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Abstract
Exosomes are a subgroup of extracellular vesicles generated by distinct cells. Tumor-derived extracellular vesicles convey 
immunological checkpoint molecules. TEXs as critical mediators in tumor development, metastasis, and immune escape have 
recently become the focus of scientific research. Exosomes are involved in the regulation of the immune system. Exosomes 
interact with target cells in the tumor microenvironment, changing their function based on the cargo they contain. Exosomal 
immune checkpoints might be exploited to track tumor immune evasion, treatment response, and patient prognosis while 
enhancing tumor cell proliferation and spread. This review focuses on tumor-derived exosomes, their immunosuppressive 
effects in mice models, and their role in cancer immunotherapy. Exosomes are being studied as possible cancer vaccines, 
with numerous uses in tumor immunotherapy. Exosomes can carry chemotherapeutics, siRNA, and monoclonal antibod-
ies. Exosomes produced by macrophages might be used to treat cancer. These and other clinical consequences provide new 
doors for cancer treatment.
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Introduction

Exosomes are extracellular vehicles (EVs) with a size of 
40–160 nm in diameter, which are found in body fluids and 
are released by normal or tumor cells. Exosomes consist of 
a lipid bilayer membrane enclosing a cargo of biomolecule 

substances. For the first time, exosomes were found as cel-
lular waste products [1, 2]. However, exosomes are now 
considered bio-nano particles that contribute to intercellular 
communication and signaling pathways [3]. Tumor-derived 
exosomes (TEXs) have a critical role in tumor progression. 
TEXs increase cancer cells’ migration [4], are involved in 
tumor metastasis [5], can promote angiogenesis [6], and are 
also involved in tumor evasion [7]. In the tumor microen-
vironment, tumor evasion can result from several factors, 
including developing regulatory immune cells or differentia-
tion of immune cells into exhausted phenotypes, secretion of 
immune inhibitory agents, and cell–cell interaction between 
immune checkpoints on immune cells and their ligands on 
tumors [8]. Many studies have shown that tumor-derived 
exosomes induce immunosuppression. The exosomes have 
ligands on their surfaces that can bind to homologous recep-
tors on immune cells and transmit immune inhibitory sig-
nals to them [9]. Immune checkpoints (ICs) have attracted 
more attention in cancer immunotherapy among important 
immune inhibitory biomolecules. In addition to cell surface 
expression of ICs, secretion of exosomal immune check-
points is determined by different sources of cells. It has been 
shown that some tumor-derived exosomes carry immune 
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checkpoint molecules, including CD47, CTLA-4, TIM-3, 
ARG1, and PD-L1, which are known as exosomal immune 
checkpoints [10]. Numerous studies have shown that the 
expression of immune checkpoint molecules on exosomes 
has a critical role in mechanisms that mediate tumor immune 
evasion [11–13]. Therefore, exosomal immune checkpoints 
could be considered novel targets for cancer immunotherapy 
with immune checkpoint inhibitors.

Tumor‑derived exosomes (TEX)

Exosomes are made from a lipid bilayer membrane that car-
ries biomolecule cargo consisting of mRNAs, microRNAs, 
DNAs, proteins, lipids, and other agents, resembling the 
cytoplasmic content of the parent cells. After secretion of 
exosomes in the tumor microenvironment, they interact with 
target cells. Upon internalization by target cells, they release 
their cargo in the cytoplasm. Unlike their normal counter-
parts, tumor cells are intensive exosome producers, possi-
bly because of the tumor microenvironment [14]. Following 
secretion of exosomes in the tumor microenvironment, they 
interact with target cells and depending on their containing 
cargos, the function of target cells will be changed. With dif-
ferent strategies, exosomes influence target cells. They can 
attach to the receptor of target cells and initiate downstream 
signaling cascades by ligand-receptor interaction or are 
taken up by target cells via fusion with the membrane of the 
target cell or through phagocytosis, endocytosis, or micropi-
nocytosis and release the content of cargo into the cytoplasm 
of target cells [15]. In the recent decade, TEXs attracted 
more attention as imperative mediators in tumor progres-
sion, tumor metastasis, and tumor immune escape. Although 
TEXs comprise tumor-specific antigens, HSP70 and HSP90, 
involved in the activation of the immune response [16], they 
express immune inhibitory molecules leading to the inhibi-
tion of immune cells response and establishing an immu-
nosuppressive tumor microenvironment [17]. TGF-β1 is an 
immunosuppressive cytokine secreted by immune cells and 
tumor cells. In patients with gastric cancer, expression of 
TGF-β1 by exosomes has been proposed to be associated 
with increased levels of FOXP3+ regulatory T cells in lymph 
nodes and increased metastatic rate [18].

Therefore, TGF-β1 levels in TEXs may be considered 
a predictive mediator in lymph node metastasis of gastric 
tumors. Being a member of the TNF family, TNF-related 
apoptosis-inducing ligand (TRAIL) induces cell death in a 
Fas-independent fashion. In colorectal carcinoma and mela-
noma, the TRAIL and Fas L expression by TEXs stimulates 
tumor-specific T cells' apoptosis. CD8+ T cells have been 
shown to be more susceptible to apoptosis by TEX with the 
membrane of FasL or PD-L1 due to the enrichment of CD95 
or PD-1 on the membrane of CD8+ T cells, respectively 

[19, 20]. NKG2D ligand (NKG2D ligand) has been found in 
TEX in prostate cancer and promotes immune inhibition and 
tumor evasion. It has also been shown that NKG2D ligand 
positive TEX selectively downregulates NKG2D on NK 
cells and cytotoxic CD8+ T cells, leading to impaired cyto-
toxic activity in vitro that subsequently facilitates immune 
escape [21]. Investigation about TEXs and their interaction 
with immune cells underscore the crucial role of TEX in 
creating an immunosuppressive microenvironment, which 
can lead to the facilitation of tumor immunosurveillance, 
angiogenesis, tumor metastasis, and increased resistance to 
cancer immunotherapy.

