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Abstract DNA methylation analysis, an epigenetic

specification, has been explored for partial determination of

cancer cell phenotypes. The development of metastasis in

cancerogenesis has led its feasible association with the

epigenetic modulations. We generated highly aggressive

non-small cell lung cancer cell lines (HTB56 and A549) by

using in vivo selection approach. These were, then, sub-

jected to DNA methylation analysis (genome-wide). We

also explored the therapeutic effects of azacytidine, an

epigenetic agent, on DNA methylation patterns as well as

the in vivo phenotypes. During the development of highly

aggressive cell lines, we observed widespread modulations

in DNA methylation. Reduced representation bisulfite se-

quencing was used and compared with the less aggressive

parental cell lines to identify the differential methylation,

which was achieved up to 2.7 % of CpG-rich region.

Azacytidine inhibited DNA methyltransferase and reversed

the prometastatic phenotype. We found its high association

with the preferential loss of DNA methylation from hy-

permethylated sites. After persisted exposure of azacy-

tidine, we observed that DNA methylation affected the

polycomb-binding sites. We found close association of

DNA methylome modifications with metastatic capability

of non-small cell lung cancer. We also concluded that

epigenetic modulation could be used as a potential

therapeutic approach to prevent metastasis formation as

prometastatic phenotype was reversed due to inhibition of

DNA methyltransferase.
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Introduction

Lung cancer is the second most common cancer and

leading cause of cancer-related death in both males and

females [1]. On the basis of histology of lung cancer, non-

small cell lung cancer is supposed as the most frequent one

because it represents around 85 % of all cases. Epigenetic

mechanisms are responsible for gene expression regulation.

Epigenetic modifications play important roles in many

pathophysiological and physiological conditions along with

carcinogenesis with no modification in DNA sequence [2].

Modifications in histone and DNA methylation may impact

on cancer aggressiveness and its phenotype [3, 4]. More-

over, genetic modifications can be outnumbered by these

alterations and usually occur early in carcinogenesis [5].

Epigenetics along with genetics intersect for promoting the

carcinogenesis during each and every stage of development

of cancer. In many cases, epigenetic modifications are
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reversible and dynamic and that is why it represents in-

teresting targets for treatment of cancer [6]. Recently, it

was explored that DNA methyltransferase inhibitory drugs

such as decitabine and azacytidine can modify cellular

cancer phenotypes over prolonged times even after the end

of drug exposure [7]. Decitabine and azacytidine can in-

duce DNA hypomethylation at specific gene loci, and it can

lead to sustained gene reactivation [8]. However, DNA

methylation analysis (genome-wide) after drug-induced

DNA methyltransferase inhibition has not been explored

till now, and the actual mechanisms of action of these

epigenetic modulators still defined poorly [9].

The most frequent causes of cancer-related death after

complete tumor resection are metastases. However, there is

similarity between gene expression profiles of cancer stem

cells and gene expression profiles of metastatic cancer cells

[10, 11]. A large number of additional genetic mutations are

not responsible for these expression profiles, but epigenetic

modifications are responsible for predispose for metastasis

[12]. Thus, we may say that formation of metastasis in most

cases occurs in short time span in comparison with primary

tumor initiation and growth until diagnosis, which takes

several years of time. As a result, DNA methyltransferase

inhibitory drugs can potentially target the metastasis-asso-

ciated epigenetic state. In the presentwork, we have explored

the profile of DNA methylation modifications, forming with

the transition from a cellular state with low metastatic ca-

pacity toward a highly aggressive state. We also analyzed

whether these changes were reversible or irreversible with

respect to DNA methyltransferase inhibition.

Materials and methods

Cell lines and azacytidine treatment

As per previous reports [13, 14], HTB56 and A549 lung

adenocarcinoma cells were cultured. STR marker analysis

was further used for the identification of cell lines.HTB56 and

A549 cells were exposed to 5-azacytidine (Sigma, Beijing,

China) at a concentration of 1 lmol/L to 100 nmol/L. Under

these conditions, the cells were grown for 8 days.Meanwhile,

cells were supplemented with fresh medium in every 2 days.

The cells were washed three times with PBS and released for

extra 1 week in regular medium.

