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Abstract
Gliomas are the most common malignant tumors in the central nervous system. The tumor microenvironment (TME) plays 
a crucial role in tumor proliferation, invasion, angiogenesis, and immune escape. However, little is known about TME in 
gliomas. The purpose of this study was to explore the biomarkers associated with TME in glioblastoma (GBM) to predict 
immunotherapy effectiveness and prognosis in patients. Based on RNA-seq transcriptome data and clinical features of 1222 
samples (113 normal samples and 1109 tumor samples) in The Cancer Genome Atlas (TCGA) database, the ImmuneScore, 
StromalScore, and ESTIMATEScore were calculated by ESTIMATE algorithm. The differentially expressed genes (DEGs) 
and differentially mutated genes (DMGs) were determined in the TCGA GBM cohort. Furthermore, gene set enrichment 
analysis (GSEA) was used to investigate the enrichment pathways of INSRR genes with abnormal expression. The proportion 
of tumor-infiltrating immune cells (TIICs) was evaluated by CIBERSORT. Frequent mutations of TP53, EGFR, and PTEN 
occurred in high and low immune scores. The cross-analysis of DEGs and DMGs revealed that INSRR was an immune-
related biomarker in the TCGA GBM cohort. According to GSEA, the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway with INSRR abnormal expression were IgA-produced intestinal immune network and Alzheimer’s disease, oxidative 
phosphorylation, and Parkinson’s disease, respectively. Additionally, INSRR expression was correlated with dendritic cells 
activated, dendritic cells resting, T cells CD8, and T cell gamma delta. INSRR is associated with the immune microenviron-
ment in GBM and is used as a biomarker to predict immune invasion.

Keywords Glioblastoma · TCGA  · Immune microenvironment · Immune infiltration · Genetic mutation · Insulin receptor-
related receptor

Introduction

Gliomas are the most prevalent malignant tumors in the 
central nervous system [1]. According to the WHO classi-
fication, this kind of tumor can be divided into four grades, 
from I to IV [2], of which glioblastoma (GBM) is the most 
malignant type (WHO grade IV). Despite the application 
of active treatment strategies such as radiotherapy, temozo-
lomide-based chemotherapy, and excision, GBM still has a 
high recurrence and death rate due to its strong plasticity and 
heterogeneity [3]. Therefore, exploring valuable biomarkers 
and therapeutic targets is essential for predicting the prog-
nosis of GBM.

The tumor microenvironment (TME) plays an essential 
role in the formation and development of tumors [4]. Tumor-
related immune cells can serve as tumor-antagonizing or 
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tumor-promoting factors [5]. Tumor cells can release some 
immunosuppressive molecules to inhibit other immune cells, 
allowing them to elude the surveillance of the immune sys-
tem and proliferate in the body [6]. Immunotherapies regu-
lating the TME and immune checkpoints have shown good 
efficacy in cancer treatment over the past few years [7, 8]. 
Although multiple immune-related biomarkers have been 
found to be associated with the prognosis of tumors [9–11], 
there is still a lack of immune-related biomarkers that can 
effectively predict outcomes in GBM patients.

TME comprises tumor cells, stromal cells, immune 
cells, extracellular matrix (ECM), signaling molecules, 
and cytokines [12]. The immune cells in TME can affect 
tumor growth [13]. The infiltration level of stromal and 
immune cells in tumor samples can be predicted by the 
ESTIMATE algorithm, which calculates the ImmuneScore 
and StromalScore based on unique gene signatures [14]. 
Subsequent studies have suggested that using the TME-
related ImmuneScore and the ratio of tumor-infiltrating 
immune cells (TIICs) in TME improves the prediction 
accuracy of the TNM cancer staging system [15, 16]. 
TME-related ImmuneScore is considered a valuable 
indicator of cancer recurrence, metastasis, and prognosis 
in patients with colorectal cancer [17]. Furthermore, the 
effectiveness of ImmuneScore in the classification of 
colorectal cancer is also widely recognized [18].