Exosomes in immune regulation

T cells, B cells, and DCs have miRNA patterns that differ 
from their parent cells, according to research published in 
2011 [22]. They showed that antigen-driven unidirectional 
transfer of miRNAs from T cells to antigen-presenting cells 
(APCs) on immunological synapse development is accom-
plished by CD63 + EVs. Moreover, mesenchymal stem cells 
(MSCs) significantly recruit immune cells and maintain an 
inflammatory milieu in the tumor microenvironment [23]. 
MSCs treated with EVs generated from gastric cancer (GC) 
cell line significantly increased the release of pro-inflamma-
tory molecules, activated CD69 and CD25 on the T cell sur-
face, and induced macrophage phagocytosis [24]. Following 
GC EV injection, the aberrant stimulation of the Nuclear 
Factor kappa B (NF-κB) signaling pathway in MSCs facili-
tated these immunomodulatory effects [25]. This was owing 
to the inhibited NF-κB signalling pathway, which signifi-
cantly reduced the impact of MSCs triggered by GC EVs on 
T cells and macrophages. Toll-like Receptor 4 (TLR4) acti-
vates both innate and adaptive immune responses, and its 
enhanced activity in chronic infectious and inflammatory 
disorders contributes to cancer development [26]. When 
tumor cells eluded immune surveillance due to TLR4 stimu-
lation, Domenis et al. studied the immunological modulatory 
features of immunosuppressive EVs released by tumor cells, 
hence encouraging tumor development [27]. They discov-
ered that glioma-derived EVs decreased T-cell immunity by 
affecting monocyte development rather than directly inter-
acting with T cells. In another glioma investigation, the 
extracellular matrix protein tenascin-C (TNC), which is cor-
related with EVs released by stem-like brain tumor-initiating 
cells (BTICs), was found to have a unique immunosuppres-
sive effect in affecting local and distal T lymphocyte immu-
nity [28]. They discovered that glioblastoma patients’ circu-
lating EVs had higher TNC and T cell-suppressive activity 
levels than healthy people. They demonstrated that BTICs 
released EVs containing TNC and that TNC suppressed T 
cell proliferation by interacting with the integrins α5β1 and 
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αvβ6 on T cells, thus lowering mTOR signaling using co-
cultures. EVs generated from melanoma cells were shown 
to be enriched with coding and noncoding RNAs that did not 
match their source cells' abundance [29]. Melanoma-derived 
EVs generated dynamic alterations in the transcriptome of 
cytotoxic T cells after administration, resulting in altered 
mitochondrial respiration and upregulation of Notch signal-
ing pathway genes. The same lab studied EVs generated 
from three melanoma-related cell lines [30]. Only those 
originating from the melanoma B16F0 cell line have both 
protein and mRNA for protein tyrosine phosphatase non-
receptor سtype 11 (PTPN11), a T-cell proliferation inhibi-
tor. Tung et al. reported EVs' transfer of miRNAs from Tregs 
to DCs for the first time [31]. Upon LPS stimulation, the 
high amounts of miR-150-5p and miR-142-3p in DCs caused 
by their association with Treg-derived EVs resulted in 
adopting a tolerant phenotype in these cells, with enhanced 
IL-10 and lowered IL-6 production.

Furthermore, Li et al. explored whether tumor-derived 
EVs alter the anti- and pro-tumoral balance of gamma-delta 
T cells in the tumor microenvironment at varied oxygen pres-
sures [32]. They demonstrated that tumor-derived EVs might 
boost the growth and cytotoxicity of gamma delta T cells 
without needing DCs. Antigen-specific interactions between 
B and T cells are required for a successful immune response. 
MHC class II complexes on B cells must interact with the 
T cell receptor on antigen-specific T cells. Muntasell et al. 
investigated the processes governing the persistence, loss, 

and release of particular MHC-II complexes on activated 
B cells in 2007 [33]. They discovered that active B cells 
destroyed around 50% of MHC-II molecules daily and that 
EVs secreted about 12% of these molecules, which were 
previously expressed on the plasma membrane of B cells. 
MHC-II is able to avoid intracellular degradation thanks to 
this regulated EV release from activated B cells, and EVs 
can directly stimulate prepared CD4 + T cells but not naive 
CD4 + T cells.

Exosomal immune checkpoints

A study on the structure of exosomes has discovered the 
expression of several immune checkpoints by TEXs, such as 
Programmed cell death protein 1 (PD-1), Programmed cell 
death ligand-1 (PD-L1), T cell immunoglobulin and mucin-
domain containing-3 (TIM-3), and Cytotoxic T lymphocyte-
associated antigen-4 (CTLA-4). These exosomal immune 
checkpoints are involved in tumor immune escape [10]. 
Various investigations have shown that exosomal immune 
checkpoints induce tumor evasion and increase cancer cell 
proliferation and metastasis. We have reviewed each of the 
exosomal immune checkpoints in cancer progression in this 
part (Table 1). PD-L1, which is also known as (CD274), 
is an immune checkpoint found on immune cells’ surfaces, 
including Dendritic cells (DCs), macrophages, and B and T 
cells [34]. PD-L1 is also expressed on tumor cells and acts 