In vitro functional assays

As per previous reports, 3[H]-thymidine-incorporated pro-

liferation assays [15], cell viability assays [16], human

tumor cloning assays [17], and migration assays [13, 15]

were performed.

Reduced representation bisulfite sequencing for DNA

methylation analysis (genome-wide)

As per published protocols [18, 19], reduced representation

bisulfite sequencing library was prepared using total

0.2–1 lg of DNA. During the experiment, Illumina TruSeq

adapters (Illumina, San Diego, CA, USA) were used for

ligation purpose, EZ DNA MethylationTM Kit (Zymo Re-

search Europe, Freiburg, Germany) was used for bisulfate

conversion, and PfuTurbo Cx DNA polymerase (Agilent

Technologies, Santa Clara, CA, USA) was used for am-

plification purpose. Human genomic sequences (hg19) and

other tracks (e.g., RefSeq genes) were downloaded from

the University of California, Santa Cruz Genome Browser

database [20]. Adapter sequences were removed using

Cutadapt version 0.9.3 [21], and sequences were mapped to

hg19 genome using Bismark version 0.5 [22]. Methylation

calls from Bismark were extracted with a modified script

that removed 30-MspI sites. The conversion rate of all non-

CpG cytosine positions was calculated from the Bismark

methylation_extractor output. Besides, samples with good

conversion rate (at least 99 % of all non-CpG cytosine

positions) were converted to uracil (Table 1). BiSeq

package [23] was used for analysis of methylation data in

R/Bioconductor. However, differentially methylated region

detection was restricted to regions with a high CpG site

density covered across all samples. Smoothed methylation

Table 1 Rate of conversion of methylation cells

Sample Unique mapped (reading) Conversion rate

HTB56_R0_rep1 1.81E?07 99.56

HTB56_R0_rep2 2.52E?07 99.84

HTB56_R2 1.50E?07 99.87

HTB56_R3_rep1 2.22E?07 99.58

HTB56_R3_rep2 1.61E?07 99.89

HR3_d8_250 nM 2.62E?07 99.41

HR3_d15_250 nM 2.11E?07 99.82

A549_R0_rep1 1.71E?07 99.31

A549_R0_rep2 2.59E?07 99.87

A549_R1 3.04E? 07 99.88

A549_R2 3.05E?07 99.91

A549_R3_rep1 2.04E?06 99.09

A549_R3_rep2 3.58E?07 99.92

AR3_d8_1 lM 1.61E?07 99.91

AR3_d15_1 lM 2.28E?07 99.72

AR3_d15_250 nM 2.18E?07 99.32

For conversion rate calculation, all extracted DNA methylation cells

of the uniquely mapped reads were used, which was based upon

bismark methylation extractor software. The conversion rate is de-

picted as the percentage of non-methylated cytosines in non-CpG

context
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levels (between 0 and 1) were calculated every 10 bps

within each CpG cluster. Regions with methylation dif-

ferences of at least 30 % were called differentially

methylated regions (minimum one base pair). We supposed

that the number m of region centers within differentially

methylated regions is binomially distributed with

o = number of region centers in CpG clusters and s = sum

of differentially methylated region widths divided by the

sum of CpG cluster widths to determine whether regions of

interest were overrepresented or underrepresented in dif-

ferentially methylated regions. We then carried out a two-

sided binomial test that m = s 9 o.

Illumina methylation bead arrays

Infinium Human Methylation 27 BeadChip (Illumina) was

used as per manufacturer’s instructions. Genome Studio

version 2011.1, along with Methylation Module version

1.9.0 and Illumina Genome Viewer Module version 1.9.0

softwares, was used for data preprocessing and methylation

level extraction.

Gene expression analysis

Human Gene 1.0 ST Array (Affymetrix) based on highly

metastatic and parental A549 cell lines was used as per

manufacturer’s instructions. Affymetrix GeneChip Scanner

3000 was used for scanning of arrays at 1.56-lm resolu-

tion. After importing the raw gene expression data to the

Affymetrix expression console, it was subjected to robust

multi-array average (RMA). RankProd software [24] was

used for differential gene expression calculation.