Based on the ESTIMATE algorithm, the present study 
comprehensively analyzed gene expression, somatic 
mutations, and immune cell infiltration in the TME in 
the TCGA GBM cohort. Differentially expressed genes 
(DEGs) and differentially mutated genes (DMGs) were 
identified according to the ImmuneScore, and the insulin 
receptor-related receptor (INSRR) was determined as an 
immune-related biomarker. The current study aimed to 
provide a new valuable target for the immunotherapy of 
GBM.

Materials and methods

Data source and preprocessing

We downloaded RNA-seq data (normalized FPKM expres-
sion level data), tumor mutation burden, and corresponding 
clinical data from the TCGA website (https:// cance rgeno 
me. nih. gov/) in February 2022. R4.2.1 was used for data 
standardization, processing, and analysis. RNA-seq values 
for each sample were integrated into a matrix file using Perl 
(https:// www. perl. org/).

Estimation of immuneScore, stromalScore, 
and ESTIMATEscore

The ESTIMATE R package and the Expression Data 
(Estimate) algorithm were used to estimate the ratios of 
immune and matrix components in the TME in glioma 
samples. These ratios were presented as ImmuneScore, 
StromalScore, and ESTIMATEScore. A higher score 
indicated a larger proportion in the TME.

Correlation of immuneScores, stromalScores, 
and ESTIMATEscores with survival

Samples were divided into two groups according to the 
median of ImmuneScores, StromalScores, and ESTI-
MATEScores, respectively. Overall survival (OS) was the 
primary outcome. The survminer R package was adopted to 
perform a survival analysis, and a Kaplan–Meier survival 
curve was drawn accordingly. The log-rank test was used 
for comparison between subgroups. A P < 0.05 indicated a 
statistically significant difference.

Identification of DEGs

Samples were divided into the high and low 
ImmuneScore groups. Limma R package was used 
to identify DEGs, and the screening conditions were 
|log2(FC)|> 1 and p-adjust < 0.05. Phetmap R package 
was used to draw a heat map of DEGs. The ClusterProfile 
and Richlot packages were used for the DEG enrichment 
analysis based on the Gene Ontology (GO) and the Kyoto 
encyclopedia of genes and genomes (KEGG) databases. 
The enrichment analysis involved biological process 
(BP), molecular function (MF), and cell component 
(CC). The enrichment items with P < 0.05 had statistical 
significance. A bubble diagram was developed using the 
Ggplot2 R package.

Identification of DMGs

Samples were divided into the high and low ImmuneScore 
groups. The limma R package was used to identify the tumor 
mutation burden in GBM samples from the TCGA database. 
The Maftools package was used to identify DMGs, and the 
screening condition was set to P < 0.05. Forest plots and 
oncoplots were drawn using the Forestplot R package.

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://www.perl.org/
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Gene set enrichment analysis

Gene Set Enrichment Analysis (GSEA) was conducted to 
determine the biological pathways associated with high 
and low expression of CD2. We downloaded two gene set 
GMT documents (c2.cp.kegg.v7.5.1.entrez.gmt and h.all.
v7.5.1.entrez.gmt) from the Molecular Signatures Database 
(MsigDb) for reference. The number of gene conversion 
permutations was set to 1000, and a pathway with P < 0.05 
was considered significantly enriched.

Survival analysis

PanCanSurvPlot (https:// smuon co. shiny apps. io/ PanCa nSurv 
Plot/) was used to analyze the association of INSRR with 
OS and disease-specific survival (DSS) of GBM patients.