Table 1   The in-vitro studies were done on exosomal immune checkpoints

Immune 
check-
point

Cell line Sum results Ref

PD-L1 A549, H460, H1975, HCC827, H1650, H820, H358, H1573, 
H2009, Calu-1, H1299, H3122, H2228, HCC366, H520, 
BEAS-2B, Jurkat

Exosomes generated from lung cancer cells include the pro-
tein PD-L1, which aids immune evasion by lowering T-cell 
activity and increasing tumor development

[43]

PD-L1 PY8119, EL4, BT549, Jurkat, MDA-MB-231, Activated T cells secrete PD-1 in an exosomal form, which 
can interact with either cell surface or exosomal pro-
grammed death-ligand 1 (PD-L1), induce PD-L1 internali-
zation via clathrin-mediated endocytosis, and thus prevent 
subsequent cellular PD-L1/PD-1 interaction, restoring tumor 
surveillance by attenuating PD-L1-induced suppression of 
tumor-specific cytotoxic T cell activity

[46]

PD-L1 PC3, DU145, LNCaP, SK-MEL-28, 293 T T cell activation in the draining lymph node is suppressed by 
exosomal PD-L1 from the tumor. Exosomal PD-L1 deliv-
ered systemically slows tumor development in tumors that 
are unable to release it on their own

[47]

TIM-3 MV3, A375, THP-1 Exosome-loaded TIM-3 from MV3 cells inhibited CD4 + T 
cell immune function and increased macrophage M2 
polarization to enhance melanoma incidence and growth, 
providing a possible therapeutic target for efficiently battling 
the disease

[48]

PD-L1 MDA-MB-231, T47D, MDA-MB-453 TGF-β has been identified as an exosomal PD-L1 promoter, 
revealing a method through which tumor cells induce CD8 
T cell failure

[49]
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as a pro-tumorigenic ligand in tumor cells through ligation 
to PD-1 on immune cells and induction of proliferative and 
survival signaling pathways [35]. In addition to tumor cells’ 
surface, tumor cells also release PD-L1 into the extracellu-
lar tumor microenvironment and circulation. Extracellular 
PD-L1 includes the exosomal forms of PD-L1 and a solu-
ble type [36, 37]. Although exosomal PD‐L1 shares a simi-
lar structure to the membranous form, exosomal PD-L1 is 
more stable against enzymatic degradation than soluble and 
membranous forms [38]. Furthermore, it seems that levels 
of exosomal PD‐L1 are relatively consistent with the levels 
of membranous PD-L1 expressed by parental cancer cells 
[39]. The immunoinhibitory function of exosomal PD-L1 
in the progression and metastasis of tumors has attracted 
the attention of scholars in recent years. It has been shown 
that tumor-derived exosomal PD-L1 has inhibitory effects on 
the function of activated T cells and develops tumor growth 
via ligation with cell surface PD-1 [40]. Gang Chen et al. 
demonstrated that exosomal PD-L1 inhibited cytotoxic T 
cell proliferation and granzyme B production and facilitated 
melanoma progression in vitro and in a mouse model [41]. 
In Yang et al.’s research, the injection of exosomal PD-L1 
into the breast cancer mouse model developed tumor growth 
compared to PD-L1 knockdown groups. The result indi-
cated the systemic immunosuppressive impact of exosomal 
PD-L1. Consistently, PD-L1 expression was also increased 
in aggressive breast tumors [42]. Moreover, the increased 
level of exosomal PD-L1 in gastric cancer patients is associ-
ated with elevated IL-10 and TGF-β levels and poor prog-
nosis. Exosomal PD-L1 was also negatively associated with 
granzyme B production [37]. Additional support on the sig-
nificant role of exosomal PD-L1 in the inhibition of the anti-
tumor response of activated T cells was provided by a study 
on Non-Small Cell Lung Cancer (NSCLC) patients. Exo-
somal PD-L1 isolated from lung tumor cells demonstrated 
high PD-L1 expression, inhibiting the anti-tumor response 
of Jurkat cells in production of IFN-γ. That inhibitory effect 
was reversed by monoclonal PD-L1 blocking antibody or 
PD-L1 expression knockdown and in turn, the injection of 
exosomal PD-L1 increased tumor development [43]. These 
results will provide support for the concept of exosomal 
PD-L1 as a biomarker of tumor immune evasion. Exosomal 
PD-L1 in comparison with cell surface PD-L1 appears to be 
a more appropriate biomarker to predict the tumor response 
to immunotherapy and patients’ outcome. M. Cordonnier 
et al. in their study detected exosomal PD-L1 in plasma 
samples of all melanoma patients, while only 67% of tumor 
biopsy samples were PD-L1 positive [44]. The exosomal 
PD-L1 is considered a prognostic biomarker for anti-PD1 
therapy response. In patients with different cancer types, the 
efficacy of anti-PD1 therapy was evaluated prior and after 
treatment. Compared to the responders, exosomal PD-L1 of 
the non-responders was higher than that of the responders 

prior to the treatment. Simultaneously, exosomal PD-L1 and 
cell surface PD-L1 reduced when anti-PD-1 therapy was 
effective [45]. A controversial study about exosomal immune 
checkpoints refers to investigation of Y. Qiu et al., which 
indicated that activated T cells release exosomal PD-1. The 
exosomal PD-1 remotely interacts with either exosomal 
PD-L1 or cell surface PD-L1, which induces internaliza-
tion of PD-L1 by clathrin-mediated endocytosis, and thus 
inhibits subsequent cellular PD-1: PD-L1 ligation, which in 
turn entails restoration of tumor surveillance via attenuating 
PD-L1-induced suppression of tumor-specific cytotoxic T 
cell activity. As a result, the anti-PD-L1 activity of exoso-
mal PD-1 sets in motion a positive function for ameliorating 
cytotoxic T cell activity and a potential therapeutic strategy 
to modify the exosome surface with membrane-bound inhib-
itory immune checkpoints receptors to reduce the suppres-
sive tumor immune microenvironment [46]. This is while 
the other studies have shown a supportive role of exosomal 
immune checkpoints in tumor growth. As such, more studies 
are warranted to further discover the anti-tumor function of 
exosomal PD-1.

