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Introduction

Although there has been debate among experts whether this 
represents a real increase in disease incidence, rather than 
simply increased recognition of extant disease, recent evi-
dence suggests that there has, in fact, been a 6.1% rise in 
annual incidence rates of advanced-stage PTCs since 1983 
and that annual thyroid cancer mortality has risen by 1.1% 
since 1994 [1].

A key element of thyroid cancer management is disease 
localization by imaging. Functional imaging of thyroid 
cancer with radioiodine tracers has given birth to the entire 
field of nuclear medicine, and these radiotracers have been 
employed for metastatic disease detection for a long time as 
has, more recently, been 2-deoxy-2-[18F] fluoro-d-glucose 
(18F-FDG) positron emission tomography/computed tomog-
raphy (PET/CT), a non-iodinated PET tracer. Important roles 
are also played by anatomic imaging with cervical ultra-
sonography commonly and with CT and MR of the neck, 
chest, liver, and skeleton in selected cases. In the era of 
precision medicine, it is imperative that imaging resources 
delivering significant radiation doses and significant cost be 
optimally targeted meet each patient’s diagnostic, prognos-
tic, and therapeutic needs [2].

Newer radiotracers are now available that can detect 
residual disease in some challenging patients in whom radi-
oiodine imaging and 18F-FDG PET/CT imaging fail to local-
ize lesions. In this review, we have summarized the current 
state of thyroid cancer molecular imaging.
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Sodium–iodide symporter (NIS) and role 
in thyroid cancer imaging

Most iodine radiotracers take advantage of the NIS to con-
centrate in thyroid follicular cells. NIS is not expressed in 
the parafollicular C cells or the Hurthle cells. NIS (Na+/
I−) was molecularly characterized in 1996, and since then 
its role has been recognized as critical to the diagnosis and 
treatment of differentiated thyroid cancer (DTC). It trans-
ports I- and many other substrates (such as perchlorate 
(ClO4−) and chlorate (ClO3−)) with either an electronic or 
a neutral stoichiometry [3].

In a study done to characterize NIS expression in thy-
roid disease states, it was shown that NIS expression was 
decreased in over 90% of thyroid carcinomas by as much 
as 1200-fold [4]. Postulated mechanisms include damage 
to the DNA by ionizing radiation, decreased expression of 
SCL5A5 and/or diminished membrane targeting [5, 6].

Despite the decreased amount of symporter in thyroid 
carcinomas, NIS remains expressed at a level that allows 
for the localization of iodine radiotracers and the util-
ity of those radiotracers for imaging and therapy. Indeed, 
autophagy activity strongly correlates with good response 
to radioiodine therapy (RAI), probably related to the ability 
to maintain differentiation and iodine uptake [7]. Cyclic-
AMP-mediated increase in glycosylation has been shown 
to enhance the functionality of the NIS and is being investi-
gated as a potential target [8].

Newer radiotracers that utilize the PET-based imaging 
systems processed through the NIS are being synthesized 
and investigated and will be discussed in further detail in 
subsequent sections of this review.

Planar and SPECT imaging of thyroid follicular 
cells and differentiated thyroid cancer

Diagnostic 123I scan: the first successful experiment 
in individualized medicine

The diagnostic 123I scan is performed prior to radioio-
dine therapy to evaluate the patient for the presence of 
locoregional nodal disease and/or distant metastases and 
to tailor the therapeutic radioiodine dose to the findings, 
although some centers prefer an empirical administration of 
30–100 m Ci based on initial risk assessment. The American 
Thyroid Association guidelines state that postsurgical diag-
nostic whole-body scan (WBS) may be beneficial in cases 
where the extent of residual disease cannot be determined 
accurately by conventional imaging and/or the management 
(either decision to treat or the activity administered) of the 
patient may be altered by the additional information [9]. 
The diagnostic scan may be performed by low-dose 123I 

(1.5–3 mCi) or 131I (1–3 mCi) [9]. 123I diagnostic scans were 
shown to be superior to diagnostic 131I scans in terms of 
image quality and sensitivity [10].