Single nucleotide polymorphism analysis

As per published reports [25, 26], high-resolution single

nucleotide polymorphism array (Affymetrix, 6.0) method

was used for the screening of copy-number alterations in

the genome of highly metastatic and parental non-small

cell lung cancer cell lines using HTB56 and A549. Single

nucleotide polymorphism array raw data are available at

NCBI (GSE44549).

Exome capture and high-throughput sequencing

As per manufacturer’s standard protocol, the SureSelect

XT Human All Exon V5 ? UTR kit (Agilent) for Illumina

sequencing was used. However, HiScanSQ instrument (Il-

lumina) was used for exome-enriched libraries, which were

subjected to 2 9 100 cycles paired-end sequencing.

Global DNA methylation analysis

DNAzol (Invitrogen, Beijing, China) was used for the ex-

traction of genomic DNA from highly metastatic and par-

ental A549 cell lines. As per previously published protocol

[27], global methylation levels were determined by capil-

lary electrophoresis.

Exome-sequence processing—read mapping, variant

calling, and effect determination

For this purpose, Burrows–Wheeler alignment algorithm

[PMID:19451168] was applied to map raw reads from the

Illumina HiSeq 2000 to the hg19 genome followed by re-

moval of duplicate reads. To remove low-quality muta-

tions, standard hard filtering parameters (Best Practice

Variant Detection using GTAK v4 documentation) were

applied. Ingenuity� Variant Analysis (CA, USA) online

software was used to transfer the detected variations.

Analysis of double-strand break by H2AX staining

According to the manufacturer’s instructions (cell signal-

ing), the determination of H2AX-positive cells was done.

H2AX-positive cells were considered as apoptotic cell

population.

In vivo mouse experiments

By strictly following the relevant regulations for animal

experiments, we used 9- to 11-week-old non-obese

diabetic or severe combined immunodeficient mice. Two

non-obese diabetic/severe combined immunodeficient

mice per cell line were irradiated with a single dose of

3.6 Gy from a cobalt 60 unit 1 day before injection. A

total number of 2.5 9 106 parental cells (HTB56_R0 or

A549_R0) were injected intravenously into the tail vein of

two different mice. Mice were killed after 9 weeks for the

first round of selection, after 7 weeks for the second

round of selection, and after 5 weeks for the third round

of selection. After digestion for 35 min with an adequate

amount of trypsin (around 5.5 9 104 cells) in cell culture,

nodules of both lungs were obtained and pooled. As per

reported works [13, 15], total of 1.5 9 106 (HTB56) or

2.5 9 105 (A549) or cells either highly or low metastatic

and either exposed or non-exposed were injected intra-

venously into the tail vein and followed up for 5 weeks.

Then, mice were killed for counting the lung nodules. To

block the cage effects, treatment groups were randomized

in all the experiments.
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Statistical analysis

The SPSS (version 18 (IBM) software) was used for sta-

tistical analyses. Kruskal–Wallis test was used for the

analysis of overall differences between multiple groups of

statistical significances. However, Student’s t test was used

to analyze the differences between two groups. A P value

of\0.05 was considered significant.

Results

In vivo selection of a highly aggressive phenotype

The epigenetic therapy can be used for the alteration of

specific phenotypes and properties, which would be as-

sociated with epigenetic modifications. Non-small cell

lung cancer cell lines were generated with increased

propensity for the formation of tumor nodules after in-

travenous injections (Fig. 1a). We know that the impor-

tant parts of the metastatic process are extravasation and

growth at a distant site. On account of this, we explored

these parts as surrogate markers for potential metastatic

capability and in vivo aggressiveness. For this purpose,

two cell lines were used: First cell line was HTB56 cells

which is an anaplastic carcinoma cell line and formed

fewer but larger nodules in vivo and the second one was

A549 lung adenocarcinoma cells which formed multiple

small nodules in non-obese diabetic or severe combined

immunodeficient mice after intravenous injection. We

observed that removal of tumor nodules from the lungs

followed by reinjection was responsible for a drastic in-

crease in metastatic capacity (Fig. 1a). After three rounds

of in vivo selection for both cell lines, we achieved a

highly aggressive phenotype, which was very stable over

time (Fig. 1b, P\ 0.001 for each cell line). These highly

aggressive cells showed enhanced clonogenic growth

in vitro and additional in vitro, which led to accelerated

proliferation, a metastatic potential. A high number of

potential driver mutations in the parental cells were ver-

ified by whole exome sequencing (HTB56_R0: n = 182;

A549_R0: n = 251) as well as additional mutations were

observed in the highly aggressive cell lines [only 8

(HTB56_R3 or 5 (A549_R3); whole data not shown].

