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Abstract
The prognosis of patients with metastatic renal cell carcinoma has drastically improved due to the development of molecular-
targeted drugs and their use in clinical practice. However, these drugs cause some diverse adverse reactions in patients and 
sometimes affect clinical outcomes of cancer therapy. Therefore, predictive markers are necessary to avoid severe adverse 
reactions, to establish novel and effective prevention methods, and to improve treatment outcomes. Some genetic factors 
involved in these adverse reactions have been reported; however, perspectives on each adverse response have not been inte-
grated yet. In this review, genetic polymorphisms relating to molecular-targeted therapy-induced adverse reactions in patients 
with renal cell carcinoma are summarized in the points of pharmacokinetic and pharmacodynamic mechanisms. We also 
discuss about the relationship between systemic drug exposure and adverse drug reactions.

Keywords  Adverse drug reaction · Molecular-targeted drug · Polymorphism · Renal cell carcinoma · Pharmacokinetics · 
Pharmacodynamics

Introduction

A number of novel drugs based on molecular targets relating 
to the progression of renal cell carcinoma (RCC) have been 
developed and used in clinical practice, drastically improv-
ing the prognosis of patients with metastatic RCC [1, 2]. 
However, specific adverse reactions which are not popular 
in the treatment with ordinal cytotoxic cancerous drugs are 
being reported [3–5]. A crucial issue in the safe and effec-
tive targeted chemotherapy is to identify mechanisms and 
predictive markers of adverse drug reactions.

Some genetic factors of adverse drug reactions have been 
reported and broadly classified into pharmacokinetic and 
pharmacodynamics mechanisms. A part of molecular-tar-
geted drugs are absorbed and distributed by various mem-
brane transporters such as ATP-binding cassette (ABC) and 
solute carrier (SLC) transporters [6]. Moreover, almost all of 
these drugs are metabolized by cytochrome P-450s (CYPs). 
A large number of polymorphisms exist in the coding genes 
of factors involved in absorption, distribution, metabolism, 

and excretion (ADME) processes; these polymorphisms can 
affect the systemic and local concentrations of the drugs 
[7]. Polymorphisms in drug-targeted molecules such as 
vascular endothelial growth factor receptor (VEGFR) and 
FMS-like tyrosine kinase (FLT) 3 are associated with the 
efficacy and toxicity of the drugs [8]. Various reports on 
individual adverse reactions can be found; however, different 
perspectives on adverse responses have not been integrated 
yet, which is necessary for the development of preventive 
strategies against these adverse drug reactions and for their 
optimal usage in drug selection or dosage adjustment in 
clinical practice.

In this review, genetic factors relating to molecular-tar-
geted therapy-induced adverse drug reactions in patients 
with RCC are summarized based on pharmacokinetic and 
pharmacodynamic mechanisms.

TKI‑induced adverse reactions

Clinically, tyrosine kinase inhibitors (TKIs), mammalian tar-
get of rapamycin inhibitors (mTORi), and immune check-
point inhibitors are used in RCC therapy. Several TKIs have 
been in use based on patient performance status; novel TKIs 
will continue to be developed [9, 10]. Molecular-targeted 
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therapy-induced major adverse reactions recorded in leading 
clinical trials that evaluated the efficacy of first-line RCC 
therapy are shown in Table 1 [11–16]. Gastrointestinal 
toxicities such as diarrhea and fatigue are common reac-
tions to TKIs. In addition, skin or mucosal toxicities such 
as hand–foot skin reaction, rash, and stomatitis are typical. 
Racial differences in the development of hand–foot skin 
reaction have been reported [17]. Liver injury is frequently 
induced by sunitinib and pazopanib. Hematological toxici-
ties such as anemia, neutropenia, and thrombocytopenia are 
commonly observed events in sunitinib and pazopanib ther-
apy; particularly sunitinib-induced hematological toxicity is 
likely to become severe, whereas sorafenib and axitinib are 
known to be less hematotoxic than other TKIs. Proteinuria 
and hypothyroidism are unique events in axitinib therapy. 
Interestingly, some reactions are well known to be associated 
with the efficacy of TKI cancer therapy [18, 19].

mTORi‑induced adverse reactions

Oral everolimus and intravenous temsirolimus are mTORi 
used for the therapy of RCC. mTORi-induced adverse reac-
tions differ from TKI-induced adverse reactions. Mucositis 
such as stomatitis is more frequently observed in the mTORi 
therapy. Skin disorders such as dry skin and paronychia are 
also reactions unique to these inhibitors. In addition, inter-
stitial lung disease (ILD) is a critical reaction, and it is the 
key factor in the interruption of mTORi therapy, although its 
development is rare [20]. Racial differences in the develop-
ment of ILD have been reported, with Asian patients being 
more likely to experience mTORi-induced ILD [21, 22]. 
Another unique adverse reaction to mTORi therapy is abnor-
mality in lipid and glucose metabolism, which is known to 
occur at different frequencies comparing everolimus and 
temsirolimus therapy. Some mTORi-induced adverse reac-
tions are also associated with therapeutic outcome [23–25].

