miR-194 can prevent Snail-induced 
EMT and metastasis [47]. Similarly, miR-150 targets Snail 
and Gli1, effectively inhibiting CRC metastasis [25]. Addi-
tionally, miR-490-3p inhibits EMT by targeting the Wnt/b-
catenin pathway through binding to frequently rearranged 
advanced T cell lymphoma (FRAT) protein [48]. Specific 
miRNAs also reduce EMT by attenuating EGFR signaling 
[49]. For example, miR-612 inhibits AKT2, inhibiting EMT-
related processes and reducing CRC metastasis [50]. Upreg-
ulation of miR-219-5p inhibits lymphoid enhancer-binding 
factor 1 (LEF1), resulting in downregulation of the AKT/

Fig. 1  An overview of the miRNA biogenesis and its functional 
mechanism. Series of events occurs during process (A) Drosha, the 
first nuclear ribonuclease III, recognizes pri-miRNA and cuts the 
double-stranded RNA freeing a pre-miRNA. (B) Pre-miRNA hairpin 
is exported from the nucleus in a process involving the nucleocyto-
plasmic protein Exportin-5 (RAN GTPase). (C) In the cytoplasm, the 
pre-miRNA hairpin is cleaved by the RNase III enzyme Dicer and 
produce sense and anti-sense strands, approximately 20 nucleotides 

in length, the effective strand called anti-sense and known as mature 
miRNA and short-lived complementary sequence called passen-
ger strand (miR*). (D) The anti-sense stranded miRNA is combined 
into RISC, which then targets it to the target 30 untranslated region 
mRNA sequence. (E) Mature miRNA acts either by degrading the 
mRNA target or by regulating gene expression which further leads to 
Cancer development, Cell proliferation, and apoptosis
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ERK pathway, repression of EMT, and decreased metasta-
sis incidence [51]. Additionally, miRNAs can target other 
factors involved in carcinogenesis, ultimately leading to the 
downregulation of EMT. For instance, miR-185 decreases 
CRC metastasis by reducing stromal interaction molecule 1 
(STIM1), preventing EMT [52]. Moreover, miR-296 modu-
lates S100A4-mediated EMT processes, thereby reducing 
CRC metastasis [53]. Overall, miRNAs play a crucial role 
in regulating EMT and the metastatic potential of CRC cells 
by targeting various signaling pathways and downstream 
effectors.

miRNAs and angiogenesis

Angiogenesis is a crucial hallmark of cancer, involving 
forming an abnormal vascular network that facilitates tumor 
growth, metastasis, and progression [54–56]. This process 
is tightly regulated by a complex interplay of pro-angio-
genic and anti-angiogenic factors at each stage [57, 58]. 
MiRNAs have emerged as important regulators of tumor 
angiogenesis, capable of exerting both pro-angiogenic and 
anti-angiogenic effects [57, 58]. They can directly modulate 
endothelial cell function or indirectly influence angiogenesis 
by targeting proteins involved in vessel development [58, 
59]. Consequently, miRNAs have garnered significant atten-
tion as potential targets for novel anti-angiogenic therapies. 
The manipulation of angiogenesis requires precise regula-
tion of the balance between pro-angiogenic and anti-angio-
genic factors [60]. Among the key players in angiogenesis 

are vascular endothelial growth factor A (VEGFA) and its 
receptors [27]. Recent studies investigating tumor metasta-
sis have underscored the role of miRNAs in angiogenesis 
[61]. For instance, miR-1249, activated by p53, negatively 
regulates angiogenesis by targeting VEGFA and modulating 
the AKT/mTOR signaling pathway [62]. Additionally, miR-
590-5p has been found to target both VEGFA and interleukin 
enhancer-binding factor 3, exerting downstream effects on 
angiogenesis [63]. MiR-25-3p enhances angiogenesis by tar-
geting Kruppel-like factor 2 (KLF2) and Kruppel-like fac-
tor 4 (KLF4), thereby promoting the expression of VEGF 
receptor 2 (VEGFR2) [64]. Balancing angiogenesis and anti-
angiogenesis mechanisms can prevent cancer cell dissemi-
nation [63, 65]. Overall, miRNAs contribute to the intricate 
regulation of angiogenesis and hold promise as potential 
therapeutic targets for modulating tumour angiogenesis.

miRNAs and hypoxia

Solid tumours, including CRC, are characterized by the 
presence of hypoxia, which is a low-oxygen environment 
[66]. Hypoxia-inducible factor 1a (HIF-1a) and the insulin-
like growth factor 1 receptor (IGF-1R) play crucial roles in 
creating this hypoxic microenvironment [26]. Alterations in 
genetic programs facilitating cellular adaptation to hypoxia 
can contribute to more aggressive tumour phenotypes. 
Recent studies have highlighted the significant involvement 
of miRNAs in cancer metastasis under hypoxic conditions. 
For instance, the miR-1792 cluster negatively regulates 

Fig. 2  Colorectal cancer was 
induced through miRNA 
pathways (RAS/MAPK, EMT, 
Notch, Wnt/β Catenin, TGF-β). 
Tumor suppressor genes (APC, 
TP53) are downregulated, 
resulting in K-RAS mutation 
and MAPK activation. Several 
miRNAs have a role in cancer 
development and progression, 
with miRNA 103 being thera-
peutically addressed
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HIF-1a, inhibiting CRC metastasis [27]. Yin and colleagues 
demonstrated that miR-145 suppresses CRC metastasis by 
targeting HIF-1a expression [37]. Similarly, miR-143 inhib-
its angiogenesis and metastasis by targeting the hypoxia-
related IGF-1R [65]. Given the close association between 
hypoxia, angiogenesis, and metastasis, targeting miRNAs 
associated with hypoxia holds promising implications for 
controlling cancer spread.