Hence, the strong differences about metastatic capacity

in vivo phenotypes could play a big role, and only 3.7 %

Fig. 1 DNA methylation changes and aggressiveness of lung cancer

cell lines. a Experimental outline for the generation of highly

aggressive lung cancer cell lines. HTB56 or A549 cells were

intravenously injected into the tail vein of non-obese diabetic or

severe combined immunodeficient mice. After 9 weeks, the mice

were killed and lung nodules reminiscent of metastases were

removed. Tumor cells were expanded in vitro and subsequently

intravenously injected. The high metastatic potential cell lines (after

three rounds of selection) were compared with the parental cell lines.

b Verification of the aggressiveness of the low and highly metastatic

potential cell lines in vivo. Representative photographs of the resected

lungs are shown. Black arrows indicate metastases. c Genome-wide

DNA methylation analyses were performed by reduced representation

bisulfate sequencing. The scatter plots indicate changes in DNA

methylation between high metastatic (y-axis) and low metastatic cells

(x-axis). Colors represent the density of CpG sites ranging from red

(high density) to blue (low density). Notably, the majority of CpG

sites were either unmethylated or fully methylated. Also, more

changes in DNA methylation were observed in HTB56 cells

compared with A549 cells
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(HTB56) or 1.4 % (A549) of the mutations was newly

acquired during in vivo selection process.

Genome-wide modifications in DNA methylation

in the highly metastatic state

Since we know that in human cancer, functionally

relevant DNA methylation modifications occur at CpG-

rich regions; hence, we used a well-established modified

reduced representation bisulfite sequencing procedure

[18] to focus on CpG islands and the associated shores.

Thus, we identified modifications in DNA methylation in

both the non-small cell lung cancer cell lines with in-

creased aggressiveness in vivo. We found 1.8 9 107

reads which were, on an average, uniquely mapped to

the human genome in each cell line (detailed data not

shown). We defined, as per the spatial density of covered

CpG sites, 20143 CpG clusters that spanned

7,771,217 bp of the human genome. These clusters range

from 37 to 2137 bp (median 339 bp) length. The CpGs

in CpG clusters were unaffected with DNA methylation

(Fig. 1c). The median methylation level was 1.08 % for

CpGs in the metastatic HTB56_R3 cells and 0.86 % for

CpGs in the parental HTB56_R0 cells. Similar numbers

were obtained in A549 cells with a small decrease to-

ward higher CpG methylation in metastatic cells

(1.04 %) compared with the parental cells (0.75 %). A

total of 2,519 regions (2.6 % of the tested genomic re-

gion) were found to be differentially methylated in

highly metastatic HTB56_R3 cells and 2009 regions

(0.9 % of the tested genomic region) in A549_R3 cells.

However, DNA hypomethylated regions were more fre-

quent than DNA hypermethylated differentially methy-

lated ones as in highly metastatic HTB56_R3 (21.6 %)

and A549_R3 (38.7 %) cells. A total of 181 (14.9 %) of

HTB56_R3 differentially methylated regions overlapped

and were similarly altered in metastatic A549_R3 cells.

Hypomethylation in both cell lines was observed for 139

regions, whereas concordant DNA hypermethylation was

observed in 41 regions.

