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Abstract

Metastasis is the most complex and deadly event. Tumor-stromal interface is a place where invasion of tumor cells in the form
of single-cell or collective migration occurs, with the latter being less common but more efficient. Initiation of metastasis
relies on the tumor cell cross-talking with stromal cells and taking an epithelial-mesenchymal transition (EMT) in single cells,
and a hybrid EMT in collective migratory cells. Stromal cross-talking along with an abnormal leaky vasculature facilitate
intravasation of tumor cells, here the cells are called circulating tumor cells (CTCs). Tumor cells isolated from the primary
tumor exploit several mechanisms to maintain their survival including rewiring metabolic demands to use sources available
within the new environments, avoiding anoikis cell death when cells are detached from extracellular matrix (ECM), adopt-
ing flow mechanic by acquiring platelet shielding and immunosuppression by negating the activity of suppressor immune
cells, such as natural killer (NK) cells. CTCs will adhere to the interstituim of the secondary organ/s, within which the newly
arrived disseminative tumor cells (DTCs) undergo either dormancy or proliferation. Metastatic outgrowth is under the influ-
ence of several factors, such as the activity of macrophages, impaired autophagy and secondary site inflammatory events.
Metastasis can be targeted by multiple ways, such as repressing the promoters of pre-metastatic niche (PMN) formation,
suppressing environmental contributors, such as hypoxia, oxidative and metabolic stressors, and targeting signaling and cell
types that take major contribution to the whole process. These strategies can be used in adjuvant with other therapeutics,
such as immunotherapy.

Keywords Invasion - Metastasis - Cancer-associated fibroblast (CAF) - Epithelial-mesenchymal transition (EMT) -
Circulating tumor cell (CTC) - Survival - Transforming growth factor (TGF) - Tumor microenvironment (TME) - C-X-C
chemokine (CXC) - Platelet

Introduction recent investigations approved the occurrence of metastasis

often early in tumorigenesis. This infers that metastasis can

Metastasis is the deadliest event in tumorigenesis, and dis-
tant metastasis is regarded as the end result in tumorigen-
esis [1]. In prostate cancer, for instance, virtually all deaths
occur as a result of metastasis [2]. Previously, metastasis was
viewed as the stage of an advanced tumor, namely happen-
ing mostly at the time of tumor progression [3]; however,
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occur both at early and late tumorigenesis, but the two rep-
resent distinct pathogenesis in which cells that elicit early
metastasis just carry truncal mutations, whereas late-arising
metastatic cells show subclonal mutations [1].

Metastasis is an organ-selective and multi-stepping pro-
cess that is started by escape of tumor cells from the pri-
mary tumor and ended with colonizing secondary tumors
in the distant sites [4]. The multi-stepping process of
metastasis accounts for the complexity of the whole event,
which imposes a huge burden on effective tumor therapy.
This is also a reason for failure of developing drugs (so
called migrastatics) to combat tumor metastasis with high
efficiency. A number of promoters of metastasis has been
identified so far (see Table 1). Developing drugs against the
whole process of metastasis is not applicable. This is a rea-
son for an ongoing research in the area. Every year more
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Table 1 (continued)

References

The process promoted by the factor and the cancer Mechanism of action

type

The identity

Factor name

[139]

MBNL2 regulates pAKT/EMT pathway

MBNL2 is expressed at lower levels in lung and

An RNA-binding proteins

MBNL2

breast cancer tissues, compared to the normal
tissues, and acts as a suppressor of metastasis

CRMP?2 Collapsin response mediator protein 2, IMPADI Inositol monophosphatase domain containing 1, KDELR2,KDEL endoplasmic reticulum protein retention receptor 2, MMP matrix

metalloproteinase, NSCLC non-small cell lung cancer, ENO2 enolase-2, PDAC pancreatic ductal adenocarcinoma, EMT,epithelial-mesenchymal transition, NSD2 nuclear receptor binding SET
Domain Protein 2, CDK cyclin-dependent kinase, ZEBI,zinc finger E-box binding homeobox 1, ITGBLI integrin beta-like 1, CRC colorectal cancer, PMNs pre-metastatic niches, HuR, Hu

receptor, TGF transforming growth factor, VCAM-1 vascular cell adhesion molecule-1, MAPK mitogen-activated protein kinase, ECM extracellular matrix, PRCI Polycomb Repressor Complex

1, M2 macrophage type 2, Treg, regulatory T cell, ZNF Zinc finger protein, CTC circulating tumor cell, TNBR triple-negative breast cancer, BCLIIA B cell leukemia/lymphoma 11A, MBNLI

muscleblind-like splicing regulator 1, ACKR atypical chemokine receptor, CDK cyclin-dependent kinase, H3K36me?2 histone H3 di-methyl mark on lysine 36, MBNL2 Muscleblind-like 2

insights into the complexity of this phenomenon will come
to the understanding. Knowing more about the whole pro-
cess and the major drivers of this key phenomenon is critical
for identification of the main targets in tumor metastasis.
This may let us to think of factors and cells that take major
responsibility in tumor metastasis. Novel approaches for
suppressing tumor metastasis or reducing the extent of this
process are the current concern in the area. In this review, we
are focusing particularly over the key steps in metastasis of
solid tumors by interpreting papers published recently in the
relevant subject. The steps in metastasis are as followings:
escape of cancer cells from primary tumor, intravasation,
survival maintenance, extravasation (secondary site seeding)
and outgrowth (colonization) [5-9]. The whole process is
illustrated in Fig. 1.