Interaction of exosomal immune 
checkpoints on immune cells

CD8 + and CD4 + T cells

It has been shown that tumor-derived exosomes can modu-
late the function of immune cells [50]. Research on exo-
somal immune checkpoints has revealed that tumor cells 
release exosomal PD-L1 within the tumor microenviron-
ment, which binds to PD-1 on T cells, leading to exhaustion 
of T cells. In return, the inhibition of exosomal PD-L1 can 
induce anti-tumor immunity with elevated levels of cells 
containing the activation marker Granzyme B [47]. To ena-
ble tumor immune evasion, tumor cells with the secretion of 
exosomal immune checkpoints can suppress cytotoxic activ-
ity and modulate the expression of immune-related genes in 
T cells. Estrogen receptor-binding fragment-associated anti-
gen 9 (EBAG9) has been a tumor-promoting factor affect-
ing the tumor-infiltrating immune cells. Miyazaki et al. have 
demonstrated that the EBAG9 molecule in tumor-derived 
exosomes suppressed cytotoxic activity and modulated 
immune-related gene expression, including IFNG, CXCR3, 
and granzyme B in T cells. Furthermore, induction of epi-
thelial-mesenchymal transition (EMT)-related genes such as 
VIM, SNAI1, and SNAI2 imply that EBAG9 may promote 
tumor growth and metastasis via the EMT pathway [51]. 
Tim-3+ exosome is another exosomal immune checkpoint 
involved in aggressive tumor progression. Tim-3 expresses 
by Th1 cells, which plays a negative regulatory role in tumor 
immunity and correlates with T cell exhaustion. There are 
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increased expression levels of Tim-3 on both cancer cells 
and tumor-infiltrating lymphocytes (TILs) are consid-
ered a predictive factor for poor prognosis [52]. TIM-3+ 
exosomes have inhibitory effects on the anti-tumor response 
of CD4 + T cells and induce macrophage M2 polarization 
via upregulation of CD206, CD163, and Arginase-1 to pro-
mote proliferation and metastasis of melanoma cells [48]. 
Wang et al. demonstrated that in tumor-derived exosomes 
of Spleen Deficiency-Hepatocellular carcinoma (SD-HCC) 
mouse model, PD-1, CTLA-4, PTEN, and AKT (also known 
as protein kinase B or PKB) were upregulated in comparison 
with HCC. Moreover, tumor progression and metastasis also 
increased in SD-HCC mice. Further experiments showed 
that CTLA-4+ exosomes increased tumor progression by 
modulating PTEN/CD44 signaling pathway to promote 
tumor growth, self-renewal, and invasion of liver cancer 
cells [53]. In addition, CD73+ exosomes lead to immune 
inhibition by eliminating T cell function. These tumor-
derived exosomes dephosphorylate exogenous ATP and 
cAMP to form adenosine and cause T cell inhibition via the 
adenosine A2A receptor. Consequently, TEX modulates the 
anti-tumor activity of T cells with elevated levels of extra-
cellular adenosine production [54]. Inhibition of CD4+ and 
CD8+ T cells derived from peripheral blood mononuclear 
cells by TEX was displayed at the early steps of T cells acti-
vation (activation of NFκB and NFAT) until late endpoints 
(secretion of IL-2, IFN-γ, and proliferation) [50, 55, 56]. 
Chatterjee et al., in their study, showed that TGF-β induces 
PD-L1 upregulation in TEXs and mediates cytotoxic CD8+ 
T cells’ dysfunction. They found that PD-L1 + exosomes iso-
lated from TNBC cell lines could induce exhaustion-related 
genes, including PD-1 and CTLA-4, in co-cultured CD8 + T 
cells. In contrast, siPD-L1 exosomes (exosomes isolated 
from PD-L1-knocked out cancer cells) failed to promote 
exhaustion. Additionally, upregulation of PD-1 expression 
by CD8+ T cells while cultured with PD-L1+ exosomes was 
reduced following siPD-L1 exosomes treatment. Moreo-
ver, regulation of TCR signaling in CD8+ T cells showed 
enhanced dephosphorylation of SRC family molecules, 
PLC-γ and LAT by PD-L1 + exosomes. In contrast, TCR 
signaling adaptors were phosphorylated in the presence of 
siPD-L1 exosomes, indicating how TEX increased CD8+ T 
cell dysfunction [49]. According to numerous studies, exo-
some-associated miRNAs have been implicated in the modu-
lation of signaling pathways in target cells in tumor microen-
vironments [57, 58]. Ye et al. have found that by inhibiting 
FGF11 and modulating the phosphorylation of the ERK and 
STAT proteins, exosomal miR-24-3p plays a crucial role in 
TEX-mediated T-cell dysfunction and indicates a new strat-
egy of tumor immune evasion. Exosomal miR-24-3p and its 
target gene FGF11 may also be used as predictive indicators 
in nasopharyngeal carcinoma [59]. Arginase-1 (ARG-1+) 
tumor-derived exosomes emerge as a key regulator in cancer 