Genetic factors associated with adverse 
reactions

TKI‑induced diarrhea

Diarrhea is the most common adverse response to TKIs. 
Reported genetic polymorphisms are related with their 
pharmacokinetic mechanisms (Table 2). In a retrospective 
study, Chu et al. [26] reported that the T allele of 1236 T/C 
(rs1128503) and that of 3435 T/C (rs1045642) in the ABCB1 
gene reduced the risk of sunitinib-induced diarrhea in Chi-
nese patients as secondary endpoints. The TT genotype of 
1236 T/C and that of 2677 G/T (rs2032582) in the ABCB1 
gene are known to increase the clearance of sunitinib and 

its active metabolite [27]. In addition, Boudou-Rouquette 
et  al. [28] emphasized that the T allele of − 2152 C/T 
(rs17868320) in the UDP-glucuronosyltransferase (UGT​)  
1A9 gene is associated with sorafenib-induced diarrhea, 
because this SNP is related with the higher hepatic expres-
sion of UGT1A9 and can increase the glucuronidation activ-
ity. Further, Bins et al. [29] reported the association between 
the G allele of 388 A/G (rs2306283) in the SLCO1B1 gene 
and development of sorafenib-induced diarrhea. Suttle et al. 
[30] reported that pazopanib-induced diarrhea showed a ten-
dency of correlation with area under the curve (AUC) of 
pazopanib. On the other hand, no reports about the asso-
ciation between the development of TKI-induced diarrhea 
and pharmacodynamic factors based on genetic information 
can be found. Therefore, these findings suggested that TKI-
induced diarrhea was associated with the activity or expres-
sion of transporters and conjugation enzymes affecting drug 
systemic exposure and distribution to local tissues. TKI-
induced diarrhea can largely be explained by the genetic 
polymorphisms in the pharmacokinetic mechanisms.

TKI‑induced hand–foot skin reaction

Several previous reports showed that hand–foot skin reac-
tion was related to genetic polymorphisms of both pharma-
cokinetic and pharmacodynamics mechanisms. The TTT 
haplotype of rs1045642, rs1128503, and rs2032582 in 
the ABCB1 gene was associated with the development of 
hand–foot skin reaction due to increased systemic exposure 
[31, 32]. In addition, it was reported that carriers of the AA 
genotype of 421 C/A (rs2231142) in the ABCG2 gene devel-
oped hand–foot skin reaction more frequently. In this report, 
higher systemic exposure because of lower expression of 
breast cancer resistant protein (BCRP) with occurrence of 
the A allele of rs2231142 in the ABCG2 gene was a sig-
nificant cause of frequent hand–foot skin reaction [33]. On 
the one hand, an association between systemic exposure to 
sunitinib and development of hand–foot skin reaction is con-
troversial. Mizuno et al. [34] showed the lack of association 
between AUC of sunitinib and development of hand–foot 
skin reaction in secondary evaluations in a small-sample 
study. Noda et al. [35] also reported no significant associa-
tion between severity of hand–foot skin reaction and plasma 
trough concentration of sunitinib and its metabolite. How-
ever, some studies have found that sorafenib concentrations 
were significantly correlated to the grade of hand–foot skin 
reaction [36, 37]. Genetic variants of the UGT1A9 gene were 
found to be associated with AUC of sorafenib and grade of 
hand–foot skin reaction [28, 37–39]. The severity of pazo-
panib-induced hand–foot skin reaction was also correlated to 
AUC of pazopanib [30]. Therefore, sorafenib- or pazopanib-
induced hand–foot skin reaction may be associated with their 
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Table 1   Major adverse reactions induced by molecular-targeted therapy in patients with RCC​

Drug Adverse reaction 
(≥ 20%)

Any grade (%) Grade ≥ 3 (%) Laboratory 
abnormality 
(≥ 20%)