Invasion

Invasion takes an early step and a pre-requisite to metastatic
dissemination [10] so that cancer cell escape is a known
characteristic of most advanced tumors [11]. Cancer cells
are required to take a plastic phenotype to attain an invasive
state [12]. Harnessing this inherent plasticity through evok-
ing a systemic inflammatory response, which is occurring
in certain primary tumors like breast, can impede metastatic
establishment [13]. Higher frequency of driver mutations
(alterations in the somatic copy numbers and mutational bur-
den) [2, 14], and the presence of abnormal chromosomes
(called aneuploidy) [14] can also lead cancer cells to drive
a metastatic potential.

Single-cell migration vs. collective invasion

Invasion occurs at the tumor-stromal interface (also called
Edge or invasive front) of tumor by either single-cell migra-
tion (monoclonal metastasis) or collective invasion (poly-
clonal metastasis). For the former, tumoral cells to attain
an invasive phenotype will modify their shape and attach-
ment profiles. For the latter, invasion occurs as a cohesive
multi-cellular strands still maintaining cell-to-cell adhesions.
Colon, breast, thyroid, prostate, lung and glioblastoma can-
cer cells take features of collective invasion [10, 15]. Col-
lective invasion is less common but more efficient for taking
an efficient metastatic route, as compared to the single-cell
migration [16]. E-cadherin is a marker of epithelializa-
tion (cell-to-cell adhesion) that is generally downregulated
in single-cell invasion. Padmanaban and colleagues in an
invasive ductal breast cancer has come to the finding that
E-cadherin expression was negatively related to invasion,
while its relation with metastasis was positive. The negative
relation can be interpreted by collective invasion in which
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Fig. 1 Sequential steps in metastasis. a Cellular escaping. Acquir-
ing an epithelial-mesenchymal transition (EMT) enhances inva-
sive behavior of cancer cells and ECM degradation required for cell
escape. Transforming growth factor (TGF)-p released from can-
cer-associated fibroblasts (CAFs) fosters EMT mediated invasion.
Physical forces exerted from CAFs over tumor cells change physical
properties of basement membrane (BM) in the interface of tumor
and stroma to make it permissive for invasion of tumor cells. Mac-
rophage type 2 (M2) cells and CAFs release ECM degrading factors.
M2 cells release pro-angiogenic factors to stimulate angiogenesis
and lymphangiogenesis, which are for providing a path for metas-
tasis. M2 cells also support metastatic niche formation. b Vascular
entrance. Exosomes possibly derived from CAFs increase vascular
permeability. Circulating tumor cells (CTCs) with EMT phenotype
form invadopodia to pass through ECM (via releasing ECM degrad-
ing proteases), dissociate from the Edge front, and to intrude tumor
vasculature. Neutrophils facilitate bondage between cancer cells
and endothelium, and hypoxia inducible C-X-C chemokine ligand
12 (CXCL12)/C-X-C chemokine receptor type 4 (CXCR4) is a key
promoter of cancer cell intravasation. ¢ Survival maintenance. CTCs
have a potential to avoid anoikis cell death within circulation. EMT
is a possible contributor. Flow mechanics also influences cancer
cell survival. Rewiring metabolic pathways and reprograming gene

E-cadherin mediated cell-to-cell adhesion is reported to be
critical for reinforcing cancer cell survival during the early
step of metastasis [17]. Thus, in the collective invasion two
or more tumor cells retain some properties of epithelial cells,
such as cell-to-cell adhesion; this enables them to take a
collective migration and enter blood circulation as multi-
cellular circulating tumor cell (CTC) clusters. Detection of
these cellular clusters within the circulation indicates worse
prognosis, compared to the detection of single CTCs by solo
[15]. Generally, <5 tumor cells are dissociated from the inva-
sive (Edge) area of tumor as clusters. Tumor cells dissoci-
ated as clusters higher than this amount (5 or higher) without
aggregating as glandular structures are called poorly differ-
entiated clusters (PDCs). In colorectal cancer (CRC), PDCs
are linked positively with high local and distant metastasis,
tumor grade and patient mortality [18]. Components of Wnt/
PCP signaling are dysregulated abundantly in solid tumors,
and mediate collective cell migration, acting possibly for
generation of CTC clusters and their maintenance inside

@ Springer

expression profile are contributed to cancer cell survival within cir-
culation. Signals of survival are directed by exosomes. Cell-to-cell
interactions between cancer cells with CAFs, neutrophils and plate-
lets favors immune escaping. d Extravasation (secondary site seed-
ing. Blood platelets through release of TGF-f enable extravasation
by disrupting cell-to-cell endothelial junctions. Extravasation is also
potentiated by factors released from TME in distant organs into the
circulation, such as vascular endothelial growth factor (VEGF). Dis-
seminative tumor cells (DTCs) with EMT phenotype undergo intra-
vascular arrest and evolve cellular protrusions to help trans-endothe-
lial migration (TEM) of cancer cells and their entrance into the ECM
of the metastatic site. Exosomes increase vascular permeability
(leakiness) and cellular seeding. Physical forces within the circula-
tion would determine the success of distant metastatic seeding. Here,
cancer cells may remain dormant for a period prior to colonization,
which gives cells the ability to escape immunosurveillance, and to
colonize successfully in the distant organ/s. e Tumor outgrowth (colo-
nization). DTCs acquire a MET phenotype for proliferation into form-
ing secondary tumors. Exosomes derived from cancer cells restruc-
ture the metastatic sites through supporting dynamic interplay with
the TME in order for promoting tumor colonization (outgrowth). One
of the outcomes of these interactions is reprogramming of glucose
metabolism in cancer cells

the circulatory system. Targeting Wnt/PCP signaling is thus
being a promising for metastatic intervention [19].