Fig. 2 a Experimental outline indicates the timeline of azacytidine

exposure and release. Cells were exposed to 5-azacytidine for 8 days

at 250 nM and 1 lM (A549) or at 250 nM only (HTB56). After

8 days, all remaining drugs were washed out and cells were released

into azacytidine-free media plus fetal calf serum for an additional

1 week to overcome any direct toxic effects and RNA methylation

effects. Functional analyses and intravenous injection were performed

at day 15. Reduced representation bisulfate sequencing analyses were

performed on day 0, 8, and 15 for both cell lines. b Azacytidine

induced changes in DNA methylation. a Scatter plot of DNA

methylation levels for more aggressive A549 cells versus more

aggressive A549 cells after 8 days of azacytidine exposure at

250 nmol/L. b Scatter plot of DNA methylation levels for more

aggressive A549 cells treated with azacytidine at 250 nmol/L versus

1 lmol/L doses. c Scatter plot of DNA methylation differences

between day 8 and day 0 in A549 versus HTB56 cells. For this plot,

only CpGs with at least 30 % methylation level were analyzed. Many

CpGs were similarly hypomethylated in both cell lines (high density

of points along the diagonal line in the third quadrant). In both cell

lines, multiple CpGs were identified that were hypomethylated in one

cell line but not the other (indicated by arrows). Colors represent the

density of points ranging from red (high density) to blue (low

density). c Scatter plot of azacytidine-treated (250 nM) versus

untreated high metastatic HTB56 cells. Methylation levels are shown

for CpG sites analyzed by reduced representation bisulfate sequenc-

ing. Axes are as follows: Methylation levels in HTB56 high

metastatic cells, X-axis: Day 0 (d0 = untreated); Y-axis: Day 8

(d8_250 = after 8 days of azacytidine (250 nM)-treatment). Azacy-

tidine reverts the metastasis-prone phenotype in lung cancer cells
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On the other hand, association between the DNA

methylation modifications in the cell lines and the tran-

scription factor binding sites determined by ChIP-Seq (28)

was also analyzed. An increased likelihood to be DNA

hypermethylated and hypomethylated, respectively, in both

cell lines was shown as the binding sites of Suz12 indicate

for the polycomb complex formation in embryonic stem

cells, similar to previous report [28]. It can be said that the

stability of DNA methylation might primarily depend on

transcription factor binding such that regions without ac-

tive transcription factor binding are more prone to undergo

modifications in DNA methylation.

Azacytidine-treated DNA methyltransferase

inhibition in vivo reversal of metastatic-prone

phenotype

We found a good association between the modified DNA

methylation patterns with the selection of a more

aggressive phenotype. DNA hypermethylation covered

around 33 % of the modifications in methylation. Azacy-

tidine (5-azacytidine, precisely) was used to target DNA

methylation by trapping and inhibiting DNA methyltrans-

ferase. It has one drawback that at high concentrations it is

toxic and creates difficulty to differentiate the epigenetic

effect from toxic effect. As a result, epigenetic effects

targeting the phenotypic memory of tumor cells should

persist longer than toxic effects. Thus, we exposed the

highly metastatic cells to azacytidine for 8 days followed

by removal of drug by washing and releasing of cells into

regular media for an extra week (Fig. 2a). Release ex-

periments (Fig. 2a) were performed at concentrations as

low as 250 nmol/L. We found the presence of breaks of

DNA double strand in all non-small cell lung cancer cell

lines regardless of previous azacytidine exposure (Fig. 2a).

Next, the in vivo growth at a distant site for metastatic

capacity of azacytidine-exposed tumor cells was analyzed.

A549 cells were injected into non-obese diabetic or severe

Fig. 3 Column charts depict hypomethylated and hypermethylated regions detected by reduced representation bisulfate sequencing in high

metastatic a HTB56 and b A549 cells after (a) 8 days of azacytidine (250 nM)-treatment and after (b) 1 week of azacytidine (250 nM)-release

176 Page 6 of 10 Med Oncol (2015) 32:176

123



combined immunodeficient mice at the end of a weeklong

exposure after the end of azacytidine exposure.

To analyze the effects of DNA methyltransferase inhi-

bition by azacytidine on the non-small cell lung cancer

methylome, reduced representation bisulfite sequencing

method was used. We identified around 7000 differentially

methylated regions in each azacytidine-exposed cell line

and found an absolute change in methylation of at least

30 % (Figs. 2b, 3a, b). DNA methylation was decreased in

all (97 %) of the modified regions (Figs. 2b(a), 2c). In-

crease in the dose of azacytidine (from 250 nmol/L to

1 lmol/L) in the A549 cells did not further increase DNA

hypomethylation, which is an indication of saturation

(Figs. 2b(b), 2c). We also found that multiple sites were

hypomethylated only in one cell line (A549 but not in other

cell line) (Fig. 2b(c)).