Any grade (%) Grade ≥ 3 (%) N Reference (ethnic-
ity)

Sorafenib Diarrhea 43 2 None 451 Escudier et al. [11]
(non-information)

Rash 40 1
Fatigue 37 5
Hand-foot skin 

reaction
30 6

Alopecia 27 < 1
Nausea 23 < 1

Sunitinib Diarrhea 61 9 Anemia 79 8 375 Motzer et al. [12]
(non-information)

Fatigue 54 11 Leukopenia 78 8
Nausea 52 5 Neutropenia 77 18
Dysgeusia 46 < 1 Increased creati-

nine
70 < 1

Anorexia 34 2 Thrombocyto-
penia

68 9

Dyspepsia 31 2 Lymphocyto-
penia

68 18

Vomiting 31 4 Increased lipase 56 18
Hypertension 30 12 Increased AST/

ALT
56 (AST) 2

Stomatitis 30 1 Increased cre-
atine kinase

49 3

Hand-foot syn-
drome

29 9 Increased ALP 46 2

Skin discolora-
tion

27 < 1 Increased uric 
acid

46 14

Mucosal inflam-
mation

26 2 Increased amyl-
ase

35 6

Rash 24 1 Hypophos-
phatemia

31 6

Dry skin 21 < 1 Increased total 
bilirubin

20 1

Asthenia 20 7
Hair color 

changes
20 0

Axitinib Diarrhea 50 9 Hypothyroidism 21 0 189 Hutson et al. [13]
(White: 71)
(Black: < 1)
(Asian: 25)
(others: 4)

Hypertension 49 14
Weight decrease 37 8
Fatigue 33 5
Decreased 

appetite
29 2

Palmar-plantar 
Erythrodyses-
thesia

26 7

Dysphonia 23 1
Asthenia 21 8
Nausea 20 1
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Table 1   (continued)

Drug Adverse reaction 
(≥ 20%)

Any grade (%) Grade ≥ 3 (%) Laboratory 
abnormality 
(≥ 20%)

Any grade (%) Grade ≥ 3 (%) N Reference (ethnic-
ity)

Pazopanib Diarrhea 52 4 Increased AST/
ALT

53 12 (ALT) 290 Sternberg et al. 
[14]

(White: 87)
(Black: < 1)
(Asian: 12)
(other: < 1)

Hypertension 40 4 Hyperglycemia 41 < 1
Hair color 

changes
38 < 1 Leukopenia 37 0

Nausea 26 < 1 Increased total 
bilirubin

36 3

Anorexia 22 2 Neutropenia 34 1
Vomiting 21 2 Hypophos-

phatemia
34 4

Hypocalcemia 33 3
Thrombocyto-

penia
32 1

Lymphocyto-
penia

31 4

Hyponatremia 31 5
Everolimus Stomatitis 40 3 Anemia 91 9 269 Motzer et al. [15]

(non-information)
Rash 25 < 1 Hypercholester-

olaemia
76 3

Fatigue 20 3 Hypertriglyceri-
demia

71 < 1

Hyperglycemia 50 12
Increased creati-

nine
46 < 1

Lymphopenia 42 15
Increased ALP 37 < 1
Hypophos-

phatemia
32 4

Leukopenia 26 0
Increased AST 21 < 1
Thrombocyto-

penia
20 < 1

Temsirolimus Asthenia 51 11 Anemia 45 20 208 Hudes et al. [16]
(non-information)

Rash 47 4 Hyperlipidemia 27 3
Nausea 37 2 Hyperglycemia 26 11
Anorexia 32 3 Hypercholester-

olemia
24 1

Pain 28 5
Dyspnea 28 9
Infection 27 5
Diarrhea 27 1
Peripheral edema 27 2
Cough 26 1
Fever 24 1
Abdominal pain 21 4
Stomatitis 20 1
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systemic exposure of these drugs, and genetic variants of 
transporters may affect the local accumulation of TKIs.

A few factors in pharmacodynamic mechanisms of 
hand–foot skin reaction have been reported. Several reports 
focused on VEGF, VEGFR, and FLT3, which are targets 
of TKIs [40–42]. Mutations in the 5′ UTR or 3′ UTR such 
as rs2010963 in the VEGF gene can modify the potential 
binding sites of transcription factors, resulting in lower 
expressions of VEGF [43, 44]. Moreover, because 1192 
G/A (rs2305948) and 1719 A/T (rs1870377) in the VEGFR2 
gene affect the VEGF binding domain, these polymorphisms 
may have a differential effect on VEGF ligand binding and 
its downstream signaling through VEGFR2 [45]. Overall, 
patients with weaker signaling in the VEGF/kinase insert 
domain-containing receptor (KDR) pathway may more fre-
quently develop hand–foot skin reaction; however, further 
information is needed for confirmation.