Interaction between miRNAs and TME

The tumour microenvironment (TME) facilitates aggres-
sive metastasis [28]. Previous research has highlighted the 
close association between miRNAs and the TME, with 
miRNAs influencing various genes involved in the TME 
during cancer metastasis [67]. MiRNAs can act as regula-
tors of immune cells, cancer-associated fibroblasts (CAFs), 
cancer-associated endothelial cells (CAECs), and tumour 
cells [67–71]. For instance, miR-let-7c-5p interacts with the 
TME by affecting the expression of collagen type I alpha 2 
chains (COL1A2) in CRC [72]. The balance between matrix 
metalloproteinases (MMPs) and tissue inhibitors of metal-
loproteinases-2 (TIMP-2) is crucial for ECM degradation 
in cancer cells [73]. Makondi et al. reported that miR-20a 
and miR-495 inhibit CRC metastasis by suppressing matrix 
metalloproteinase expression, specifically MMP 2 [65, 73].

Exosomes derived from M2 macrophages (MDEs) play 
a significant role in the TME by upregulating miR-21-5p 
and miR-155-5p. These miRNAs then target S-ribonuclease 
binding protein (BRG1), leading to reduced BRG1 levels and 
increased metastasis rates. Tumour-associated macrophages 
(TAMs) are also essential components of the TME. During 
cancer development and progression, TAMs undergo M1- 
or M2-like polarization and subsequently regulate tumour 
metastasis [74]. Several miRNAs associated with metasta-
sis play important roles in these processes [28]. For exam-
ple, direct binding of miR-195-5p to the 3’ UTR of Notch2 
inhibits M2-like TAM polarization and metastasis in cancer 
cells [75]. CD163 + TAMs, on the other hand, contribute to 
the production of interleukin 6 (IL-6) and suppression of 
miR-506-3p. In turn, miR-506-3p prevents cancer spread by 
inhibiting the synthesis of C–C motif chemokine ligand 2 
(CCL2), a molecular signal that recruits macrophages [76].

The pro-inflammatory cytokine tumour necrosis factor-
alpha (TNF-α) plays a central role in altering the TME 
and regulating specific miRNAs [77]. Recent research has 
demonstrated that miR-19a promotes TME alterations by 
enhancing TNF-α, critical for TNF-α-mediated metastasis 
[78]. Similarly, miR-105 is involved in TNF-α-induced TME 
modifications by enhancing the nuclear factor-ƙB (NF-ƙB) 
subunit 1 signalling pathway in CRC. Therefore, the interac-
tion between miRNAs and the TME should be considered 

an additional important factor when developing strategies to 
combat metastasis [79].

Prime mechanisms of miRNA in CRC 

Colorectal cancer (CRC) is a complex chronic disease char-
acterized by dysregulation of multiple signaling pathways 
implicated in its development and progression. There is 
compelling evidence to suggest that miRNAs play a promi-
nent role in CRC formation and metastasis [79]. Further 
below, under various subheadings, we will discuss the inter-
actions between miRNAs and other key signaling pathways 
that dysregulate in CRC, including the Wnt pathway, mito-
gen-activated protein kinases (MAPKs), epithelial-mesen-
chymal transition (EMT), and transforming growth factor-
beta (TGF-β) [80]. Understanding these miRNA-mediated 
regulatory mechanisms can provide valuable insights into 
the pathogenesis of CRC and may contribute to develop-
ing novel therapeutic strategies targeting these signalling 
pathways.

Wnt/β‑catenin signaling pathway in CRC 

Wnt activation defects have a carcinogenic function in CRC 
via β-catenin accumulation in the cytoplasm [81, 82]. miR-
135b is an essential onco-miRNA in CRC that controls 
numerous crucial tumour suppressor genes. A recent study 
found that miR-135b suppress factor inhibiting HIF (FIH) 
to up-regulate hypoxia-inducible factor 1 (HIF-1alpha) to 
increase colon cancer cell invasion, metastasis, as well as 
proliferation [83]. This finding was supported by the fact that 
miR-135b also suppresses APC, which in turn increases the 
activity of the downstream Wnt pathway. According to the 
findings of another study [84], the microRNAs miR-135a 
and miR-135b are responsible for inhibiting APC in CRC 
while simultaneously activating the Wnt signaling pathway. 
The microRNA known as miR-155 is very important in reg-
ulating the Wnt/β-Catenin mechanism in CRC. Targeting 
Axin1 and TCF4 allows miR-155 to allow long-term Wnt/β-
Catenin activation in CRC cells [85]. This allows miR-155 to 
manage both cell proliferation and survival. Casein kinase 1 
(CK1), Axin, adenomatous polyposis coli (APC), and glyco-
gen synthase kinase 3 (GSK3) are the enzymes responsible 
for the degradation of β-catenin under typical conditions. 
Ma and his colleagues discovered that miR-17–5p directly 
binds P130 and stimulates the Wnt/β-catenin pathway, 
resulting in increased carcinogenesis and CRC development 
[86]. Furthermore, by inhibiting GSK3, miR-224 maintains 
Wnt/β-catenin signaling and the aggressive behavior of CRC 
in vivo and in vitro [87]. In CRC, lncRNA H19 acts as a 
competitive endogenous RNA sponge for miR-141, activat-
ing the β-catenin pathway. The latter has been shown to limit 
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the stemness of CRC cells by directly targeting β-catenin. 
Activated β-catenin, on the other hand, binds to and triggers 
the promoter of the miR-17/92 cluster [88]. The Wnt sign-
aling pathway increases the production of miR-19a, which 
inhibits phosphatase and tensin homolog (PTEN), bim, p21, 
and Fbw7, all of which are implicated in CRC cell inva-
sion, proliferation, and survival [89]. TCF4 regulates miR-
21 expression, and there was a positive connection between 
miR-21 and Wnt/ β-catenin signaling in CRC, signifying 
that miR-21 may be involved in colon cancer growth via 
the Wnt/ β-catenin pathway [90]. APC2, RNF43, ZNRF3, 
dickkopf-related protein 1 (DKK1), and DKK3 are among 
the five Wnt/-catenin regulatory proteins targeted by miR-
100 and miR-125b in CRC [91, 92]. As a result, for CRC 
patients, targeting miRNAs involved in abnormal Wnt/β-
catenin signaling pathway can be an alternate therapy. The 
list of miRNAs and their mRNA targets in Wnt/β-catenin 
pathway related with the development, advancement and 
metastasis of CRC are shown in Table 1 respectively.