Epithelial-mesenchymal transition in tumor
cell invasion

Epithelial-mesenchymal transition (EMT) is known as the
key mechanism in promotion of cancer metastasis. Gener-
ally, a cell type with mesenchymal phenotype is more prone
to acquire drug resistance and invasion [20]. The point is
that both single cells and collective migratory cells show
EMT and stem cell-like characteristics with some differ-
ences. Single tumor cells will lose cell-to-cell adhesion and
undergo EMT [10]. EMT seemingly drives metastasis initia-
tion [21], and induction of this phenotypic state in tumors
cells requires cross-talking with stromal cells, especially
with cancer-associated fibroblasts (CAFs) [22], known as
the most abundant cell types within the microenvironment
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of tumors that their presence within the stroma indicates
poor prognosis [23].

Tumor cell clusters in collective migration take a partial
(hybrid) EMT [24]. In this type, some cells are served as
leaders (in the front-line of migration) and others are fol-
lowers [10]. The EMT phenotype is more pronounced in
leader cells compared to those following them [25]. In an
animal model of lung cancer, it has shown that the activ-
ity of transforming growth factor (TGF)-pB-Smad signaling
is important for metastasis. TGF-p acts through diminish-
ing E-cadherin expression [26]. The impedance of EMT by
A-Kinase Anchor Protein (AKAPS) is reported to suppress
metastasis of breast cancer [20].

There is evidence that tumor cells expressing a mixture of
mesenchymal and epithelial phenotypes have more potency
to complete metastatic steps [27]. The EMT phenotype in
some collective migratory cells infers the heterogeneity of
the cellular clusters, and that the pack of cells with such
phenotype may suggest the presence of cancer stem cells
(CSCs) and/or cancer cells acquiring the EMT phenotype.
Compared to the non-EMT cancer cells, cells with EMT
phenotype have more developed anti-apoptotic systems and
show more resistance to therapy [28, 29].

Mechanical forces in collective migration

Physical forces exerted by CAFs are required for collective
migration of tumor cells [30]. Contractile forces exerted by
CAFs (independent on matrix metalloproteinases [MMPs])
can pull and stretch the basement membrane segregating
cancer cells from the nearby stroma, which finally alter
physical properties of this barrier to become permissive for
cellular invasion [31].

Intravasation

Cancer cells intruded toward the blood vessels are called
CTCs, while their extrusion from the blood and rooted
toward the secondary cite/s of metastasis is called dis-
seminative tumor cells (DTCs). Intravasation is a complex
process involving numerous intrinsic and extrinsic factors.
Tumoral cell intrinsic factors include EMT and production
of proteases. Extrinsic factors include the activity of pro-
tumor neutrophils (N2 type), fibroblasts (CAFs) and mac-
rophages (M2 type) [32]. Intravasation of cancer cells is
facilitated possibly by the abnormal leaky vasculature [33].
Endothelial cells (ECs) secrete C-X-C chemokine ligand 12
(CXCL12), which attracts C-X-C chemokine receptor type 4
(CXCR4)-expressing cancer cells toward the CXCL12 gradi-
ent, thus facilitating their further intravasation. The point is
that both ligand and receptor in the CXCL12/CXCR4 axis

are hypoxia inducible, which indicates a key role taken by
hypoxia in intravasation [34] of tumor cell clusters [35].
Perivascular tumor-associated macrophages (TAMs) pro-
mote cancer cell intravasation through upregulating EGF
[36] and MMP-9 [37] expressions. The stiffened extracel-
lular matrix (ECM) induces invadopodia formation in cancer
cells [38]; cancer cells then required to path through ECM in
order for intruding the blood vessels. Invadopodia are actin-
rich special protrusions from cancer cell membrane effective
for taking a pass through ECM by releasing proteases, such
as MMPs at the tip of these unique structures. Here, TAMs
and CAFs are acting together to cleave the ECM through
releasing MMPs (2 and 9) [39-42]. The activity of CAFs in
reorganizing the ECM and drilling the holes is important in
paving the paths smoother for invading tumor cells [43, 44].
ECM degradation is required not only for creating tumoral
cell tracks (paths) [9, 45] but also for liberation of growth
factors implicated in promotion of angiogenesis [46] and
lymphangiogenesis [47], as well as promoting extravasation
of cancer cells [45]. These are indicative that how both ECM
stiffness and degradation are functional for promoting tumor
metastasis.