Differential analysis and correlation analysis 
of immune cell infiltration

The CIBERSORT algorithm was used to predict the 
abundance of 22 infiltrating immune cells in both glioma 
and normal samples, including B cells, dendritic cells, 
eosinophils, macrophages, mast cells, monocytes, 
neutrophils, natural killer (NK) cells, plasma cells, T cells, 
and their different subtypes. These immune cells were 
grouped into high and low INSRR expression groups to 
analyze the correlation between each immune cell and 
the INSRR gene. The Wilcoxon rank-sum test was used 
to compare the proportions of the 22 infiltrating immune 
cells in the high and low INSRR expression groups, and 
the Pearson correlation between INSRR expression and the 

proportion of immune cells was assessed. Violin and scatter 
plots were drawn using the Vioplot, Ggplot22, and Ggpubr 
R packages.

Results

The correlation between immune infiltration 
and the OS in patients with GBM

The analysis process is shown in Fig.  1. RNA-seq and 
clinical data of 169 GBM cases were downloaded from 
the TCGA database. To evaluate the association between 
immune infiltration scores and the prognosis in GBM 
patients, the samples were grouped into two groups based 
on the medians, respectively: high and low ImmuneScore 
groups, high and low StromalScore groups, as well as high 
and low ESTIMATEScore groups. Subsequently, Kaplam-
Meier survival curves were developed. As shown in Fig. 2, 
different immune scores showed different OS in GBM sam-
ples. However, no correlation was found between the Immu-
neScore and OS, the StromalScore and OS, and the ESTI-
MATE score and OS, indicating that the three scores were 
not correlated with the prognosis in patients with GBM.

Identification of DEGs based on immunescore

Based on transcriptome data from 169 GBM cases in the 
TCGA database, we compared the gene expression in the 
high ImmuneScore and low ImmuneScore groups to inves-
tigate the correlation between gene expression and Immu-
neScore. There were 919 DEGs between the high and low 
ImmuneScore groups, with 754 up-regulated genes and 165 

Fig. 1  Analysis flow diagram

https://smuonco.shinyapps.io/PanCanSurvPlot/
https://smuonco.shinyapps.io/PanCanSurvPlot/
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down-regulated genes. The main DEGs between the high 
and low ImmuneScore groups are presented in Fig. 3a. 
According to the GO enrichment analysis, DEGs were 
primarily associated with the inflammatory microenvi-
ronment and immune function, such as leukocyte migra-
tion and adhesion, cytokine production, and T cell activa-
tion. The GO enrichment analysis of DEGs is shown in 
Fig. 3b. The migration of leukocyte, myeloid leukocyte, 
granulocyte and neutrophil, cytokine production, and T 
cell activation are the most common terms for biological 
processes. The external side of plasma membrane, secre-
tory granule membrane, and cytoplasmic vesicle lumen 
are the most common terms for cellular components. 
The receptor ligand activity, signaling receptor activator 
activity, cytokine receptor binding, and immune receptor 
activity are the most common terms for molecular func-
tions. Similarly, the KEGG enrichment analysis showed 
a high enrichment of inf lammation-associated pro-
cesses, such as cytokine–cytokine receptor interaction, 
chemokine signaling pathway, NOD-like receptor signal-
ing pathway, NF-κB pathway, and Toll-like receptor sign-
aling (Fig. 3c). As a result, these inflammation-related 
DEGs indicate that immune factors play an important 
role in the TME in patients with GBM.

Identification of DMGs based on immunescore

To explore the correlation between gene mutations and 
immune components in TME, we compared somatic muta-
tion data in the high and low ImmuneScore groups to iden-
tify DMGs. According to the DEGs mutation rate analysis, 

TP53, EGFR, and PTEN showed frequent mutations in both 
high and low ImmuneScore groups. The DEGs mutation rate 
in the high ImmuneScore group is presented in Fig. 4a, and 
the DEGs mutation rate in the low ImmuneScore group is 
presented in Fig. 4b. Additionally, forest map (Fig. 4c) and 
oncoplot (Fig. 4d) show the common DMGs between high 
ImmuneScore and low ImmuneScore groups. As shown in 
Fig. 4c and d, the two cohorts shared 16 DMGs. VENN 
analysis showed that INSRR overlapped in the cross-over 
analysis of DEGs and DMGs. Shared factors in DEGs and 
DMGs are presented in Fig. 4e.