RAS/MAPK signaling pathway in CRC 

The aberrant expression of RAS molecules is a critical fac-
tor in CRC progression [106]. RAS can control numerous 
cascades by expressing (GTP) guanosine triphosphate bind-
ing proteins, including the mitogen-activated protein kinase 
(MAPK) axis [107]. It has been observed that overactiva-
tion of the KRAS protein is related to cancer development, 
metastasis, and invasive cell characteristics. CRC develop-
ment is accelerated by oncogenic RAS hyperactivation. RAS 
activation is often caused by enhanced nucleotide exchange 
or reduced GTP hydrolysis [108]. Because of its significance 
in cancer development and therapeutic efficacy, the RAS/
MAPK signaling axis is an important therapeutic target. 
Pathogenesis and carcinogenic characteristics like cancer 
cell migration, senescence, and differentiation, are caused 
by mutations in the MAPK signaling pathway [109–113]. In 
colon cancer, dysregulation of MAPK is typically observed 
due to mutations in KRAS and BRAF 119. KRAS mutation 
is among the early steps in CRC development, happening 
in 30% to 40% of colorectal tumors, according to genetic 
analysis of oncogenic KRAS [115]. It has been shown that 

Table 1  List of miRNAs and their mRNA targets in Wnt/ß-catenin pathway related with the development, advancement and metastasis of CRC 

S. No miRNAs Main Signaling Pathway Gain/loss of function Targets Targeting effects Reference

1. miR-7 Stimulation of Wnt/ß-
catenin pathway

Gain of function YY-1 Proliferation, reduced 
apoptosis, cell cycle 
progression

[93]

2. miR-19a Gain of function APC, CTNNB1, c-Myc, 
PTEN, TIA1

Proliferation, tumori-
genesis, proliferation, 
invasion, progression, 
angiogenesis

[89, 94]

3. miR-21 Gain of function TGFBR2, CTNNB1, 
SFRP1, ZFHX3, 
PIK3CA, BRAF

Tumor development, pro-
liferation, progression

[95, 96]

4. miR-23b Loss of function FzD-7 Proliferation, progres-
sion, invasion, metas-
tasis

[97]

5. miR-93 Loss of function CTNNB1, SMAD-7 Proliferation, progression [98]
6. miR-103a miR-1827 Gain of function CTNNB1, APC, APC2, 

WNT3a
Cell cycle progression, 

reduced apoptosis
[99]

7. miR-135a/b Gain of function APC proliferation [84]
8. miR-137 Loss of function WNT3a, CTNNB1 Cell cycle progression [99]
9. miR-146a Gain of function NUMB Progression, stemness [100]
10. miR-155 Gain of function CTNNB1 Invasion, metastasis [101]
11. miR-185 Loss of function MYC, CCND1 Progression, proliferation [102]
12. miR-224 Gain of function sFRP-2, GSK3β Proliferation, metastasis [87]
13. miR-494 Gain of function APC Proliferation, tumori-

genesis
[103]

14. miR-522 Gain of function DACH1 Proliferation, migration [104]
15. miR-574-5p Gain of function Qki 6/7 Differentiation, prolif-