Survival maintenance in tumor cells isolated
from the primary tumor

CTCs have a half-life of about 2.4 h in human subjects.
CTCs although are under exposure to the nutrient rich blood-
stream, the cells still exhibit the same invasive phenotype
undertaken upon sequestration from the nutrient-low, inva-
sive (Edge) area of tumor. This is possibly due to the short
time lived within the circulation, which is not sufficient to
make a change in the phenotype of CTCs in spite of access-
ing to the high amounts of nutrients within the blood [48].
This infers the importance of timing in determining cellular
plasticity. The cells rooted toward circulation or when firstly
reside within the secondary site/s of metastasis are under
continuous exposure to the destructing signals. Within the
circulation, CTCs confront several environmental stress-
ors including oxidative stress, shear forces and an assault
imposed by immune system [15], so many of the CTCs are
condemned to die within circulation. Only a few number of
cells remain alive and take the next step, namely secondary
site seeding, among these secondary site seeding cells there
are also a considerable rate of cell death, so the fraction of
cells achieving the final metastatic fate is too low. However,
these low fractions of DTCs are highly competent to take
an effective metastatic fate. Effective metastasis relies heav-
ily on developing mechanisms of survival, highly efficient
to keep the cells ‘hale and hearty’ from the harm condi-
tions encountered by. There are four potential mechanisms
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to maintain survival of cancer cells within circulation (i.e.
CTCs) and in the metastatic site/s (i.e. DTCs) as followings:

Rewiring metabolic demands

Metabolic rewiring leads cancer cell survival within circu-
lation and their adaptation to the foreign metastatic milieu
[49]. The differences in the metabolic predilection between
cancer cells from primary tumor with micrometastatic
cells in the secondary organ are important therapeutically.
Reduced capacity for glucose uptake and further blockade of
glycolysis in CTCs can potentially cause anoikis cell death
[16, 50, 51]. CTCs either exploit mechanisms to retrieve
their glucose uptake systems [50] or to use other sources of
energy available within circulation, such as fatty acids [52].

Higher OXPHOS/glycolysis in micrometastatic breast
cancer cells deposited into the lung, and the reversed ratio
for primary breast cancer cells reported by Davis et al. high-
light the potential of targeting OXPHOS to preclude metas-
tasis of breast cancer [53]. How about primary tumors? Are
they more responsive to glycolysis targeting? The response
to this question is somewhat challenging, which may be
covered by another question. Is there a strategy to enhance
glucose content in the TME (for potentiating immune activa-
tion), while simultaneously reducing glycolysis (for avoid-
ing cancer cell growth and resistance)? Although TME fac-
tors involved in the promotion of cancer cell glycolysis are
known to an extent, such as hyaluronan [54], we leave this
question open for forthcoming research and see how it can
be translated into clinic.

Avoiding anoikis cell death

Anoikis resistance is known as a cornerstone step for a cell
attaining a metastatic feature [10]. The capacity to avoid
anoikis cell death when cells are detached from ECM is a
distinctive characteristic of most epithelial tumors, isolat-
ing them from normal epithelial cells [55], and enabling
cancer cells to maintain their survival within circulation
[10]. The activity of TGF-f signaling is contributed to the
anoikis resistance [56], possibly by maintaining an EMT
state in CTCs [50]. TGF-p signaling increases the activity of
extracellular-signal-regulated kinase (ERK), the activity of
which promotes Slug upregulation and resulting inhibition
of E-cadherin [57].

CTCs highly express hypoxia inducible factor (HIF)-1a
activated in a mechanism independent on hypoxia (CTCs
have access to the O, within the blood). HIF-1a protects
CTCs from anoikis cell death possibly through promotion
of metabolic reprogramming (increasing cellular uptake of
glucose) [51]. Due to the key roles taken by HIF-1 [58] and

@ Springer

TGF-f [29] in maintaining EMT, it is fair to postulate that
HIF-1a are activated in CTCs possibly under the influence
of TGF-B. It has found that patients with HIF-1a* tumors
have lower overall survival (OS) and 5-year survival rates
[59]. Topotecan is an inhibitor of HIF-1 that its application
in tumors like cervical [60] and endometrial [61] cancers,
and the results were promising to an extent.

It is presumable that anoikis resistance might has negative
relation with Hippo pathway. Wu and colleagues have found
an increase in the rate of metastasis in breast cancer tissues
upregulating Zinc finger protein 367 (ZNF367). ZNF367
is a transcriptional factor that its upregulation can promote
metastasis via suppression of Hippo pathway. Anoikis resist-
ance can be an outcome of the inhibition in the Hippo path-
way [62]. The question here is that whether Hippo reactiva-
tion can be used as an approach for reducing the number of
CTCs and the subsequent reduction of the chance of tumor
metastasis? The answer to this question is yes. From what
discussed above, and adhering the results of clinical trials
in the relevant context activation of the Hippo pathway can
be a good prognostic value and an effective approach for
retarding tumor invasion. Generally, malignant mesothelial
cells inactivate the Hippo pathway, the result of which is
the YAP activation [63]. Maille and colleagues carried out a
study in patients with malignant pleural mesothelioma, and
they found a link between MST 1/hippo kinase inactivation
with the poor prognosis. Loss of expression for the MST1/
hippo pathway resulted in the nuclear accumulation of YAP,
silencing of which reduced invasion in MST1-depleted cells
[64]. Hippo reactivation by statin has found to be effective
for reducing the proliferative activity of hepatocellular car-
cinoma cells, thus improving the prognosis in the treated
patients [65].