cell proliferation and tumor immune evasion amongst many 
other immune-suppressive molecules. In a mouse model of 
ovarian carcinomas, ARG-1+ TEXs are delivered to draining 
lymph nodes, where they are picked up by dendritic cells and 
suppress the proliferation of antigen-specific T lymphocytes. 
ARG1+ TEXs isolated from ovarian carcinomas patients as 
well as ovarian carcinoma cell lines affect the activities of T 
cells by inhibiting their proliferation and decreasing CD3ε 
and CD3ζ chain expression levels. The TCR complex’s sub-
units serve as important signaling molecules in T cells, so 
their normal expression or phosphorylation is needed for T 
cell activation, proliferation, and cytokine secretion [60]. In 
another study, Azambuja et al. have reported high levels of 
FasL, TRAIL, CTLA-4, CD39, and CD73 expression, with 
low expression of immunostimulatory molecules by glio-
blastoma-derived exosomes (GBex). The results indicated 
that in the presence of GBex, TNF-α and INF-γ secretion 
were inhibited, and apoptosis was triggered in CD8+ T cells.

Regulatory T cells (Tregs)

In another study, exosomes derived from a human chronic 
myelogenous leukemia cell line (K562 cells) altered cord 
blood-derived T cells properties toward differentiation regu-
latory phenotype with upregulation of FOXP3 gene levels 
and IL-10 secretion [61]. TEXs not only promote regulatory 
T cell differentiation but also support the function of regula-
tory T cells. Tumor-derived exosomes have been found to 
prevent CD4+ and CD8+ T cells activation upon IL-2 secre-
tion. In the presence of tumor-derived exosomes, regula-
tory T cells respond to IL-2 in a TGF-β-dependent manner 
[50, 62]. According to this research, tumor and Treg-derived 
exosomes containing CTLA-4 on their surface may inter-
fere with ipilimumab treatment. These findings imply that 
exosome-carried chemicals might represent a unique mecha-
nism for patients to develop treatment resistance, as well as 
potential biomarkers for cancer diagnosis [63].

Natural Killer (NK) cells

Exosomes produced by NK cells have also been found 
to have therapeutic properties. For example, the contents 
of TNF-α, perforin, and FasL found in NK cell-derived 
exosomes suppressed melanoma growth in both in vitro 
and in vivo tests [64]. In addition, exosomes produced from 
NK cells pretreated with NB cells boosted the expression of 
natural killer cell receptors. Furthermore, they improved the 
cytotoxicity of NK cells against NB tumors in neuroblastoma 
(NB) tumors [65]. Furthermore, exosomes generated from 
Glioblastoma have been found to include a number of immu-
nosuppressive proteins, including CTLA-4, which decrease 
the immunological function of CD8 + T cells, CD4 + T cells, 
natural killer (NK) cells, and macrophages [66].
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B cells

Exosomes from patients with esophageal squamous cell car-
cinoma (ESCC) and ESCC cell lines decreased B cell prolif-
eration and increased interleukin-10 + and PD1high Bregs. 
Meanwhile, research shows that ESCC-derived exosomes 
might increase PD-1 expression and IL-10 secretion in 
recipient B cells, which could be linked to the activation of 
TLR4 and MAPK signaling pathways [67]. Exosomes pro-
duced from mesenchymal stem cells have powerful regula-
tory effects on immunological responses involving various 
immune cells, including T cells and B cells [68].

Innate immune cells

Similarly, GBex inhibited the function of NK cells and 
CD4+ T cells. In macrophages, GBex stimulated the NF-κB 
pathway, enhancing their development into the M2 pheno-
type. Moreover, splenic CD8+ T cells, NK cells, and M1 
macrophages were decreased in the mice injected with 
GBex, in contrast to naive and M2 macrophages developed 
[66] (Fig. 1). ARG1 + EVs can be phagocytosed by DCs or 
directly decrease T cell proliferation and antigen-specific T 
cell proliferation to promote tumor growth. [69].

Estrogen receptor-binding fragment-associated antigen 9 
(EBAG9) as a tumor-promoting factor modulates immune-
related gene expression, including IFNG, CXCR3, and gran-
zyme B in T cells, as well as suppressing T-cells cytotoxic 
activity. Arginase-1+ (ARG-1+) TEXs are transported to 
draining lymph nodes, wherein dendritic cells collect them 
up and inhibit antigen-specific T lymphocyte proliferation. 
They also suppress T-cell proliferation and decrease CD3ε 

and CD3ζ chain expression levels. Tumor-derived CD73+ 
exosomes dephosphorylate exogenous ATP and cAMP to 
form adenosine and cause T-cell inhibition via the adenosine 
A2A receptor. Thus, TEXs modulate the anti-tumor activity 
of T-cells with elevated levels of extracellular adenosine pro-
duction. Tumor-derived Tim-3 containing exosomes cause 
CD-4+ T-cells dysfunction and induce macrophage M2 
polarization via upregulation of CD206, CD163, and Argi-
nase-1 to promote proliferation and metastasis of melanoma 
cells. Tumor cells-derived exosomal PD-L1 binds to PD-1 
and brings about CD8+ T-cells exhaustion, and the dysfunc-
tion thus facilitates tumor immune evasion. Glioblastoma-
derived exosomes (GBex) with high levels of FasL, TRAIL, 
CTLA-4, CD39, and CD73 expression, inhibit the secretion 
of TNF-α and INF-γ and trigger apoptosis of CD8+ T-cells, 
besides decreasing NK-cells and enhancing macrophages 
development into M2 phenotype.