An association between development of hand–foot skin 
reaction and SNPs in cytokine-related factors such as tumor 
necrosis factor (TNF)-α and signal transducer and activator 
of transcription (STAT) 3 has been recently suggested [38, 
46]; thus, indirect factors may contribute to the mechanism 
of hand–foot skin reaction. Therefore, hand–foot skin reac-
tion is likely to involve integrated mechanisms including 
pharmacokinetic, pharmacodynamic, and indirect factors.

Sorafenib‑induced skin rash

Skin rash is an adverse reaction involving immunological 
mechanisms, unlike hand–foot skin reaction. An association 
between sorafenib-induced skin rash and human leukocyte 
antigen (HLA)-A*24 has been reported in a small Japanese 
population. HLA-A*24 is known to be associated with phe-
nytoin and lamotrigine-induced Stevens–Johnson syndrome 
(SJS) or toxic epidermal necrolysis; this can be relevant to 
allergic responses induced by different drugs. On the other 
hand, Tsuchiya et al. [47] reported that patients with the CC 
genotype of − 24 C/T (rs717620) in the ABCC2 gene were 
at a significantly higher risk of skin rash than those with 
the CT genotype. Carriers of the C allele of − 24 C/T in the 
ABCC2 gene show a higher export function of the multidrug 
resistance-associated protein 2 (MRP-2) than carriers of the 
T allele [48, 49]. Therefore, patients with C allele may expe-
rience lower plasma concentrations of sorafenib, because 
MRP-2 mediates the biliary excretion of sorafenib [50]. On 

the one hand, Fukudo et al. reported a lack of association 
between sorafenib plasma concentration and severe (> grade 
2) skin rash. Relationship between pharmacokinetic factors 
and sorafenib-induced skin rash remained to be examined 
further.

Sunitinib‑induced mucositis

Some reports investigated about the pharmacokinetic 
mechanisms in sunitinib-induced stomatitis. Diekstra et al. 
reported the associations between development of stomatitis 
and SNPs in ABCB1; they also reported that ligand-acti-
vated nuclear receptor (NR)1/3 genes affect the expression 
of CYP3A4 [41, 51]. Interestingly, polymorphisms in the 
ABCB1 gene influence the concentration of P-glycoprotein 
substrates in saliva [52]. Therefore, TKI-induced stomatitis 
can be related to the drug concentration in the oral cavity, 
but not to the systemic concentration. It is also reported 
that SNPs in NR1/3 and CYP1A1 genes are associated with 
the development of stomatitis [31, 41]. Carriers of the G 
allele of 4889 A/G (rs1048493) in the CYP1A1 gene have a 
higher catalytic activity of CYP1A1 [53, 54]. An association 
between systemic plasma concentration and development of 
sunitinib-induced stomatitis is generally accepted.

Watanabe et  al. [55] reported that sunitinib-induced 
stomatitis more frequently develops in carriers of STAT3 
genetic polymorphisms. TKI-induced mucositis may be 
related to immune system function; however, further stud-
ies are required for confirmation.

TKI‑induced hypertension

Sunitinib-induced hypertension is reported to be associ-
ated with 6986 A/G (rs776746) in the CYP3A5 gene and 
rs2231142 in the ABCG2 gene, and these SNPs affect 
the systemic concentration of sunitinib [41]. Moreover, 
sorafenib-induced hypertension is reported to be associated 
with rs1045642 in the ABCB1 gene [42]. It has been sug-
gested that rs776746 in the CYP3A5 gene can be a dose 
reduction marker of sunitinib, because rs776746 A allele car-
riers have higher concentrations of sunitinib [56]. Further-
more, carriers of the ABCG2 rs2231142 AA genotype have 
higher AUC of substrate drugs than carriers of the CC geno-
type [57, 58]. In addition, rs4646437 G/A in the CYP3A4 
gene was reported to be associated with sunitinib-induced 

Table 1   (continued)

Drug Adverse reaction 
(≥ 20%)

Any grade (%) Grade ≥ 3 (%) Laboratory 
abnormality 
(≥ 20%)

Any grade (%) Grade ≥ 3 (%) N Reference (ethnic-
ity)

Constipation 20 0
Back pain 20 3
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hypertension [59]. The A allele of rs4646437 is associated 
with a high plasma concentration of substrate drugs [60] 
due to altered splicing of primary transcripts [61]. There-
fore, carriers of the rs4646437 A allele have increased drug 
exposure with stronger inhibition of VEGFR in patients 
taking sunitinib [59]. An association between TKI-induced 
hypertension and high systemic exposure to TKI has been 
reported [34, 37, 62].