Adapting flow mechanics

Flow mechanic and co-option between lymphatic and blood
circulatory systems influences the effective transit of cancer
cells from a primary tumor, their survival within circulation,
as well as extravasation and seeding in the metastatic site/s.
Vascular size, flow rates and shear stress can potentially
influence survival of cancer cells within circulation and their
organotropic seeding. High flow velocity and shear forces
(as in arterial vessels) can cause mechanical stress and can-
cer cell death, while moderate velocity and shear stress (as in
venous vessels) favor intravascular arrest of CTCs and their
extravasation [66]. CTCs must endure the pressures imposed
by blood vessels to maintain their survival [27]. Platelets
within the circulation form aggregates around the CTCs in
response to stimulatory signals received from cancer cells;
these aggregates provide a shield to protect the CTCs from
shear stress and immune responses [16, 67, 68].
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Immune suppression

To avoid destruction by immune system upon taking a cir-
culatory route, CTCs promote interactions with CAFs, neu-
trophils and platelets. It seems that the physical impact of
CTC clusters can augment the recruitment of these immu-
nosuppressive cells, protecting them from being attacked by
anti-tumor immune cells, such as NK cells [15]. A recent
study by Owen and colleagues has shown that prostatic
cancer cells seeded within the bone will lose their intrinsic
interferon 1 (IFN1) signaling; this allows them to repress
tumor immunogenicity and to dampen tumor responses to
immunotherapy, which indicates a reason for failure of ther-
apy in metastatic solid tumors [69]. The activity of natural
killer (NK) is important for suppression of tumor metastasis.
Higher expression of epithelial genes and cell-to-cell adhe-
sion markers in CTC clusters is related negatively with the
expression of ligands responsible for activation of NK cells.
This along with an increase in the rate of monocolonal ver-
sus polyclonal metastasis upon depletion of NK cells infers
the lower sensitivity of CTC clusters than single-cell tumor
cells to NK cell-mediated metastasis blockade [15].

Prognostic value of CTCs

Liquid biopsies can be obtained from cancer patients to
track CTCs. Counting the total CTCs and the fraction of
mesenchymal-type (M%) CTCs can be exploited for moni-
toring therapeutic resistance and for predicting the progno-
sis in patients with advanced cancers, as for breast cancer
[70]. In renal cell carcinoma (RCC) it was found that the
initial CTC count (one day prior to the operation) was not
correlated with the cancer relapse or metastasis, attested by
no considerable difference between metastasis-free patients
with metastasis cases. However, counting the number of epi-
thelial (E*) M+ (mixed) CTCs at 12 months after surgery
showed a significant increase, as compared to that performed
at 6 months’ post-operation or one day pre-operation [71].
Cai and colleagues in a study analyzed the peripheral blood
from 91 CRC cancer patients, and they noticed a noticeable
relevance between the number of Mt CTCs with the distance
metastasis. The authors collected M* CTCs from 73 patients
for assessing the expression of cyclooxygenase (COX)-2.
38 patients showed COX-2 expression in the CTCs, and its
expression in M* CTCs showed higher rates in the meta-
static patients, compared to that for non-metastatic cases
[72]. Overexpression of COX-2 is linked positively with the
invasive behavior of CRC cells [73]. These data indicate that
evaluation of CTCs can be used as diagnostic marker and a
marker for predicting the efficacy of therapy.

Extravasation

Release of cytokines into the systemic circulation facilitates
extravasation of cancer cells within the distant organs. The
activity of platelets is important for extravasation of tumor
cells. Platelet shielding of cancer cells can cause an imbal-
ance in the homeostatic control over coagulation, thus pro-
moting blood clotting varied from micro-thrombi to pulmo-
nary emboli [8]. The cells promote coagulation and weaken
endothelial barrier [68] possibly through releasing TGF-§
[67]. Coagulation abnormalities is experienced in more than
50% of all cancer cases and in 90% of patients with meta-
static tumors [74]. In non-small cell lung cancer (NSCLC)
patients with cancer emboli and the subsequent cerebral
infarction the risk of brain metastasis will be increased
considerably, as documented in a recent study by Kim and
coworkers [75].

TME in distant organs also send signals (such as vascular
endothelial growth factor (VEGF) to promote cancer cell
extravasation [33]. N2 cells [76] and M2 cells [77] are active
in such process. When cells leaving the primary tumor and
metastasize to an organ including lung, it is important to be
survived for an extended period of time. This means that
the metastatic cells to survive for longer times are needed
to activate pro-survival signals in the organ of target. Inter-
actions between fibronectin fibrils (promoted by metastatic
breast cancer cells) with integrin (in pneumocyte type 1
cells) is an example in this context [78].

Extravasation relies on interactions
between circulating tumor cells
with endothelium and the secondary site

A key event in metastasis is the interaction between CTCs
with endothelium (adhesion between CTCs and ECs is a
required step for the subsequent extravasation), and then
with the secondary site (the requirement of which is the
shedding of endothelial glycocalyx) [79, 80]. Cell adhe-
sion molecules (CAMs) are expressed on both CTCs and
ECs [79], and these molecules mediate endothelial interac-
tions, either directly or indirectly, within the specific tissues
[81], inferring their role in organ tropism. Barbazan and
colleagues in mouse colon cancer model liver metastasis
reported the presence of fibronectin deposits in the luminal
liver vasculature as a site for attachment of talinl* CTCs,
and the depletion of this focal adhesive component on CTCs
has found to impair endothelial adhesion and cellular migra-
tion through the endothelium, and the further reduction of
liver metastasis [82]. CTCs exploit low-energy adhesion
(integrin f3 and CD44 involvement) and stronger adhesions
(integrin Pl involvement) for the respective initiation of
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transient vascular arrest, and the stable bonds to the endothe-
lium and extravasation [83, 84]. The point is that a com-
bination of biological (EC interactions) and physical (flow
dynamics) factors are involved in the vascular colonization
of CTCs, namely CTC intravascular arrest of CTCs [83, 85].
Blood flow may cause shear stress in arrest CTCs arrested
within the vessels; to oppose the stable bond between CTCs
and endothelium is evolved [84].