At our institution, the dose for the diagnostic scan (with 
radiotracer 123I) is administered 48 h before radioiodine ther-
apy and images are obtained 24 h prior to the therapy dose. 
Typically, the patient receives a low-iodine diet for 2 weeks 
followed by two injections of recombinant thyroid-stimulat-
ing hormone (TSH) on day 1 and day 2. Recombinant TSH 
appears to be like thyroid hormone withdrawal (THW) in 
achieving adequate lesion 131I uptake [11–13]. 123I single-
photon emission computed tomography (SPECT) imaging 
(i.e., volumetric, tomographic images acquired through rota-
tion of the gamma camera heads around the patient) with 
low-dose computed tomography (CT) for attenuation cor-
rection and anatomic localization is not routinely performed 
unless there are regions of uncertainty in the planar images.

123I diagnostic scans appear to have a high concordance 
with 131I post-treatment scans for thyroid bed and bone 
metastases (89 and 86%, respectively), and a relative low 
concordance for lymph node disease (61%) and lung metas-
tases (39%) as has previously been described [14]. In a study 
at Yale, it was shown that pre-therapy scans provided impor-
tant information that changed management in 25% of cases, 
and for persons demonstrating increased uptake in midline 
lymph nodes, the percentage was even higher (about 50%) 
[15].

In summary, the 123I diagnostic scan is an excellent tool 
for determining treatment dose as well as excluding patients 
for RAI treatment with no uptake (suggestive of non-radi-
oiodine avid disease).

Post‑treatment 131I scan: the “gold standard”

The post-treatment 131I scan is performed after the patient 
has received a moderate- to high-dose 131I for treatment of 
disease that is limited to the thyroid bed or elsewhere in the 
body. The initial steps are outlined above. One day after 
completing the 123I diagnostic scan, he/she receives the 
treatment dose as per the American Thyroid Association 
guidelines based on eligibility and risk of recurrence and 
mortality [16]. There is debate about the timing of the post-
treatment scan with conflicting results [17].

At our institution, the whole-body scan is acquired 
1 week after therapy and involves both planar as well as 
SPECT/CT imaging of the head and neck.

Post-therapy 131I scan for long has been considered the 
definite test to visualize radioiodine avid DTC. Early stud-
ies showed that post-therapy scans may visualize additional 
lesions compared to the pre-therapy scan in as many as 40% 
of cases, especially involving lung and lymph node dis-
ease [18]. In another study, it was shown that post-therapy 
scanning changed the disease stage in 8.3% of the patients 
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who were undergoing first ablation and provided valuable 
information for another 26% of patients who had had a prior 
ablation [19]. In a study at the Mayo Clinic involving 117 
patients, 13% of patients showed additional foci on the post-
therapy scan that were not seen on the pre-therapy scan and 
these findings resulted in change in management in 9% of 
patients [20].

Additionally, it has been shown that approximately 27% 
of post-treatment scans may differ from the pre-treatment 
scan [21]. A positive whole-body scan is related to disease 
recurrence as well as persistent disease and offers early 
assessment of long-term risk [22].

PET radiotracers for imaging the sodium–iodide 
symporter

PET offers better spatial resolution, and the images are more 
easily quantified for assessment of treatment response or 
progression when compared to SPECT [23]. Imaging the 
thyroid follicular cells with PET radiotracers that bind to 
the NIS offers the potential for high-resolution, high-quality 
images.

124I PET/CT

124I is a PET radiotracer that binds to the NIS, has a long 
half-life, and emits high-energy particles including gamma 
rays and positrons [24]. 124I has a half-life of 4.18 days, and 
22% of its emission consists of positrons [25]. In a recent 
study involving 227 iodine avid metastatic lesions, there was 
a high level of agreement between pre-therapy 124I PET/CT 
and post-treatment 131I scan, with concordance rates of 97% 
(221/227) [26]. However, in another study involving a popu-
lation that had elevated serum thyroglobulin levels, a nega-
tive diagnostic 123I/131I scan, and a negative 124I PET scan, 
post-treatment scan with 131I was frequently positive, espe-
cially if the patient had a prior positive 131I post-treatment 
scan (implying prior demonstration of radioiodine avidity 
and/or successful treatment) [27].

In a meta-analysis, our group showed that 124I PET/CT 
detects residual disease with a very high sensitivity and also 
images many lesions not visualized by post-treatment 131I 
scan [28]. It is surmised that some lesions of DTC that have 
iodine avidity may be seen by the superior imaging char-
acteristics and technology of the PET/CT systems but not 
visualized on post-treatment 131I scan, especially if the dose 
is small (30–50 m Ci range). On the other hand, the very 
high doses administered for a repeat therapy might detect 
residual disease on the 131I imaging as outlined above [27]. 
124I appears to be superior to diagnostic 123I planar imaging 

in terms of sensitivity and specificity, though large-scale 
trials are lacking.