Exosomal immune checkpoints in mice 
models

In mouse models, tumor exosomal immune checkpoints 
are crucial in mediating local and systemic immunosup-
pression [39]. It has been shown that exosomes containing 
PD-L1 obtained from supernatants of murine or human head 
and neck squamous cell carcinomas cell lines can inhibit 
the infiltration of CD4 + and CD8 + T cells into the tumor 
environment and consequently boost tumor growth in the 
4-nitroquinoline 1-oxide -induced malignant oral/esophageal 
injury model [70]. It has also been found that tumor-derived 
exosomes derived from the Lewis lung cancer model and the 

Fig. 1   Exosome-related immune 
checkpoints’ interaction with 
immune cells
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4 T1 breast cancer model increase the expression of PD-L1, 
inhibiting the differentiation of myeloid precursors into DCs 
and their maturation [71]. The immunosuppressive function 
of exosomal PD-L1 was also seen in a syngeneic mouse 
model. In vitro, PDL1-containing exosomes obtained from 
B16-F10 tumor cells prevented the proliferation and cyto-
toxicity of CD8 + T cells. Intravenous delivery of exosomes 
obtained from the tumor cell line to mice supported tumor 
progression and reduced the infiltration of B16-F10 CD8 + T 
cells; however, anti-PD-L1 antibody therapy prevented this 
impact [41]. Further attempts using a mouse model of pros-
tate cancer indicated that tumor-released exosomal PD-L1 
can move to the tumor’s draining lymph nodes, where T 
cell activation is prevented, eventually resulting in T cell 
exhaustion and size reduction of the spleen [47]. Another 
investigation used Rab27a and nSMNase2, two important 
exosomal biogenesis genes, to create exosome-null B16 
cells. The majority of exosomes were eliminated when both 
of these genes were deleted, as evidenced by CD63 marker 
expression and electron microscopy. Exosome deletion pre-
vented severe lung metastases and prolonged the longevity 
of melanoma cell-bearing mice. In vivo, however, additional 
purified exosome therapy reversed the phenotype, signifi-
cantly demonstrating that exosomes play a role in supporting 
metastasis. Furthermore, exosomes’ function is not restricted 
to the B16 melanoma model. In the Lewis lung carcinoma 
tumor model, removing exosomes with GW4869, a specific 
inhibitor of nSMNase2 significantly reduced metastatic 
growth and extended mouse survival. So, small molecule 
inhibitors of important enzymes like Rab27a and nSM-
Nase2, as well as molecules found on the exosome surface 
like PDL1 have the potential to operate alone or in com-
bination with current cancer treatment options. It is also 
revealed that exosomes secreted by melanoma cells perform 
an immunosuppressive activity through endogenous PD‐L1 
to stimulate tumor‐specific CD8 + T cell exhaustion, lead-
ing to the elevation of metastatic growth [72]. Moreover, 
PD-L1 was detected in exosomes obtained from the culture 
media of PD-L1-secreting human breast cancer cells and 
4T1 mouse mammary tumor cells. In the mouse 4T1 breast 
tumor model, it was found that by using Rab27a knockdown 
and consequently preventing the secretion of exosome in 
tumor cells, the effectiveness of anti-PD-1 treatment was 
noticeably enhanced, and the tumor development was 
blocked [42]. The effect of Orexin A on cellular and exoso-
mal PD-L1 expression was studied in vitro using a mouse 
CT-26 model and human HCT-116 colon cancer cells. The 
growth rate of orthotopically transplanted colon cancer was 
slower in the Orexin A-treated group, which also had lower 
PD-L1 expression and higher immune infiltration. Orexin A 
has the ability to inhibit both cellular and exosomal PD-L1 
expression. This study revealed that by inhibiting the JAK2/
STAT3 signaling pathway, Orexin A was able to inhibit the 

expression of exosomal PD-L1 in colon cancer cells and 
promote T cell activity [73]. It is also reported that exosomes 
carry PD-L1 from the Bone marrow-derived cells (BMDCs) 
of tumor-bearing mice (BMDC-EXOsTu), not exosomes 
from BMDCs from healthy mice. Without the dependency 
on PD-L1, BMDC-EXOsTu can prevent CD8 + T cell prolif-
eration in vitro and can support tumor development by inhib-
iting anti-tumor CD8 + T cell reactions. Without depend-
ency on PD-L1, endogenous BMDC-EXOsTu can move 
into tumor tissues and suppress CD8 + T cell proliferation. 
Also, BMDC-EXOsTu is able to augment tumor metastasis 
through reducing the anti-tumor CD8 + T cell responses at 
metastatic locations via PD-L1 [74]. To confirm the anti-
tumor activity of exosomal PD-1 in vivo, mouse exosomal 
PD-1 obtained from mouse T cells were administrated to 
PY8119 tumor-bearing mice. Mouse exosomal PD-1 notably 
reduced tumor prgression and improved survival duration 
in tumor-bearing mice [46]. In summary, such experimen-
tal studies support the notion that by reprinting cell-surface 
immune checkpoints, exosomal immune checkpoints can 
inhibit T cell immunity and promote tumor growth in vari-
ous tumor types (Table 2).