eration, tumorigenesis, 
angiogenesis

[105]
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the oncoprotein KRAS plays a substantial involvement in 
tumor growth by modification of several miRNAs such as 
the miR-200c, miR-221, and miR-222 in CRC cell lines; 
HCT11660 and also in DLD-1 cells [116] only in three-
dimensional (3D) cultures of the colonic‐crypt model. The 
protein expression of PTEN as a substrate of related miR-
NAs was studied to corroborate the stimulatory effect of 
KRAS in miRNA elevation. Following KRAS overexpres-
sion, PTEN expression is upregulated in CRC specimens. 
Many oncogenic miRs, including miR21, miR32, miR92a, 
miR181a, and miR494 have a role in CRC carcinogenesis by 
repressing PTEN [116–118]. According to the DIANA mir-
Path prediction study, increased miR215p is closely related 
to CRC advancement via RAS/MAPK signaling pathways 
[119]. According to Lu et al. [120], substantial activation of 
miR335 in CRC tissues stimulates RAS/MAPK signaling 
via RASA1 repression. Mir335 levels are highly correlated 
with tumor size and cell differentiation, providing valid 
interpretations in tumor progression. Likewise, CCAAT/
enhancer-binding protein (C/EBP) induced miR223 pro-
motes RAS protein binding to GTP and elevates pMEK1/2 
and pERK proteins in CRC tissues via RASA1 downregula-
tion. In colorectal cancer cell lines, miRNA acts as a target 
gene of the KRASMAPK signaling pathway [121]. miR31 
is also implicated in the inhibition of RASA1 at the post-
transcriptional level. RASA1 deficiency promotes CRC 
cell growth and carcinogenesis by increasing RAS GTP, 
pERK1/2, and proliferative agents like proliferation cell 
nuclear antigen and KI-67. Inhibiting oncogenic miR31 
reduces tumor growth in the nude mice tumor model, indi-
cating a novel therapy option for CRC [122]. Because the 
tumor suppressor RAS and RASA1 signaling play critical 
roles in controlling cellular proliferation, RASA1 targeted 
miRNA profiling investigations are essential in colon cancer 
therapy options [123]. Using Western blot analysis, bioin-
formatics, and luciferase experiments, researchers discov-
ered that the miR 1260b inhibitor directly targets the pro-
grammed cell death of genes in CRC. miR650 directs its 
attention squarely on the tumour suppressor gene known as 
inhibitor of growth protein 4 (ING4), which is responsible 
for encouraging the migration, proliferation, and epithelial-
mesenchymal transition of tumour cells. In SW620 and 
SW480 cells, miR650 blocked ING4 increases phosphoryl-
ated ERK1/2 and p38 MAPK [124]. Rasmussen et al., dem-
onstrated that miR6253p enhances resistance to oxaliplatin 
(oxPt) via decreasing apoptosis and the cell cycle regula-
tory network, which is produced by targeting MAP2K6 (also 
known as MKK6). MAP2K6 and its substrate, p38 MAPK, 
are reduced by miR6253p. Overexpression of this protein in 
tumor cells improves drug resistance and inhibits genotoxic 
stress signaling mediated by MAP2K6MAPK14, which 
causes medical issues in colorectal cancer therapy [125]. 
One study has shown that tumor suppressor miRNAs may 

interact with oncogenic KRAS and inhibit the RAS/MAPK 
signaling pathway, contrary to oncogenic miRNAs. MiR-
487b has been found to reduce CRC metastasis by decreas-
ing KRAS and its downstream pathways, as demonstrated 
by Hata et al. [126]

P-38, C-jun N-terminal kinase (JNK), and Extracellu-
lar signal-regulated kinase (ERK), are all members of the 
MAPK signaling cascade. ERK signaling has been exten-
sively explored in the advancement of colorectal cancer 
[114]. miR-143/145 expression is decreased in CRC, and 
they act as tumour suppressors by targeting ERK5 [127]. 
MiR-422a specifically targets the 3′ -UTR of MAPK1, and 
its silencing activates the Raf/MEK/ERK signaling pathway, 
hence increasing CRC cell proliferation [128]. The MAPK 
pathway serves as a downstream effector for several differ-
ent growth factor receptors, including the epidermal growth 
factor receptor (EGFR) [14]. The EGFR is a transmembrane 
protein that functions as a tyrosine kinase receptor (RTK).
When it comes to CRC, dysregulation of the Ras/Raf1/
MEK/ERK signaling pathway is a common occurrence, and 
it plays a part in tumour development and progression [129]. 
The rhomboid domain containing 1 (RHBDD1) suppresses 
CRC carcinogenesis by targeting the EGFR/Raf/MEK/ERK 
signaling pathway [130]. MiR-195 inhibition promotes CRC 
cell proliferation and survival by upregulating the expression 
of RAF-1 [131]. Additionally, miR-143/145 has been shown 
to affect EGFR and KRAS directly or indirectly, hence sup-
pressing CRC cell proliferation and tumorigenicity [132, 
133]. Additionally, miRNAs modulate the MAPK signaling 
pathway's downstream targets. miR-873 reduces ETS Like-1 
protein (ELK1) production directly in CRC, disrupting the 
ERK-CyclinD1 pathway [134]. This data imply that miR-
NAs play a critical role in CRC development via modulating 
the MAPK signaling pathway. Table 2 shows the oncogenic 
or tumor-suppressor regulatory microRNAs for the RAS/
MAPK signaling pathway in colorectal cancer pathology.

TGF‑β signaling pathway in CRC 

In CRC, the TGF-signaling pathway has two roles. Down-
regulated TGF-expression leads to the start and progression 
of CRC in the early stages [160]. In contrary, significant 
TGF-expression was identified in late stage CRC, indicat-
ing that TGF- has an oncogenic function in late stage CRC 
[161]. Evidence suggests that miRNAs target the TGF 
signaling pathway to control cell proliferation and differ-
entiation in CRC cells. Apoptosis and repression of cell 
proliferation in a CRC mouse model have been shown to 
be facilitated by the suppression of miR-135b [162]. Fur-
thermore, miR-224 expression is linked to tumour burden 
and microsatellite stability. Upregulated miR-224 enhances 
CRC metastasis in vitro and in vivo by inhibiting SMAD4, 
a TGF- downstream effector [83]. Additionally, miR-4260 
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acts as an onco-miRNA in CRC by targeting the tumour 
suppressor SMAD4, indicating a critical role for miRNAs 
in TGF- signaling [163].