Polymorphisms related to the VEGF/KDR pathway are 
also associated with TKI-induced hypertension [40, 63]. It 
is considered that these SNP carriers have reduced signaling 
in the VEGF/KDR pathway. Moreover, Diekstra et al. [64] 
also reported an association between hypertension and poly-
morphisms in the IL-8 gene. The effect of SNPs in the IL8 
gene is little known; however, these SNPs are expected to 
affect the protein expression of IL8 [65–67]. It also remains 
unclear how the IL8 protein may relate to sunitinib-induced 
hypertension; IL8 may directly or indirectly influence the 
VEGFR pathway [68, 69].

TKI‑induced liver injury

Pazopanib-induced hyperbilirubinemia was associated with 
UGT1A1*28 (rs8175347) [29, 70]. Bilirubin is metabolized 
by UGT1A1 for the biliary elimination, and UGT1A1 activ-
ity is strongly inhibited by pazopanib. Because the UGT1A1 
genetic variant TA7 is known to cause reduced expression of 
UGT1A1 [71], its carriers may be susceptible to the inhibi-
tory effects of pazopanib. This UGT1A1 TA-repeat poly-
morphism has also been reported to associate with hyper-
bilirubinemia induced by several drugs [72–74]. Low et al. 
[75] reported that the ABCG2 rs2231142 variant was associ-
ated with sunitinib-induced hepatic transaminase (AST and 
ALT) increase. In addition, some studies found that plasma 
concentrations of sorafenib or pazopanib show a tendency 
of correlation with ALT increase [30, 37]. Interestingly, 
Xu et al. [76] reported that the rs2858996/rs707889 poly-
morphisms in the HFE gene may associate with the revers-
ible ALT elevation in pazopanib-treated patients. HFE, the 
hemochromatosis gene, encodes a membrane protein that 
regulates iron homeostasis. Genetic mutations in this gene 
result in hereditary hemochromatosis, an iron storage disor-
der. Other HFE-associated syndromes such as nonalcoholic 
steatohepatitis result in liver injury because of aberrant iron 
metabolism and oxidative stress [77, 78]. Furthermore, HFE 
and VEGFR-2 share several hypoxia-induced transcriptional 
regulators, particularly hypoxia inducible factor (HIF)-1α; 
the inhibition of VEGF signaling may reduce induction of 
HFE [79]. Xu et al. [80] also reported that HLA-B057:01 
confers higher risk of ALT elevation in patients receiving 
pazopanib. Recent pharmacogenetic studies of hepato-
toxicity have identified strong associations between HLA 

polymorphisms and various drug-induced ALT elevations 
[81–85].

Liver injury is a complex condition that cannot be justi-
fied by individual mechanisms. Hyperbilirubinemia may be 
related to pharmacokinetic differences in bilirubin metabo-
lism inhibition by TKIs between UGT1A1 genetic variant 
carriers; ALT elevation may be associated with the factors 
in pharmacokinetic and pharmacodynamic mechanisms 
including immune components such as HLA and iron stor-
age homeostasis.

TKI‑induced thrombocytopenia

Some reports have suggested that TKI-induced thrombocy-
topenia is associated with pharmacokinetic factors. Stud-
ies have shown an association between sunitinib-induced 
thrombocytopenia and rs2231142 in the ABCG2 gene in Jap-
anese and Korean patients [33, 75]. Carriers of the ABCG2 
rs2231142 C allele are known to have higher AUC of suni-
tinib [34]. In addition, studies have suggested associations 
between plasma trough level of sunitinib and platelet counts, 
and between AUC of sunitinib and development of thrombo-
cytopenia [34, 35]. Therefore, TKI-induced thrombocytope-
nia may be a hematological toxicity dependent on systemic 
drug exposure. Moreover, Bins et al. [29] showed an associa-
tion between 521 C/T (rs4149056) in the SLCO1B1 gene and 
sorafenib-induced thrombocytopenia. Some TKIs including 
nilotinib, pazopanib, sorafenib, and sunitinib are substrates 
of OATP1B1 encoded by the SLCO1B1 gene [86, 87] with 
rs4149056 T allele carriers showing higher concentration 
of the substrates [88]. These findings support the hypoth-
esis that TKI-induced thrombocytopenia is dependent on 
systemic drug exposure.