Besides the adhesion between CTCs with endothelium,
CTC-ECM interaction is also important for the final cellu-
lar seeding within the secondary site/s. Adhesion between
ECM with tumor cells is mediated through integrin fam-
ily [86]. Tumor cells form protrusions called invadopodia
at endothelial junctions to extend between ECs [87]. Wil-
liams and colleagues in breast cancer brain metastasis mouse
model have found the chemosensing activity of these cel-
lular protrusion. In this model, they notified the presence
of chemokine receptors EGFR and GABA receptor in the
invadopodia protrusions, which are responding to their
respective ligand available within the brain environment.
This infers a positive relation between invadopodia protru-
sions with organotropism (here is brain) of metastatic tumor
cells. PAK1 mediates this chemotaxis potential by control-
ling responses from invadopodia to the ligands in the brain
environment, as its suppression renders tumor cells irre-
sponsive to the stromal chemotactic stimuli. Therefore, the
‘soil fertility’ (brain in this study) is important for extravasa-
tion of tumor cells toward the microenvironment of distant
metastatic site [88]. Structurally, invadopodia are in fact
protrusions of actin filaments, which also include assembly
of the intermediate filaments and the cytoskeletal linking
proteins. Yoneyamaa and colleagues in a study have found
that the assembly of the intermediate filament vimentin and
cytoskeletal linker plectin was necessary for generation
and stabilization of invadopodia of highly metastatic blad-
der cancer cells, and that the disruption of the link between
vimentin, plectin and actin filaments has found to reduce
the capacity of the cells for migrating toward the endothe-
lium and their further intrusion into the site of metastasis
[89]. From these results, it could be understood that target-
ing invadopodia by either addressing their interactions with
the stroma of the secondary site or disruption of these pro-
trusions structurally can be effective approaches to repress
extravasation and secondary site seeding of tumoral cells.

Outgrowth (colonization)

From the whole cancer cells routed toward circulation a
vast majority are condemned to die, and among them only a
subset (0.01%) stays alive and form secondary tumors [22,
90]; the survived cells take either one of the two routes:
dormancy or proliferation. Generally, DTCs upon entering
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the secondary site/s undergo dormancy for a while. The
proliferative cancer cells are able to grow macrometastatic
tumors [14, 91, 92]. Acquisition of either route is determined
by multiple intracellular and extracellular signals, as well as
by factors rendered from the bone marrow niche [27]. Actin
assembly has found to play a critical role for promotion of
a dormancy-to-proliferation switch in DTCs. Gau and col-
leagues in a study attested the positive role for the actin
cytoskeleton regulator myocardin-related transcription factor
(MRTF) in survival and outgrowth of DTCs from breast can-
cer. MRTF loss of function has found to reduce the activity
of Profilin-1 (Pfnl). Pfnl activity is essential for regula-
tion of the actin dynamics [93]. 6-phosphofructo-2-kinase/
fructose-2,6-biphosphatase 3 (Pfkfb3) is an essential media-
tor of glycolysis that its elevated expression has found to be
positively related to the metastatic outgrowth of breast can-
cer. This is mediated through the positive impact of Ptkfb3
on emergence of CSCs from the dormant metastatic state
toward reactivating programs related to the cellular prolif-
eration and outgrowth [94].

Evaluation of p38/ERK ratio can determine whether the
cells take the either phenotypes, with the higher p38-to-ERK
ratio causing cellular reawaking, while the higher ERK-to-
p38 ratio causing cellular dormancy [27]. It has found that
activation of p38 can suppress metastasis of breast cancer.
Guerefio and colleagues exploited the efficacy of Glypi-
can-3 (GPC3) on this process, and they found a switch from
mesenchymal-to-epithelial in breast cancer cells mediated
by activation of p38, which further impairs metastasis and
induce dormancy in tumor cells [92]. This infers how switch-
ing from one phenotype to another will define the metastatic
potency of a cell type.

The point here is that DTCs chose specific target organs
where they can promote metastatic colonization. The term
‘organ tropism’ is used in this context. Rodrigues and col-
leagues in a study found that tumor-derived exosomes con-
taining cell migration-inducing and hyaluronan-binding
protein (CEMIP) are more prone to take a metastatic predi-
lection toward the brain than the other organs including bone
and lung. They noticed that tumoral cell depletion of CEMIP
impaired metastasis into the brain [95]. This infers how the
microenvironment in the secondary organ is preferentially
influenced by signals from primary tumor organ to direct
organ tropism.