Exosome‑based cancer immunotherapy

Using exosomes as carriers to trigger anti-cancer immune 
responses and as carriers for anti-cancer drugs could be a 
promising approach to cancer treatment. Various immu-
notherapy ways have been used against tumors; one of the 
promising ways against tumors is a cancer vaccine that trig-
gers the immune activities against tumor cells [75] (Table 3). 
DC-derived exosomes are used in vaccines manufactured via 
exosome platforms and may respond better against tumors 
by activating the CD8 + . When DCs catch antigens, they 
might pack immunostimulatory factors into exosomes along 
with the MHC antigen peptide complex. After that, these 
exosomes activate cytotoxic T-cell lymphocytes in lymph 
nodes which take action against tumors [76]. Some stud-
ies have been conducted on the platform of DC-derived 
exosomes.

A phase I/II clinical trial in patients with advanced stage 
of squamous cell carcinoma of esophagus showed that 
DC-derived exosome vaccines for esophageal squamous 
cell carcinoma are one of the possible treatment options 
[81]. Another viable option in vaccination against tumors 
is the macrophage-derived exosome. A study showed that 
M1-polarized macrophages exosomes persuade antigen-
specific CTLs response using the improved activity of lipid 
calcium phosphate nanoparticles in melanoma cancer cells 
[82]. Tumor-released exosomes can also take part in vacci-
nation platforms, but their effect may not be strong enough 
compared to other platforms [83]. Exosomes have gained 
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increasing attention from researchers in recent years, along 
with potential cancer vaccines with broad potential in tumor 
immunotherapy.

Nevertheless, more studies in more extensive clinical 
trials are warranted to learn about their safety and effec-
tiveness against tumors. Exosomes as nanoparticles have 
a better character for drug delivery in cancer immuno-
therapy. The nanoscale size and cargo delivery ability of 
exosomes make them highly suitable for penetrating tissue 
barriers [84]. Different types of cells can be potentially 
utilized. Still, recent studies showed that compared to 
other types of cells, mesenchymal stem cells can secrete 
more exosomes and can have a better effect on stimulating 
the immune system [85]. Accordingly, the outcome of a 
study using Mesenchymal stem cells-exosomes was remis-
sion of colon cancer progression via doxorubicin [86]. The 
primary technique in drug delivery is to perform structural 
engineering on the surface of exosomes [87]. In addition, 
engineering exosomes can be used as a carrier of combi-
nation therapy like chemo drugs, siRNA, and monoclo-
nal antibodies [88]. Like-wise the possible option in drug 
delivery against tumors is macrophage-derived exosome. 
A study revealed that reversing the M2 macrophages tumor 
immunosuppression mechanism also induces anti-tumor 
immunity, cytotoxic T lymphocyte recruitment, and Treg 
downregulation, in addition to achieving significant thera-
peutic effects in mice with pancreatic cancer treatment 
[89]. Similar to the previous study’s engineered exosomes, 
combining GM‑CSF and IL‑12 alongside tumor-derived 
exosomes in renal cell carcinoma better affects CD8 + and 
their cytotoxic effect in the tumor microenvironment [90]. 
These clinical implications, alongside others, open new 
doors for treating cancers such as lung, prostate, renal cell, 

gastric, breast, gallbladder, pancreas, and rectal cancers. 
These engineered exosomes improve immune responses 
by enhancing the DC’s antigen-presenting function and 
stimulating the cytokine releases in tumors [91]. IFN- 
may cause an increase in the expression of PD-1 ligands 
on DEXs, a well-known immunological checkpoint that 
suppresses T-cell function, according to scientists. DEXs 
were found to successfully stimulate NK cells in an MHC-
independent way, even though these vaccines were meant 
to activate specific MHC-restricted T-cell responses. DEX-
based vaccines, however, have focused on direct CTL acti-
vation as a separate mechanism in other immune cells. 
Näslund et al., on the other hand, found that CD4 + T cells 
and B cells are required for DEX activation of the CTL 
anti-tumor response [92]. We summarise the modified 
exosomes as an immunotherapy usage in the table below.

In‑silico analysis to identify involved miRNAs 
in regulating immune checkpoints

miRNAs have complicated roles in regulating the immune 
system. Hence, we used miRWalk v2 [93] to find miR-
NAs that could target immune checkpoints with a high 
affinity. Besides, these targetings were approved by miR-
TarBase, which finds experimentally verified miRNAs. 
We showed that six co-inhibitory immune checkpoints 
(BTLA, CD276, CYBB, HAVCR2, PDCD1, VSIR) could 
be targeted by 70 potential miRNAs (Fig. 2). The results 
demonstrated that the most interactive miRNAs are miR-
6756-5p, miR-4447, miR-28-5p, miR-4472, miR-4651, and 
miR-6887-5p.

Table 2   Exosomal immune checkpoints in mice models

Mouse model Immune 
check-
point

Function Cancer Reference

BALB/c PD-L1 Attenuates anti-tumor immunity Breast cancer [42]
C57BL/6 PD-1 Enhances cytotoxic T-cell activity Breast cancer [46]
C57BL/6 J PD-L1 blocks dendritic cells' maturation to decrease the T cell immune 

response
Breast cancer, Lung cancer [71]

BALB/c PD-L1 Reduces T cell activity Colon cancer [73]
C57BL/6 J, BALB/c PD-L1 Inhibits CD8 + T cell proliferation and activation Colon cancer, [5]

Breast cancer,
Lung cancer

C57BL/6 PD-L1 Mediates exhaustion of T cells Melanoma [41]
C57BL/6 J PD-L1 Promotes tumor growth by inducing CD8 + T cell exhaustion and 

mediates metastasis
Melanoma [72]

C57BL/6 PD-L1 Accelerates tumor progression and reduces immune cell migration 
to the tumor