Furthermore, we analyzed the influence of specific

transcription factor binding sites (as defined in ChIP-Seq

data report) on the loss of DNA methylation with the use of

azacytidine. Table 2 shows the consistency of this finding

across both the cell lines along with for different drug

concentrations. There was no dependence of the effect of

azacytidine-associated polycomb/Suz12 targets on absolute

methylation levels. We also observed that exonic se-

quences had a lower number of demethylated sequences

than expected, which means that other genomic regions

were underrepresented in loss of DNA methylation.

We next analyzed the modifications in DNA methyla-

tion patterns just after treating with azacytidine, as well as

the recovery phase. After 15 days, methylation levels

predominantly remained reduced with few increases, as

exception (Fig. 4a, b). Interestingly, A549 cells regained

DNA methylation slower than HTB56 cells in spite of the

fact that A549 cells were pre-exposed to higher doses of

azacytidine (Fig. 3c).

Discussion

We found a good association between the rapid develop-

ments of a more aggressive cellular behavior with genome-

wide DNA methylation modifications in the present work.

We achieved relatively few potentially relevant genetic

modifications by exome sequencing or single nucleotide

polymorphism in comparison with the hundreds of sites

modified in DNA methylation. DNA methylation analyses

of biologic replicates have concluded high reproducibility

of DNA methylation modifications. The continuous selec-

tion of more aggressive subclones and further increase in

each round has led to stepwise modifications in each round

Table 2 Transcription factor

binding sites’ enrichment in

genomic region upon

azacytidine exposure in lung

cancer cell lines

Factors A549 lung cancer cell HTB56 lung cancer cells

250 nmol/L concentration 1 lmol/L concentration 250 nmol/L concentration

Obs./exp. ratio (P value) Obs./exp. ratio (P value) Obs./exp. ratio (P value)

Enrichment

SUZ12_a 2.05 (\10-5) 2.09 (\10-5) 2.57 (\10-5)

SUZ12_b 1.51 (\10-5) 1.43 (\10-5) 1.79 (\10-5)

Depletion

Nrsf 0.54 (\10-5) 0.58 (\10-4) 0.77 (\10-2)

CtBP2 0.51 (\10-5) 0.52 (\10-5) 0.81 (\10-5)

Max 0.57 (\10-5) 0.56 (\10-5) 0.60 (\10-5)

CTCF 0.49 (\10-5) 0.43 (\10-5) 0.65 (\10-5)

TCF12 0.42 (\10-5) 0.37 (\10-5) 0.42 (\10-5)

NRF1 0.22 (\10-5) 0.27 (\10-5) 0.43 (\10-5)

JunD 0.36 (\10-5) 0.38 (\10-5) 0.46 (\10-5)

Jun 0.25 (\10-5) 0.29 (\10-5) 0.37 (\10-5)

RFX5 0.17 (\10-5) 0.24 (\10-5) 0.29 (\10-5)

SP1 0.13 (\10-113) 0.18 (\10-5) 0.22 (\10-5)

At two concentrations 250 nmol/L (A549 and HTB56) or 1 lmol/L (only A549), both the lung cancer cell

lines were exposed to azacytidine for 6 days. During this transcription factor binding sites’ enrichment

process, we supposed that the number m of region centers within differentially methylated regions is

binomially distributed with number o of region centers (in CpG clusters) and sum s of differentially

methylated region widths or sum of CpG cluster widths, so that we can determine whether transcription

factor binding sites were overrepresented or underrepresented in hypomethylated regions. A two-sided

binomial test that m = s 9 o were used to derive the P values and adjusted for multiple testing. A ChIP-

Seq dataset [29] was used to obtain transcription factor binding sites, and another ChIP-CHIP dataset (30)

for Suz12 binding sites was used to confirm the results
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of in vivo selection. These results supported that the ob-

served modifications are not arbitrary. Furthermore, we

demonstrated the occurrence of azacytidine-induced pref-

erential loss of DNA methylation at polycomb target genes,

which are known as DNA hypermethylation in cancer.

However, DNA methyltransferase inhibition reversed a

highly aggressive phenotype in vivo and persisted over

time.