Sunitinib‑induced leukopenia

Leukopenia is a type of hematological toxicity; therefore, 
the occurrence of leukopenia is considered to associate with 
systemic concentration of TKIs. However, some factors in 
pharmacodynamic mechanism are also reported. van Erp 
et al. [31] reported that sunitinib-induced leukopenia is asso-
ciated with rs1048943 in the CYP1A1 gene and the CAG 
haplotype (rs2307424, rs2307418, and rs4073054) in the 
NR1/3 gene, but not with SNPs in the VEGFR genes.

Sunitinib is likely to be a substrate of CYP1A1 and is 
known to be an inducer of CYP1A1 protein mediated by aryl 
hydrocarbon receptor activation [89, 90]. Lu et al. found that 
Caucasians with the rs1048943 GG genotype in the CYP1A1 
gene might have an increased risk of acute lymphoid leuke-
mia and chronic myelogenous leukemia [91, 92]. This SNP 
results in increased catalytic activity and higher mRNA 
level of CYP1A1, leading to enhanced DNA adduct forma-
tion [93]. These DNA adducts are responsible for causing 
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mutations in tumor suppressor genes and oncogenes; thus, 
trigger uncontrolled hematopoietic cell proliferation and 
reduced differentiation and decreased apoptosis of malig-
nant hematopoietic blast cells [54]. It is not yet clear if these 
mechanisms are associated with sunitinib-induced leukope-
nia; however, CYP1A1 variants may be a factor of pharmaco-
dynamic mechanism if the above mechanism involves suni-
tinib-induced leukopenia. NR1/3 is well known to regulate 
the expression of CYP3A4. Although the CAG haplotype 
in the NR1/3 gene is likely to lead to a higher concentration 
of sunitinib [94], this mechanism remains to be clarified.

Some studies have found that sunitinib-induced leuko-
penia is associated with FLT3 variants [26, 31]. The impor-
tance of the FLT3 receptor has been described with respect 
to the development of several subtypes of leukemia, wherein 
FLT3 is frequently overexpressed and/or mutated [95, 96]. 
The functional effect of 738 C/T (rs1933437) in the FLT3 
gene is not yet clarified; however, its protein product may be 
altered because of amino acid substitution.

mTORi‑induced adverse reactions

Associations between mTORi-induced adverse reactions in 
RCC therapy and genetic polymorphisms related to pharma-
cokinetic or pharmacodynamic factors are yet to be eluci-
dated. However, the association between everolimus-induced 
adverse reactions in patients with breast cancer and genetic 
polymorphisms was reported [97]. It is reported that poly-
morphisms in mTOR pathway-related factors are associated 
with everolimus-induced leucopenia, hyperglycemia, and 
pneumonitis; however, data in patients with RCC have not 
been reported. de Velasco et al. [98] reported a lack of asso-
ciation between adverse reactions to everolimus or temsiroli-
mus and some genetic polymorphisms such as CYP3A4, 
CYP3A5, and ABCB1. de Wit et al. found that patients with 
everolimus-induced severe stomatitis (grade 3) had higher 
AUC and trough concentration than patients with non-severe 
stomatitis (grade 0–2); however, the development of sto-
matitis (any grade) was not associated with AUC or trough 
concentration. Thus, mTORi-induced adverse reactions may 
be not influenced by pharmacokinetic genetic factors.

Conclusion and perspectives

Understanding the mechanism of adverse reactions and iden-
tifying genetic markers have become increasingly impor-
tant because of spiraling medical costs and development 
of different molecular-targeted drugs. The application of 
genetic engineering techniques to medical research, such as 
genome-wide association studies, is showing good progress. 
Therefore, mechanistic analysis of targeted therapy based 
on genetic information is also necessary. Although a lot of 
retrospective or secondary analytic data have accumulated, 

there continues to be a lack of reports evaluating clinical 
outcome by using genetic information while controlling 
or avoiding adverse reactions in prospective studies. This 
review is aimed at encouraging the practical use of genetic 
information for the management of molecular-targeted drug-
induced adverse drug reactions.
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