EMT signaling pathway

EMT plays a crucial role in tumor development and metas-
tasis. Transcription factors like SNAIL1/2, ZEB1/2, and 
TWIST1 have been identified as significant drivers of EMT 
[164]. In colorectal cancer (CRC), miRNAs have been found 
to influence EMT by targeting genes involved in this process. 
Among these miRNAs, the miR-200 family (miR-141, miR-
200a, miR-200b, miR-200c, and miR-429) is well-known for 
its tumour-suppressive properties. The miR-200 family has 
been demonstrated to decrease metastatic potential in vari-
ous cancers, including CRC, by inhibiting EMT through tar-
geting ZEB1 and ZEB2 [165, 166]. Specifically in invasive 

CRC tissues, Hur et al. observed reduced expression of miR-
200c. MiR-200c has been shown to significantly contribute 
to CRC metastasis by directly targeting ZEB1, ETS1, and 
FLT1 (fms-related tyrosine kinase (1) and indirectly influ-
encing the expression of E-cadherin and vimentin [168]. 
Furthermore, miR-200c-3p has been found to inhibit CRC 
proliferation and migration by targeting N-BLR, a novel car-
cinogenic non-coding RNA specific to CRC, and its inter-
action with E-cadherin and ZEB1 [169]. Given the crucial 
roles of miR-200 family members in the EMT process, these 
miRNAs may serve as biomarkers for CRC metastasis. By 
suppressing E-cadherin and claudin-1 expression, up-regu-
lated miRNA-155 modulates EMT to increase CRC motility 
and infiltration [170]. Zinc finger protein 281 (ZNF281) is 
an EMT regulator. MiR-34-mediated ZNF281 downregu-
lation causes mesenchymal-epithelial transition (MET), 
whereas EMT generating factor SNAIL directly increases 

Table 2  Oncogenic or tumor‐suppressor regulatory microRNAs for the RAS/MAPK signaling pathway in colorectal cancer pathology

BCL2 B‐cell lymphoma‐2; CXCR4 CXC chemokine receptor 4; HER2 human epidermal growth factor receptor 2; HMGA2 high‐mobility group 
AT‐hook 2; IGF‐IR type I insulin‐like growth factor; ING4 inhibitor of growth protein 4; IRS‐1 insulin receptor substrate‐1; LASP1 LIM and 
SH3 protein 1; MAPK mitogen‐activated protein kinase; MTA1 metastasis‐associated protein 1; PAK4 P21‐activated kinase 4; PDCD4 pro-
grammed cell death 4; RASA1 RAS p21 GTPase protein activator 1; RREB1 RAS‐responsive element binding protein

S. No microRNA Key signaling pathway Target Effects Reference

1. miR‐1 RAS/MAPK signaling pathway LASP1 Tumor‐suppress [135]
2. miR‐21 RASA1 Oncogene [136]
3. miR‐21‐5p RAS/MAPK signaling Oncogene [137]
4. miR‐30b KRAS, PIK3CD, BCL2 Tumor‐suppress [138]
5. miR‐31 RASA1 Oncogene [122]
6. miR‐126 IRS‐1, CXCR4 Tumor‐suppress [139, 140]
7. miR‐133a LASP1 Tumor‐suppress [141]
8. miR‐143, miR‐145 KRAS, RREB1 Tumor‐suppress [142]
9. miR‐143 KRAS Tumor‐suppress [143, 144]
10. miR‐145 NRAS, IRS‐1, PAK4 Tumor‐suppress [145, 146]
11. miR139 IGF‐IR Tumor‐suppress [147]
12. miR‐139‐5p Rap1b Tumor‐suppress [148]
13. miR194 MAP4K4 Tumor‐suppress [149]
14. miR‐217 MAPK1 Tumor‐suppress [150]
15. miR‐223 RASA1 Oncogene [123]
16. miR‐302a p‐ERK1/2 and p‐AKT Tumor‐suppress [151]
17. miR‐331‐3p HER2 Tumor‐suppress [152]
18. miR‐335 RASA1 Oncogene [120]
19. miR‐337 KRAS Tumor‐suppress [153]
20. miR378 MEK and ERK2 Tumor‐suppress [154]
21. miR‐455 RAF1 Tumor‐suppress [155]
22. miR‐487b KRAS, LRP6 Tumor‐suppress [126]
23. miR‐543 KRAS, MTA1, HMGA2 Tumor‐suppress [156]
24. miR‐622 KRAS Tumor‐suppress [157]
25. miR‐625‐3p MAP2K6 Oncogene [125]
26. MiR‐650 ING4 Oncogene [124]
27. miR‐1260b PDCD4/IGF1 Oncogene [158]
28. miR‐3148 MAPK/ERK signaling Oncogene [159]



Medical Oncology (2023) 40:282 

1 3

Page 9 of 19 282

ZNF281 transcription and represses miR-34 to ameliorate 
ZNF281 mRNA downregulation in CRC [171].