124I PET/CT may be useful for 3D dosimetry and plan-
ning adequate surgery in cases where the diagnostic 123I scan 
may be equivocal. Further large-scale studies are required 
before this expensive and high-radiation technology is incor-
porated as standard of care.

18F‑Tetrafluoroborate—an upcoming promising 
agent

18F-Tetrafluoroborate (TFB) is a new agent that was recently 
discovered and has a biodistribution characteristic of NIS 
expression [29]. After an injection of 24.93 ± 0.05 MBq/kg 
of 18F-TFB, dosimetry demonstrated that the compound had 
an effective radiation dose higher than 99m Tc pertechnetate 
(a very common single-photon-emitting radiotracer that can 
be used to image the thyroid) but lower than 123I and 131I 
[29]. It shows accumulation in cells derived from animal 
models that are stimulated by TSH, achieving an SUV of 72 
within 1 h of injection within the thyroid [30]. Compared 
to 123I SPECT/CT, it has better and faster uptake and bet-
ter clearance from circulation [31]. 18F-TFB appears to be 
pharmacologically and radiobiologically safe in humans, 
and some investigators are currently recommending phase 
2 trials [32].

18F-TFB appears to hold promise in the diagnosis and 
treatment guidance of DTC, and we look forward to the 
results of further studies with this agent.

18F‑FDG PET

18F-FDG PET/CT is most useful for the detection of thy-
roid cancer that is not radioiodine avid and more aggres-
sive in its behavior. For whole-body-scan-negative patients 
with persistently elevated thyroglobulin, 18F-FDG PET may 
detect disease in approximately 60–70% of patients (espe-
cially when combined with diagnostic CT scan) [33, 34]. 
Some other studies report even higher sensitivities [35, 36]. 
18F-FDG PET/magnetic resonance imaging (MRI) appears 
to be less sensitive than 18F-FDG PET/CT for detection of 
residual disease [37].

The optimal thyroglobulin (Tg) cutoffs for achieving the 
maximum sensitivity and specificity in the receiver operator 
characteristic (ROC) curves for this modality range from 12 
to 32 ng/ml [33, 34]. Recombinant TSH stimulation prior to 
PET/CT might improve the diagnostic sensitivity, increase 
the number of lesions detected, and change the management 
in a small percentage of cases [38, 39]. However, in another 
study, 20% of positive PET/CT cases were in persons with 
Tg less than 10 ng/ml, giving credence to the opinion that 
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it is difficult to establish exact Tg cutoffs for 18F-FDG PET/
CT [40].

18F-FDG PET/CT uptake that is detected incidentally 
but focally within the thyroid (in patients being scanned for 
reasons unrelated to thyroid cancer) is associated with sig-
nificantly higher risk of thyroid cancer (ranges from 15 to 
40%) [41–43]. A higher SUV (> 5.5) coupled with suspi-
cious US features increases the sensitivity to as high as 82% 
[44]. High 18F-FDG PET/CT uptake has been associated 
with poor survival in persons with mediastinal metastatic 
lymph nodes [45]. A negative 18F-FDG PET/CT performed 
early in intermediate- to high-risk thyroid cancer patients is 
associated with excellent response to therapy by modified 
Hicks criteria [35].

18F-FDG PET/CT has long been the imaging agent for 
medullary thyroid cancer (MTC) with high calcitonin levels. 
The combination of calcitonin doubling time and 18F-FDG 
PET/CT positivity has been shown to be a good prognostic 
factor for MTC [46].

In summary, 18F-FDG PET/CT is an invaluable tool for 
imaging non-radioiodine avid DTC and MTC. It can also be 
used as a prognostic marker for morbidity and recurrence.

Newer agents targeting other receptors

Ga 68 DOTATATE PET/CT in thyroid cancer

Somatostatin receptor (SST) expression in medullary thyroid 
cancer (MTC) has now been established [47]. In a study by 
Papotti et al. [48] looking at the distribution of SST 1–5, 
49% of the MTC tumors were positive for sst1, 43% for sst2, 
47% for sst3, 4% for sst4, and 57% for sst5. Many of the 
tumors express more than one receptor types [47]. Ga 68 
DOTATATE PET/CT is a radionuclide molecular imaging 
agent that binds to SST 2 with a very high affinity [49]. A 
patient with advanced MTC imaged with Ga 68 DOTATATE 
PET/CT is shown in Fig. 1.