GSEA in high and low expression of INSRR groups

GSEA was performed for both high and low expression 
of INSRR groups. According to the GSEA, the high 
expression of INSRR was mainly associated with two 
KEGG pathways, including asthma and the intestinal 
immune network for IgA production (P < 0.05). Impor-
tant KEGG pathways associated with high expression 
of INSRR are shown in Fig.  5a. Meanwhile, the low 
expression of INSRR was primarily correlated with six 
KEGG pathways, including Alzheimer’s disease, GAP 
junction, olfactory transduction, oxidative phospho-
rylation, Parkinson’s disease, and Ribosome (P < 0.05). 
Important KEGG pathways associated with low expres-
sion of INSRR are shown in Fig. 5b. Furthermore, low-
expression INSRR was enriched in three Hallmark gene 
sets, including E2F targets, MYC targets V1, and oxi-
dative phosphorylation (P < 0.05). Important Hallmark 

Fig. 2  Correlation between immune infiltration and OS in patients 
with GBM. a Kaplan–Meier survival analysis of ImmuneScores in 
patients with GBM; b Kaplan–Meier survival analysis of StromalS-

cores in patients with GBM; c Kaplan–Meier survival analysis of 
ESTIMATEScores in patients with GBM
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pathways associated with low expression of INSRR are 
presented in Fig. 5c.

INSSR was related to the survival in GBM patients

PanCanSurvPlot (https:// smuon co. shiny apps. io/ PanCa nSurv 
Plot/) was used to perform survival analysis on high and low 
expression of INSRR groups, and the results revealed that 
GBM patients in the high expression group had longer OS 

and DSS than those in the low-expression group (Fig. 6a 
and b).

Correlation between INSSR expression and TIICs

We also investigated INSRR-related immune cells. The CIB-
ERSORT algorithm was adopted to assess the infiltration of 
22 immune cells in GBM and analyze the relative propor-
tion of tumor-infiltrating subtypes. Immune cell infiltration 

Fig. 3  Identification of DEGs based on ImmuneScore. a Main DEGs (Top 50) between the high and low ImmuneScore groups (|log FC|> 1 and 
FDR-P < 0.05); b GO enrichment analysis of DEGs; (c) KEGG enrichment analysis of DEGs

https://smuonco.shinyapps.io/PanCanSurvPlot/
https://smuonco.shinyapps.io/PanCanSurvPlot/
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Fig. 5  GSEA of samples with 
high and low expression of 
INSRR. a Important KEGG 
pathways associated with high 
expression of INSRR; b Impor-
tant KEGG pathways associated 
with low expression of INSRR; 
c Important HALLMARK 
pathways associated with low 
expression of INSRR
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in GBM patients from the TCGA cohort is presented in 
Fig. 7a; the correlation between 21 TIICs in patients with 
GBM is depicted in Fig. 7b. Subsequently, the proportions of 
22 immune cells were compared between the high and low 
INSRR expression groups. The proportions of 22 immune 
cells are described in Fig. 7c. Among the 22 immune cells, 
T cells CD8, T cells CD4 memory resting, and mast cells 
activated showed a significant difference in the infiltrating 
abundance between the high and low INSRR expression 
groups. Furthermore, four of the 22 immune cells showed a 
positive correlation with INSRR expression in GBM cases, 
including dendritic cells activated, dendritic cells resting, 
T cells CD8, and T cell gamma delta. The Pearson correla-
tion between four important TIICs and INSRR expression 
is presented in Fig. 7d. The differential and correlation 
cross-over analysis identified one shared TIIC associated 
with INSRR expression, namely T cells CD8. The INSRR 
expression-related TIIC is shown in Fig. 7e. In addition, 
we analyzed the correlation between INSRR expression 
and common immune check point (ICPs) to assess GBM 
patients' response to INSRR expression-related immuno-
therapy. The results showed that the expression of PDCD1, 
CTLA4, LAG3, CD86, and HAVCR2 was significantly dif-
ferent between the high and low INSRR expression groups. 
The correlation between common ICPs and INSRR expres-
sion is shown in Fig. 7f.