miRNAs in the notch signaling pathway

Stimulation of the Notch signaling pathway is crucial for 
determining cell fate. The Notch pathway facilitates direct 
cell-to-cell communication in multicellular animals [172]. 
Cell growth, differentiation, proliferation, and death can-
not occur without a properly functioning Notch system 
[173–175]. Carcinogenesis may therefore be linked to Notch 
signaling. Cancers such as colorectal cancer have been found 
to have high levels of Notch signaling in multiple investiga-
tions (CRC). Four receptors: Notch1, Notch2, and Notch3, 
are part of the Notch signaling cascade [176]. Previous 
research on CRC metastasis has shown that the Notch sign-
aling system is implicated, and further, miRNAs may control 
it post-transcriptionally [177]. MiR-1280 inhibits metastasis 
by straightly blocking the Notch signaling pathway activa-
tors like Zeb1, jagged canonical Notch ligand 2 (JAG2), 
Gata1/3, and polycomb repressive complex (Suz12) [178]. 
MiR-200b has also been shown to be a Notch signaling path-
way activator [177]. Also, studies have found that miR-34a 
attached to the putative 3' untranslated regions of Notch1 
and Jagged1 in SW480 cells, inhibiting colon cancer cell 
motility and invasion, according to in vitro miRNA func-
tional experiments. miR-34a was also discovered to suppress 
the expression of vimentin and fibronectin via Notch1 and 
Jagged1. Therefore, findings suggest that miR 34a targets 
and regulates Notch signaling, inhibiting colorectal cancer 
spread [178, 179].

miRNA dysregulation in CRC 

It is widely documented that miRNAs play a vital part in 
the genesis and advancement of cancer. As regulators of 
gene expression, miRNAs are committed to the maintenance 
of cellular homeostasis in normal tissue. However, in most 
cancers, miRNAs are greatly dysregulated [180–183]. Some 
miRNAs may act as oncogenes (oncomiRs), whereas oth-
ers act as tumor suppressor genes. OncomiRs are highly 
expressed in cancer; for instance, oncomiRs involved in 
enhanced proliferation and apoptosis repression include 
mir-17, mir-19b, miR-21, mir-92a, and mir-106a. In con-
trast, tumor suppressor genes, along with miR-18a, miR-143, 
miR-145, and let-7 [184] are down-regulated in cancer. Fur-
thermore, relying on the cellular context of its target genes 
in various malignancies, a specific miRNA can perform both 
tumor-suppressive and oncogenic roles. miRNAs have tis-
sue-specific expression forms, and uncontrolled expression 
may be induced by genetic mutations in the miRNA gene 
region, inappropriate epigenetic modifications, erroneous 

transcriptional control, or miRNA synthesis faults. Aber-
rant miRNA expression is connected to CRC [185]. miRNA 
signatures are connected to CRC diagnosis, prognosis, pro-
gression, metastasis, and therapeutic resistance. Generally, 
miRNAs have been linked to signaling pathways implicated 
in (i) The modulation of miR-18a in MAPK pathway genes 
has been linked to cell proliferation,(ii) Cell survival path-
ways are linked to cellular apoptotic activity, as evidenced 
by miR-29a regulation in the PI3K1/AKT/MDM2/p53 path-
ways. (iii) DNA damage repair pathways, as with miR-155, 
that regulate RAD51 activity, an essential protein in DNA 
repair after ionic radiation and (iv) Cancer cell invasion and 
migration, as seen with miRNA-29a [179]. Alterations in 
miRNA expression have also been reported to take place 
at all phases of carcinogenesis, like tumor initiation, pro-
gression, and metastasis. Certain tumour types may have a 
distinctive miRNA profile that distinguishes them from the 
normal tissue from which they arose and other cancer types. 
Some of the implications of changed miRNA expression that 
contribute to cancer formation [183] include dysregulated 
cell proliferation, cell motility in carcinogenesis [186], and/
or abnormalities in hormonal stress response. Dysregulation 
of microRNAs has been related to several undesirable out-
comes, including continued proliferation, evasion of tumour 
suppression, avoidance of apoptosis, activation of invasion 
and metastasis, induction of angiogenesis, and therapy resist-
ance [27, 28]. MiRNAs can serve as oncogenes or tumor 
suppressors by generating these alterations. Most human 
miRNAs are related to cancer-specific translocation break-
points, fragile sites, CpG islands, and repetitive sequences 
[187]. Some research suggests this link is not clear-cut and 
depends on the kind of cancer [188]. Polymorphism in single 
nucleotides (SNPs) is well established, suggesting that SNPs 
alter miRNA destinations in cancer-associated mechanisms 
[189]. An SNP increase in function may improve its interac-
tion with miRNA targets, increasing its regulatory activity 
as a tumour suppressor gene. SNP function loss may boost 
miRNA production, which functions as an oncogene [190]. 
SNPs in miRNA target regions can also prevent degradation 
[191]. All these data show that SNPs regulate the synthesis 
and functioning of miRNAs and thus is the one among the 
contributor to dysregulation during cancers. Also, miRNA 
gene expression, especially around CpG islands, is easily 
altered by methylation processes [192]; various research 
groups have explored whether hyper- or hypo-methylation 
(an initial episode in carcinogenesis) influences miRNA 
gene activity [192–195]. Multiple studies have shown that 
DNA methylation affects miRNA activity. Some examples: 
A study of colon cancer cell lines found that DNA meth-
ylation affected the production of 10% of miRNAs and that 
incomplete methylation pruning were inadequate for miRNA 
retrieval [196]. CRC screening demonstrated hyper-meth-
ylation of CpG islands suppressed miR-34b and miR-34c 
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and affected miR-9 family genes [197]. MiR-9–1 methyla-
tion is connected with lymph node metastasis in CRC cells 
[198, 199]. Because both the conventional and noncanoni-
cal routes involve multiple intermediary components that 
are closely controlled, defects in miRNA synthesis are one 
of the molecular ways in which miRNAs can contribute to 
cancer development. Ras oncogene stress responses, Reac-
tive oxygen species, and phorbol esters for example, reduced 
Dicer protein production in several cell lines [200]. Low 
levels of dicer expression and functioning have been linked 
with cancer development and a faulty prediction in individu-
als with lung, liver, breast, bladder, and CRC [201, 202]. 
In ovarian cancer, overexpression of Dicer, Drosha, Ago1 
and Ago2 has been found [202]. Exportin-5 was discovered 
to perform an oncogenic function in CRC, with elevated 
expression levels linked to the worst clinicopathology and 
poor patient survival [183, 203]. The list of dysregulated 
miRNAs in CRC is shown in Table 3 respectively.