We know that there is a close resemblance between

the metastatic cells and the parental tumor cells in terms

of gene expression profiles, the patterns of somatic

mutations, and histology. In comparison with primary

tumor which may take multiple years for development,

metastatic lesions develop in a much shorter time frame

and a core set of driver mutations persists in primary

tumors and metastases [30] while there is close resem-

blance between the pattern of somatic mutations in the

primary tumor and the pattern found in metastases. We

found analogous results with a very low percentage of

additional mutations that were acquired during the

selection process to the highly aggressive phenotype. We

found that the vast majority of the few acquired muta-

tions with respect to affected genes are mostly arbitrary

and that there is no relation with the prometastatic

character.

We concluded here stepwise and widespread modifica-

tions in DNA methylation patterns in more aggressive lung

cancer cells. A likely explanation of the phenotype is based

upon epigenetic modifications, which have been concluded

on the basis of following observations:

(a) the low number of additional genomic alterations

and/or somatic mutations in the more aggressive

non-small cell lung cancer cell lines containing

almost no gene with a high preponderance for

metastases in non-small cell lung cancer;

(b) the stepwise generation of the highly aggressive cells

by in vivo selection; and

(c) the use of bulk cell cultures in all experiments with

the prominent modifications in DNA methylation.

Fig. 4 a Scatter plot of

azacytidine-treated (250 nM)

versus untreated high metastatic

HTB56 cells to show the

methylation levels for CpG sites

analyzed by reduced

representation bisulfate

sequencing. Axes are as

follows: Methylation levels in

HTB56 high metastatic cells,

X-axis: Day 0 (d0 = untreated);

Y-axis: Day 15 (d15_250 = after

15 days of azacytidine (250

nM)-treatment). b, c Scatter plot

of DNA methylation levels;

b for initial metastasis-prone

A549 cells versus A549 cells on

day 15 (1 week after release

from azacytidine treatment).

c for azacytidine-treated;

a HTB56 and b A549 on day 8

versus cells after release from

azacytidine on day 15. HTB56

cells regained DNA methylation

faster than A549 cells.

Polycomb-binding sites are

preferentially demethylated by

azacytidine, and methylation

remains decreased after the end

of azacytidine exposure
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It was obvious that the observed DNA methylation

modifications do not represent a comprehensive feature of

metastasis-associated non-small cell lung cancer methy-

lome features. Our aim was to provide evidence for the

reversibility, general plasticity, and existence of DNA

methylation patterns in the development of aggressive

phenotypes. And, to achieve this aim, a relatively simple

model with the possibility to recapture a high number of

cells was explored, and thus, this xenograft model captured

features of highly aggressive tumors and allowed to in-

vestigate epigenetic therapy effects.

We found that azacytidine can reverse a metastatic

memory in non-small cell lung cancer cells. It might not act

by reactivating only a few specific metastasis suppressor

genes but by altering the epigenetic landscape. We found

that hypermethylation of antimetastatic genes was less

frequent in comparison with hypomethylation of

prometastatic genes in non-small cell lung cancer cells, and

hence, azacytidine found suitable for the model of overall

epigenetic disturbance. Our data showed that there is a

preference for the hypomethylation of polycomb targets

and increased activity near chromosome ends, and hence,

we conclude that azacytidine effects were not entirely

random throughout the genome and found consistent for

both the cell lines. Notably, different concentrations of

azacytidine (250 nmol/L or 1 lmol/L) have no effect on

this. By using 100 nmol/L concentration of azacytidine in

the indicated model in vivo, we confirmed the existence of

dose–response, which led to the formation of lung nodules

with the same frequency as untreated controls. In vivo

selection HTB56 cells showed more modifications in DNA

methylation (mostly DNA hypomethylation). The possible

reason could be the association of azacytidine sensitivity

with the degree of methylation and (or) the rate of

methylation modifications in cancer cells.

Next, this is the first ever report of the stability of DNA

hypermethylation and its accessibility for DNA hy-

pomethylating. Besides, we showed here that the polycomb

target genes show an increased propensity for DNA

methylation modifications in pre-established cancer cell

lines. Collectively, we concluded here the presence of a

strong association between an aggressive phenotype in

non-small cell lung cancer cells and profound DNA

methylation modifications.
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