Promoters and suppressors of metastatic
outgrowth
The activity of macrophages

A number of factors are related to the colonization or out-
growth of DTCs (see Table 2). Macrophages play important
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roles for metastatic colonization within the bone [96]. Mac-
rophages have two phenotypes: anti-tumor M1 (so called
classically activated cells) and pro-tumor M2 cells (so
called alternatively activated cells) [97]. M1 macrophages
are implicated for improving the recruitment of T cells,
supporting normalization of tumor vessels, and suppressing
the activity of M2 cells, whereas M2 cells are responsible
for promotion of cancer cell proliferation, angiogenesis,
immune escape, invasion and metastasis [98]. A study by
Ma and colleagues documented that macrophages expressing
CC chemokine receptor 2 (CCR2) and IL4R are more prone
to promote metastatic colonization of breast cancer cells
within the bone. They noticed high amount of macrophages
in the bone of breast cancer in both human and mice, and
that ablation of CCR2 or IL4R suppressed metastatic out-
growth within the bone [96]. CCR2 is a chemokine that
its interaction with CCL2 (the CCL2/CCR?2 axis) acts for
recruitment of immunosuppressive M2 cells into the TME,
and its blockade can be an approach for restoring anti-tumor
immunity [99]. The two clinical trials are performed in this
context: in the first study, the immunosuppressive (M2)
cells were targeted by CSF-1 inhibition (by emactuzumab)
in advanced solid tumors. Roca and colleagues in this study
found the attenuation of the immunosuppressive TAMs,
but its administration either alone or in combination with
paclitaxel did not show anti-tumor activity from the clini-
cal standpoint [100]. In another study, the CCR2 inhibitor
PF-04136309 was used in combination with FOLFIRINOX
for targeting pancreatic ductal adenocarcinoma (PDAC), and
the combination therapy considerably improved the local
tumor control (in 32/33 patients) [99].

A suggested strategy is to polarize macrophages from
a suppressive into immune activating M1 phenotype. M1
polarization can normalize tumor vasculature, through
which more infiltration of CD8" T cells into the tumor area
is possible; the higher presence of CD8" tumor infiltrating
lymphocytes (TILs) will be effective for hampering immune
escape capacity of tumor cells, thus reducing the chance
of tumor metastasis. This is applicable by targeting factors
responsible for polarization of macrophages into M2 cell
phenotype, such as VEGF and ILs 4, 10 & 13 [98].

Autophagy

The ideas behind the roles for contribution of autophagy in
metastatic systems are somewhat controversial, which can be
interpreted differently from what reported in experimental
studies with that published for clinical trials. Outcomes of the
two experimental studies in the relevant concept are favoring
the use of enforced autophagic systems as a potential approach
for preventing metastatic outgrowth: Marsh and colleagues
reported that the autophagy system acts differently in primary
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and advanced tumors in which in an autophagic competent
tumor, induction of autophagy promotes the growth of pri-
mary tumor. A deficient autophagy system has found to cause
accumulation of Neighbor to BRCA1 (NBR1), an autophagic
cargo receptor, accumulation of which mediates the impact of
autophagy suppression on metastasis, as authors noticed that
the degradation of NBR1 will restrict the outgrowth of breast
tumor cells, and suggest targeting this receptor as a potential
strategy to combat outgrowth of tumor cells in the metastatic
sites. The authors noticed that the enforced autophagy took
a preventive role on colonization of DTCs. This presumably
infers the role for autophagy for promoting a dormant state in
the DTCs. The authors also evaluated the outcomes on the OS
in human breast cancers, and they noticed the positive rela-
tion between decreased autophagy with the reduced survival in
these patients [101]. In line, Flynn and colleagues in an experi-
mental model of dormant breast cancer have found a diverse
relation between autophagy with emergence of breast CSCs
from dormant metastatic state. The authors declared that the
autophagic machinery can be activated in order for extending
the OS by maintaining disseminative CSCs in perpetual dor-
mancy, inhibition of which drives the escape of tumoral cells
from metastatic dormancy thus rendering them competent to
promote metastatic colonization [94].

Hydroxychloroquine (HCQ) is an inhibitor of autophagy
used in clinic. Jyoti and colleagues exploited the role for
HCQ when is used in combination with chemotherapy
(paclitaxel, carboplatin with or without bevacizumab) in
metastatic NSCLC. The authors noticed that the combina-
tion therapy improved objective response rate (ORR) and
progression-free survival (PFS), KRAS* tumors in par-
ticular, and they declared that HCQ addition to the stand-
ard chemotherapy regimen may be an effective approach
for overcoming tumor resistance to chemotherapy [102].
Improvement in ORR by addition of HCQ to the chemo-
therapy regimen (gemcitabine plus nab-paclitaxel) has also
been approved in advanced pancreatic cancer by Karasic
and coworkers. However, the authors found no improve-
ment in the OS upon addition of this autophagy inhibitor
to the chemotherapy [103]. The results of the two clinical
trials are mostly objective, so it is impossible to compare the
results with that found in the experimental studies, discussed
above. This indicates the requirement for more studies both
on human cancers and animal models to extract more knowl-
edge about the impact of autophagy machinery on tumors at
both lower and higher (or metastatic) stages.