Clinical implication of miRNAs as reliable 
biomarkers for CRC diagnosis and prognosis

Various documented shreds of evidence reported that miR-
NAs are securely nested in exosomes obtained from vari-
ous biological fluid samples like cerebrospinal fluid, urine, 

tears, saliva, breast milk, urine, feces, blood, and seminal 
fluids [227–229]. In addition, the bloodstream, viz. plasma, 
and serum nurtures ample exosomal miRNAs that might be 
utilized in clinical applications as a classic biomarker for 
diagnosis and early predictions as they have the prominent 
capability to lower various unfavorable conditions like high 
and low temperature, acidic and basic pH [230]. Therefore, 
microRNAs can be employed to screen people for cancer 
since they are stable and reliable, and their traces are in 
both blood and feces Furthermore, their expression pat-
terns are comparable to those identified in tumors taken 
from patients with colorectal cancer [229, 231]. In princi-
ple, screening tests can identify the presence of miRNAs 
exclusively observed in individuals with intestinal adenomas 
or CRC [227]. However, the use of miRNAs to screen for 
colorectal cancer will never be able to match the preventa-
tive efficacy of routine colonoscopy. However, it may give 
an alternative that is less intrusive and more cost-effective 
than the screening approaches that are now used. MiRNAs 
for prediction purposes are also promising, particularly as 
precision medicine becomes more common in CRC treat-
ment (A technique that considers individual differences in 
gene expression and tumour characteristics to obtain opti-
mal patient outcomes through personalized therapy) [232]. 
In fact, in CRC patients, some studies reported suppressed 
levels of miR-24-2 in serum [233] and enhanced amounts 

Table 3  List of dysregulated miRNAs in CRC 

S. No miRNA Target gene Dysregulation Effects References

miR-7 YY1 Downregulated Resensitization to fas/FasL-apoptosis [204]
miR-18a CDC42 Downregulated Inhibit CRC cell growth and death [205]
miR-19b-1 ACSL/SCD Downregulated Inhibit invasion in CRC cells [206]
miR-17-3p Par4 Upregulated Reduce apoptosis and promote cell proliferation [207]
miR-26a PDHX Upregulated Impedes glucose metabolism [208]
miR-30a metadherin Suppressed Forbids cell invasion and migration [209]
miR-106a PTEN Overexpressed Boost cell proliferation and reduce apoptosis [210]
miR-155 CTHRC1 Suppressed Inhibit cell proliferation, foster apoptosis and cell cycle arrest [211]
miR-186-5p ZEB1 Downregulated Inhibit cell proliferation, metastasis and epithelial to MET [212]
miR-192/215 SRPX2 Upregulated Facilitates cell glycolysis [213]
miR-205-5p ZEB1 Downregulated Inhibit epithelial to MET [214, 215]
miR-214 ATG12 Downregulated Promote radiosensitivity by inhibiting IR-induced autophagy [216]
miR-216a-3p COX-2 and ALOX5 Downregulated Suppress cell proliferation [217]
miR-221 TP53INP1 Upregulated Promote cell proliferation and reduce apoptosis [218]
miR-374b LRH-1 Downregulated Inhibit cell proliferation and invasion [219]
miR-383 PAX6 Downregulated Inhibit cell invasion and proliferation [220]
miR-494 APC Upregulated Promote cell growth [221]
miR-511 HDGF Downregulated Reduce cell proliferation and invasion [103]
miR-598 INPP5E Overexpressed Aids cell proliferation and cell cycle progression [222]
miR-744 Notch1 Suppressed Reduce cell proliferation and invasion [223]
miR-1271 Capn4 Suppressed Lowers cell proliferation and invasion [224]
miR-1273 g-3p CNR1 Upregulated Promote cell invasion, migration, and proliferation, [225, 226]
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of miR-129 in plasma. [234] Moreover, these reports con-
cluded that miRNAs might be ideal biomarkers for people 
suffering from CRC as bloodstream samples are critical for 
detecting CRC. [226, 235, 236]. As recently proven for lung 
cancer, new advancements to miRNA detection technolo-
gies like digital PCR may enable better sensitive approaches 
for absolute quantification of miRNAs [237–239]; Various 
miRNA and mRNA expression patterns might be employed 
to create CRC diagnostic and predictive assays [237, 240]. 
Mir-21 expression is enhanced in CRC tumours, with mul-
tiple studies finding a step-wise rise as tumours advance 
to later stages [241–243]. MiR-21 is also altered in CRC 
patients’ blood and stool, and it may reliably predict the 
extent of local tumour invasion (T), lymph node involve-
ment (N), and the existence of distant metastases (M)—the 
TNM stage [244]. In addition, researchers have discovered 
a correlation between increased amounts of miR-21 in pri-
mary CRC tissues and matching blood samples and con-
siderable tumour development and distant metastasis [245]. 
Enhanced miR-21 expression in malignancies is also linked 
to poor chemotherapeutic response and lower disease-free 
survival [168]. Despite this, circulating miR-21 levels drop 
following CRC tumour excision [241]. These findings show 
that miR-21 levels in serum and stool mirror those in CRC 
tumours, suggesting that it might be used as an analytical 
and prognostic biomarker, predicting TNM stage, probable 
metastasis, and response to treatment. According to research, 
the miR-17-92 cluster is also implied in carcinogenesis. It 
has been discovered that levels of many members of this 
cluster, including miR-17, miR-20a, miR-92a, and miR-18a, 
are elevated in CRC tumours as well as serum and plasma, 
with greater levels being associated with recurrence and a 
poor outcome. Significantly, serum amounts of the miRNAs 
miR-18a and miR-92a fall after tumour removal. Tests on 
isolated colonic epithelial cells from CRC patients’ faeces 
revealed an increased appearance of the miR-17-92 clus-
ter [246]. People with early-stage colorectal cancer and 
those with advanced adenomas can be differentiated from 
one another using the oncomir known as miR-29a, which 
is shown to be high in both CRC tumours and blood. This 
miRNA’s comprehensive expression profile may restrict its 
usefulness as a particular biomarker for CRC, yet, screening 
for miR-17-92 in CRC patients' blood and stool might be a 
valuable prognostic signal.