In a small series of patients who had all the mentioned 
diagnostic tests, Ga 68 DOTATATE PET/CT has been found 
to be superior to CT, US, MRI, FDG PET/CT as well as 
MIBG scan in detecting new lesions of MTC especially in 
patients with very high serum calcitonin[50]. In a study 
comparing Ga 68 DOTATATE PET/CT with FDG PET/CT 
and another agent 99mTc-(V) DMSA, Ga 68 DOTATATE 
PET/CT performed better and detected many more lesions 
of MTC [51].

Ga 68 DOTATATE PET/CT has a potential to image non-
radioiodine tumors like Hurthle cell adenomas that show 
increased SST-2 receptor expression [52]. Its potential use 
in non-radioiodine avid DTC needs to be evaluated in clini-
cal trials.

In summary, Ga 68 DOTATATE PET/CT that has been 
recently FDA-approved is a useful imaging agent for MTC.

PSMA expression and imaging in thyroid tissue

Prostate-specific membrane antigen (PSMA) is a type II 
transmembrane glycoprotein that has primarily been investi-
gated as a target for the development of antibodies and small 
molecules for the detection and treatment of sites of prostate 
cancer [53, 54]. However, despite the specificity implicit in 
its name, PSMA is expressed in a variety of normal tissues 
as well as the tumor neovasculature of many non-prostate 
cancers [55–57]. On a histologic level, PSMA expression 
occurs on the endothelial cells of tumor neovasculature in 
both benign and malignant thyroid lesions, although a higher 
rate of malignant tumors have been found to be PSMA-pos-
itive [58]. In a series of case reports, in vivo findings on 
PET scans with PSMA-targeted agents (labeled with 68Ga) 
in localized thyroid tumors have demonstrated radiotracer 
uptake in both papillary and follicular carcinomas as well 
as follicular adenomas [59–62].

In the context of metastatic disease, Verburg et  al. 
reported strong PSMA-targeted radiotracer accumulation 
in a patient with 131I-negative, 18F-FDG-positive poorly 
differentiated disease affecting cervical lymph nodes and 
the lungs. A series of six patients (all with iodine-negative, 

Fig. 1   Ga 68 DOTATATE PET/CT showing increased left mediasti-
nal uptake in a patient with medullary thyroid cancer
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18F-FDG-positive metastatic differentiated thyroid cancer) 
were imaged with 68Ga-HBED-CC-PSMA by Lütje and 
colleagues [63]. Those authors found that 5 of 6 (83%) 
patients had definable lesions that were avid for the 
PSMA-targeted radiotracer, although in 2 out of 5 (40%) 
of those patients, 18F-FDG PET identified more lesions. 
Nonetheless, the preponderance of the evidence to date 
would suggest that many patients with metastatic thy-
roid cancer have lesions that express PSMA. Indeed, dis-
tant metastatic disease and radioactive iodine-refractory 
tumors appear to have some of the highest rates of expres-
sion [64].

In summary, PSMA-based agents offer potential for fur-
ther research and evaluation.

Future directions

Imaging of differentiated and other forms of thyroid cancer 
is offering new opportunities for clinicians and radiolo-
gists. The indolent and slow progression of the disease 
helps the physician in localizing and treating advanced 
disease for many years and in some cases decades. It is 
unclear now whether these technologies offer survival ben-
efit. However, they offer invaluable insight into the molec-
ular biology of these tumors and could serve as laboratory 
for other malignancies. The theranostics of 131I would con-
tinue to be the driving force for the excellent results seen 
with differentiated thyroid cancer. The use of 18F-based 
agents may reduce scan time and radiation exposure as 
well as improve the quality of the images.

In coming years, there will almost certainly be inves-
tigations of PSMA-targeted endoradiotherapeutics for the 
treatment of patients with metastatic thyroid cancer that 
no longer responds to iodine therapy, in much the same 
way that endoradiotherapies derived from DOTATATE are 
being used for metastatic medullary thyroid cancer.
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