Oral squamous cell carcinoma [70]

C57BL/6 J PD-L1 Suppresses T cell activation and promotes tumor progression Prostate cancer [47]
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Validated roles of predicted miRNAs 
in exosomal form

MSCs treated with a miR-28-5p mimic showed increased 
proliferation, migration, and immunomodulation. This 
mimic stimulated the paracrine production of VEGF, HGF, 
LL-37, and Ang-1 by the body. Furthermore, the PI3K/Akt 
signaling pathway was shown to be greatly enhanced by 
the miR-28-5p mimic, demonstrating that it is activated 
after acute lung damage [94]. Hou et al. demonstrated 
that the amount of let-7a in exosomes obtained from BM-
MSCs that had been transduced with Let-7a rose after 
being treated with exosomes. The expression of HMGA2 
was downregulated in B16f10 cells, and the cell survival 
rate of BM-MSCs was lowered. However, neither the cell 
survival rate of B16f10 cells nor the amount of IGF-1 
released by B16f10 cells differed significantly across the 
four groups. Finally, Let-7a contained in exosomes has 
been shown to limit the migration of Melanoma cells as 
well as the proliferation of BM-MSCs [95]. It was dis-
covered that the target genes of exosomal miR-107 were 
predominantly associated with the PI3K-Akt signaling net-
work, as well as the Hippo and AMPK signaling pathways. 
Notably, miR-107 decreased the expression of the elevated 
14–3-3η (YWHAH) gene in DLBCL, suggesting that 
miR-107 may act as a tumor suppressor by targeting the 
14–3-3η gene [96]. In addition, atrial fibrillation-derived 
exosomes have been shown to transfer miR-107 to human 
umbilical vein endothelial cells, and exosomal miR-107 
has been shown to influence cell survival, migration, and 
apoptosis; in addition, to cell cycle progression, through 
the miR-107/USP14 pathway [97]. Earlier research by Ni 
et al. found that decreased levels of exosomal miR-30b 
were related to recurrence in patients with breast cancer 
[98]. It has also been reported that miR-204-5p was highly 
expressed in the PF-Exo model of pulmonary fibrosis and 
that PF-Exo injection accelerated the progression of PF 
and increased the proliferation ability of lung fibroblasts 
both in vivo and in vitro. Exosomal miR-204-5p derived 
from bronchoalveolar lavage fluid inhibits autophagy, 
thereby accelerating the progression of PF rats [99]. This 
is accomplished by targeting AP1S2. By precisely inhibit-
ing the target genes of miR-204-5p in human cancer cells, 
Yao et al. demonstrated that exosomal miR-204-5p could 
successfully reduce cancer cell growth, induce apoptosis, 
and enhance chemosensitivity [100].
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The prospect of exosome immunotherapy

In this fast cancer immunotherapy development period, 
there is much excitement in using cell-released micro-
scopic vesicles to boost the immune system. As cell-
derived nanovesicles with immunogenicity and molecular 
transfer functions, exosomes hold considerable potential in 
cancer immunotherapy. Exosome cargoes have just lately 
been found thanks to technical advancements, and they 
play a role in immune response modulation. Exosomes 
generated from tumor cells and immune cells, in particular, 
have distinct composition profiles that play a direct role in 
anti-cancer immunotherapy. In fact, many of the exosomes 
secreted by tumor cells appear to have a dual role. These 
exosomes can not only stimulate the immune system, but 
they can also inhibit the function of immune cells, promote 
immune suppression, and establish an immune microen-
vironment that is favorable to the growth of the tumor. In 
addition, exosomes may convey their payloads to specific 
cells, influencing their phenotypic and immune-regulatory 

roles. According to research accumulated over the previ-
ous decade, exosomes can participate in many cellular pro-
cesses that contribute to cancer formation and therapeutic 
actions, demonstrating their dual properties of promoting 
and inhibiting cancer. Exosomes have much potential in 
the realm of cancer immunotherapy, and they might be 
the most effective cancer vaccines and tailored antigen/
drug carriers. Many researchers have developed cancer 
immunotherapy approaches based on exosomes, includ-
ing cancer vaccines and drug delivery vehicles. These 
strategies use the characteristics of exosomes that allow 
for flexible and rich information transmission. Exosomes 
derived from dendritic cells (DCs), macrophages, tumor 
cells, and even T cells have been investigated for their 
potential use in cancer immunotherapy, and the results of 
these studies have been very encouraging. Exosomes have 
implications for diagnostics and the creation of innovative 
treatment techniques. Thus, it is crucial to understand how 
they might be used in immune therapy to regulate cancer 
growth.

Fig. 2   Interaction network of immune checkpoints and miRNAs. These predicted miRNAs could target six immune checkpoints
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Conclusion

To sum up, the evidence from in vitro and in vivo animal 
studies supports the impacts of TEXs and their biochemi-
cal cargoes, such as immune checkpoint molecules on vari-
ous immune cells, as well as their role in establishing an 
immunosuppressive microenvironment for tumor growth, 
invasion, metastasis, angiogenesis, apoptosis, and inducing 
immunotherapy resistance. Better awareness and knowledge 
of TEXs’ molecular composition and the complex interfer-
ence among TEXs and immune cells in the tumor micro-
environment could result in more effective individualized 
immunotherapy and better therapeutic outcomes. Further 
research is needed to determine if exosomes contain other 
immunological checkpoints besides those listed in this arti-
cle. We believe that by continuing the scientific study pro-
cess in this field, significant progress in cancer management 
could be made soon.
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