Colon cancer researchers recently concluded a clinical 
trial in which they used ELF/LEBS for depth-selective (from 
30 to hundreds of microns) spectroscopy of live tissue to 
study two CRC animal models (the AOM-treated rat and the 
Min-mouse) as well as 190 human subjects. Before adeno-
mas, potential changes in the colon might be detected with 
ELF/LEBS, and other histological/molecular indications 
of CRC could be found. ELF/LEBS can identify changes 
in normal rectal tissue induced by adenomas in any part 

of the colon. Rectal ELF/LEBS significantly surpassed all 
other known CRC markers in the first experiments. There-
fore, testing for ELF/LEBS in the rectum can provide an 
accurate risk assessment for colon carcinogenesis without 
stool preparation or colonoscopy. ELF and LEBS fiber-optic 
probe prototypes have been constructed in vivo by scientists. 
One clinical trial using miRNA as a diagnostic tool for CRC 
stage II is still going, and the expected completion date is 
2025. In this study, the miRNA apparatus, including miR-21, 
miR-20a-5p, miR-103a-3p, miR-106b-5p, miR-143-5p, and 
miR-215, will be used to evaluate patients. As a result of this 
tool, all the microRNAs in the human genome can be found. 
Utilizing qRT-PCR, researchers examine surgical material 
for the presence of these miRNAs and determine their risk 
score. Then they will classify patients with a score greater 
than one as exposed [247–250].

Discussion

There is mounting evidence that microRNAs are critical 
molecules in controlling each of the hallmarks of cancer. As 
a direct consequence, several microRNAs have been linked 
to colorectal cancer diagnosis, progression, and development 
of colorectal cancer. Multiple studies have identified either 
an excess of or a deficiency in the levels of miRNAs in CRC 
tissue samples. This mutation affects the mortality and dif-
ferentiation of tumour cells while also promoting the prolif-
eration, progression, metastasis, and angiogenesis of tumour 
cells. This mutation also promotes invasiveness. Inappro-
priate modulation of the RAS/MAPK signaling pathway is 
a characteristic feature of malignancies, and it frequently 
arises as a consequence of aberrant stimulation of associated 
receptors or dysregulation of RAS or RAF genes. The RAS/
MAPK signaling pathway is responsible for regulating the 
activities of epithelial cells; however, abnormal regulation of 
this pathway by miRNAs can change its biological function. 
The fact that microRNAs have accountability in the growth 
of colorectal cancer as either tumour suppressors or onco-
genes suggest that they have the potential to be exploited 
as diagnostic and prognostic markers. Therapeutic strate-
gies include using inhibitors to target oncogenic miRNAs 
or restoring tumour-suppressor miRNAs in the body. It has 
been hypothesized that combining a therapeutic medicine 
with onco-miRNA inhibitors would result in more favour-
able outcomes. This is partly due to the complexity of the 
settings in which cancer cells are found and the dysregula-
tion of many miRNAs in CRC. The understanding and char-
acterization of miRNAs have shown that they belong to the 
same class of regulatory RNAs as other miRNAs. However, 
it has also shown that they may be able to assist in identify-
ing a viable therapy and management plan for colorectal 
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cancer (CRC). Many CRC oncomiRs have been linked to 
CRC metastasis and liver carcinogenesis when contained in 
cancer exosomes. These CRC oncomiRs include miR-18a, 
mir-328, miR-17-5p, and miR-92a. However, to be clinically 
exploited as reliable biomarkers, further validated studies 
and calibrated protocols for first processing, production, and 
normalization of miRNA are necessary.

Data availability No data was generated during this study.
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