Discussion

The cellular immune response plays a key role in the 
progression of cancers and is an influential factor in 
the prognosis of cancers [19, 20]. Therefore, immune-
related genes are potential treatment targets and value in 
the prognosis of cancers. Currently, TME has become a 
research hotspot for its important value in treatment and 
prognosis [21, 22]. The TME in GBM also has attracted 
extensive attention worldwide. Based on the ESTIMATE 
and CIBERSORT algorithms and GBM somatic mutation 
data, this study found that INSRR, a core gene in TME, 
was associated with GBM, providing a novel target for the 
clinical diagnosis and treatment of GBM.

The ESTIMATE algorithm is a comprehensive method 
for estimating tumor purity based on gene expression 
and can help identify candidate TME-related biomarkers 
[23]. In the current study, it was used to calculate 
ImmuneScores, StromalScores, and ESTIMATEScores 
based on the TCGA transcriptome data. Then TME-
related DEGs between the high and low ImmuneScore 
groups were determined. The biological functions of 
these DEGs are mainly the migration of leukocyte, 
granulocyte, myeloid leukocyte, and neutrophil, as 
well as cytokine production, and T cell activation. 
Further, these DEGs participate in a series of immune- 
and inflammation-related signaling pathways, such as 

Fig. 6  Correlation of GIMAP4 with survival of CC patients. a OS; b DSS
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NOD-like receptor signaling pathway, nuclear factor 
κB (NF-κB) pathway, and Toll-like receptor signaling 
pathway. The NOD-like receptor signaling pathway 
plays an oncogenic role in tumorigenesis by regulating 
innate and adaptive immunity, apoptosis, and cell 
differentiation in tumors [24]. The NF-κB pathway, as a 
major transcription factor produced by cytokine, recruits 
innate immune cells to participate in the regulation of 
the TME by creating an inflammatory environment [25]. 
The Toll-like receptor signaling pathway is a classic 
pattern recognition receptor pathway, and GBM tissues 
with high TLR2 levels have a similar mutualism pattern 
with MHC I molecules. Besides, the number and activity 
of infiltrating CD8 T cells are associated with TLR2 
levels in GBM patients [26]. Therefore, understanding 
these biological functions and pathways is helpful for 
elucidating the underlying mechanisms of GBM.

A previous study revealed that cancers with more 
non-synonymous variants were correlated with favorable 
survival outcomes with cancer immunotherapy [4]. To 
investigate the correlation between gene mutations and 
immune components in TME, we identified DMGs 
between the high and low ImmuneScore groups. 
According to the DEG mutation rate analysis, TP53, 
EGFR, and PTEN showed frequent mutations in both 
high and low ImmuneScore groups. TP53 mutations 
may activate carcinogenic and inflammatory pathways, 
thereby accelerating the progression of GBM [27]. EGFR 
mutation is the most common mutation that presents 57% 
of genetic mutations in GBM [28]. PTEN deletion is the 
most prevalent genomic event in GBM, and its mutation 
is a crucial biomarker for GBM [29].

Receptor tyrosine kinase is a key component of cell 
signaling pathways that participate in the regulation of 
cell interactions, cell proliferation and differentiation, 
cell migration, metabolism, and cell cycle control. 
Dysfunction of the receptor may lead to the development 
of cancers [30, 31]. To further identify the differentially 
mutated and expressed immune-related genes in 
the TME, a cross-analysis of DEGs and DMGs was 
performed. We identified an immune-related predictive 
biomarker, INSRR. INSRR is an insulin receptor that 
can be activated by basic extracellular mediators [32]. 
It does not recognize either insulin or any identified 
insulin-related peptides. INSRR mRNA is detected in 
the nervous system and peripheral tissues [33]. BDNF-
activated INSRR receptor chimera promotes neuronal 
survival and PC12 cell differentiation [34]. Furthermore, 
INSRR activates the phosphorylation of the intracellular 
signaling protein IRS-1 (insulin receptor substrate-1) 