Inflammation

Inflammation plays a key role in tumorigenesis, represent-
ing a tight link with the incidence of over half of human
cancers [104]. Inflammation plays a key role in all aspects of
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tumorigenesis (development and progression of tumor) [105]
including its inducible effect on metastatic colonization. The
study by Rodrigues and colleagues showed that CEMIP
inducible effect on microglial cells and the resulting inflam-
mation is associated with the brain colonization of metastatic
breast cancer cells [95]. The link between inflammation
with metastatic colonization is also depicted in the study by
Du and colleagues. They noticed the positive link between
activation of nuclear factor kappa B (NF-«xB) in local fibro-
blasts with the intra-pulmonary colonization of lung cancer
cells [106]. NF-xB is a master regulator of inflammation
that shows constitutive activity in several advanced-stage
cancers [107, 108]. Activation of NF-kB leads to the gen-
eration of pro-inflammatory cytokines [109]. Granulocyte
colony-stimulating factor (G-CSF) is a pro-inflammatory
cytokine that its upregulation in brain tissue has found to be
contributed to the recruitment of immunosuppressive neu-
trophils, which act for driving metastatic colonization [110].
The study performed by So and colleagues showed that colo-
nization of breast cancer cells at distant sites of metastasis
requires epigenetic reprogramming. They noticed a positive
relation between the activity of inflammatory mediators
IL-6 and prostaglandin E, (PGE2) with altering pathways
required for proliferation, survival and colonization of tumor
cells at distant sites, mediated through induction of DNA
methyltransferase 3B (DNMT3B) [111]. Pein and colleagues
documented that breast cancer lung colonization requires
orchestration of an inflammatory phenotype in lung CAFs
in a mechanism mediated by NF-xB [112].

Surgical resection of primary tumor may sometimes
deteriorate the condition of patients by predisposing them
to overt metastasis. Evidence of which is in the study by
Miarka and coworkers who found a positive relation between
surgical resection of primary pancreatic ductal adenocarci-
noma (PDAC) with the outgrowth of micrometastatic lesions
seeded within the liver. They notified that abdominal surgery
can induce inflammation within the liver, which is a trigger
for hepatic stellate cell (HSC) activation into myofibroblasts,
enabling the metastatic cells to escape growth arrest [113].

How to combat cancer metastasis?

The complexity of tumor metastasis is a major concern.
Despite huge efforts, there is no drug or agent approved spe-
cifically to suppress tumor metastasis until now. Some induc-
ers of metastasis in solid tumors is presented in Table 1, and
the clinical trials carried out to target mediators of metastasis
is presented in Table 3. Over viewing of the whole process is
required to seek for more appropriate modality to target this
devastating condition. The point here is that tumor cells tak-
ing an invasive phase reside more within the Edge of tumor,
and the cells are more resistant to therapy than the ones not

taking the invasive step. The current strategies to combat
cancer metastasis are focusing on combating tumor relevant
signaling pathways, as well as addressing tumor promoting
cell types, in brief targeting signaling and cell types that take
major contribution to the whole process. CAFs and platelets
are examples of cells important for metastasis, and among
the pathways TGF-f, MMPs and signaling related to the
EMT are the key contributors, so they can be targeted using
appropriate regimen. For example, SMAD4 can be targeted
in the TGF-B/SMAD4 pathway using SIRT7, and the results
are promising for retarding breast cancer lung metastasis
[114]. Due to the important contribution taken by tumor-
mediated immunosuppression in metastasis, it is reasonable
to think of exploiting adjuvant immunotherapy with the tar-
get signaling of metastasis, for example TGF-f inhibition
plus PD-L1 blockade, as it has been under the current focus.
PRCI is known to promote metastasis of prostatic cancer
cells by inducing stemness and recruiting the immunosup-
pressive M2 and Treg cells, thus being an appropriate choice
to be used in combination with immune checkpoint inhibitor
(ICI), such as PD-L1 blockade therapy for suppression of
tumor metastasis [115]. As discussed, the architecture of
tumor vessels is abnormal. The leaky vasculature in the pre-
metastatic niche facilitates tumor outgrowth in the metastatic
site. A study by He and colleagues showed that a repair in
the leaky vasculature through a cytokine-based therapy will
preclude the possibility of metastatic outgrowth and sensi-
tizes established metastatic tumors to ICI [116].

Environmental events such as hypoxic, oxidative and
metabolic stresses are the key contributors to the tumor
progression and metastasis, so they can be a target [107,
117-119]. Relationship between mitochondrial oxidative
stress and immunosuppression within the TME is positive
[117], and application of oxidative modulators, such as mel-
atonin [120-123], resveratrol [124], metformin [125] and
curcumin [126] has shown promising results.

Tumor metabolism can be targeted to avoid further
metastasis, and in tumors forming PMNs, strategies can be
expanded to target the main promoters of PMN formation.
CAFs take the key role in PMN formation. In fact, primary
tumor cells send signals to either recruit or activate fibro-
blasts in the secondary sites to form PMNs for their sub-
sequent metastasis [127]. For tumors initiating the process
without any evidence of detectable tumoral cells in the target
secondary organs, strategies can be switched to target sign-
aling implicated in early metastatic cascade, such as EMT.
Both single-cell invasion and collective migration use EMT
at the early metastatic event, so EMT inhibitors can be used
in combination with PD-1/PD-L1 blockade therapy with
the aim of retarding the whole events. However, failure of
response in the long-term to such therapies is expectable, so
knowledge in the area must be expanded to seek for strate-
gies that are more effective, more durable and less invasive.
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Conclusion

Metastasis is a complicated event which may occur early
at tumorigenesis or upon tumor taking a progressive step.
Metastasis is viewed as a systemic disease, being different
from a local primary tumor which is treatable by surgery
or chemo/radiation therapy [81]. Metastasis is started by
selection of some cancer cells taking an invasive phase
at the Edge area of tumor, and is finished by colonization
and outgrowth in the secondary area. Despite the real pro-
gresses in the field, which resulted in the identification of
key drivers of the metastatic steps, research in the area is
still continuing, which are to shed more lights in regard
with the cross-communications occurring between con-
tributing factors in each step with another.
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