and Akt (protein kinase B) and contr ibutes to 
cytoskeleton rearrangement [35]. However, few tumor 
researches focus on INSRR, so the association between 
INSRR and glioma remains unclear. In the current study, 
GSEA analysis showed that genes in the high INSRR 
expression group were mainly involved in the intestinal 
immune network for IgA production signaling pathway. 
The activation of this pathway was proven to promote the 
proliferation and migration of hepatocellular carcinoma 
cells [36]. Additionally, genes in the low INSRR 
expression group were mainly enriched in the oxidative 
phosphorylation pathway and E2F targets. Inhibiting 
oxidative phosphorylation can structurally relieve 
hypoxia and reactivate antitumor immune response [37]. 
Existing research has demonstrated that some oxidative 
phosphorylation inhibitors can improve the efficacy of 
radiotherapy combined with immunotherapy [38]. The 
E2F family is involved in tumorigenesis and progression 
of various tumors. The expression of E2F1-8 has 
been demonstrated to be elevated in brain cancer and 
central nervous system neoplasms. In GBM patients, an 
elevated expression of E2F3–6 is associated with poor 
prognosis and increased infiltration of CD8 + T cells, 
macrophages, neutrophils, and dendritic cells [39]. 
These findings suggest that INSRR may have a close 
association with immunity.

Immune infiltration destroys the immune microenvironment 
in GBM, promoting immune escape [40]. The current study 
adopted the CIBERSORT algorithm to select 22 immune cells 
from the TCGA GBM samples and investigated the correla-
tion between INSRR expression and immunity-related factors. 
The results showed that INSRR expression was positively cor-
related with dendritic cells activated, dendritic cells resting, 
CD8 + T cell, and T cell gamma delta in GBM patients, indi-
cating that GBM patients with high expression of INSRR may 
be immunocompromised. CD8 + T cells can differentiate into 
cytotoxic T cells to defend against pathogen invasion [41]. 
CD8 + T cell-mediated immunoediting inhibits genomic evolu-
tion and immune evasion in murine gliomas [42]. Therefore, 
it is speculated that INSRR may promote cancer by regulat-
ing tumor immunity, such as CD8 + T cell-mediated immu-
nity. Furthermore, a relatively high expression of ICPs was 
observed in the high INSRR expression group, suggesting that 
INSRR has the potential to predict GBM’s response to immu-
notherapy. These results revealed that the biological behavior 
of INSRR may depend on its expression level and TIIC phe-
notype, which may provide new insights for targeted therapy 
and molecular biology. Nonetheless, the specific mechanism 
remains to be studied.
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There are several limitations to our study. Firstly, 
the present study only included GBM samples from the 
TCGA database without comparison with other databases. 
Thus, there may be a selection bias in the transcripts. 
Secondly, the specific function and mechanism of INSRR 
in glioma cells were not evaluated. Additional in vivo and 
vitro studies are required to clinically verify its function. 
Lastly, the fundamental role of INSRR in some special 
gliomas, such as diffuse midline glioma, needs to be fur-
ther discussed.

According to the comprehensive bioinformatics analysis, 
INSRR is identified as an indicator of remodeling TME, 
and it is closely correlated with the degree of infiltration 
of immune cells in GBM patients. The expression level of 
INSRR is associated with dendritic cells activated, dendritic 
cells resting, CD8 + T cell, and T cell gamma delta and may 
serve as a tumor promotor by regulating tumor immunity. In 
conclusion, INSRR exhibits immune-related activity in the 
TME in patients with GBM and may influence the biological 
behavior and phenotype of GBM.
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