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Abstract Large amount of expression data were gener-

ated by high-throughput experimental techniques such as

microarray. Single algorithm cannot be widely accepted as

suitable method for mining of gene expression data.

Therefore, integration of different algorithms and extrac-

tion of more useful information from the expression data

are the key problems for identification of biomarkers. Here,

we used three machine learning algorithms to select feature

genes based on gene profiling data of gastric cancer (GC).

Then, a common divisor was extracted as candidate feature

genes aggregation for Tree Building and Tree Pruning

analysis by Decision Tree (DT) algorithm. Real-time

quantitative PCR and immunohistochemistry (IHC) stain-

ing were used to validate the relative expression levels of

the candidate feature genes. Receiver operating character-

istic curves were used to analyse the classification sensi-

tivity and specificity of the feature genes. A total of 174,

202, 149 feature genes were selected by Class Information

Index, Information Gain Index and Relief algorithms, with

a common divisor consisting of 32 genes. Using a DT

algorithm to contribute to the classification rule sets, we

identified COL2A1 and ATP4B as candidate biomarkers of

GC. The expression levels of these two genes were vali-

dated by real-time PCR and IHC with high sensitivity

([90 %) and specificity ([90 %) in both training and test

samples. We first introduced an integral and systematic

data-mining model for identification of biomarkers based

on gene expression data. The two-gene signature obtained

by our predictive model could be used for recognizing the

biological characteristic of GC.
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Introduction

Over the last decades, cancer genomics and proteomics

have extensively penetrated into biomedical research and

clinical application. After the gene chip and microarray

technology were introduced, many researchers used these

techniques to find new subclasses in disease states [1, 2],

identify new biomarkers associated with diseases [3–6],

classify subtypes of tumours [7] and predict the outcome of

a disease [8–11]. Gene expression profiling from micro-

array studies have been used to understand the develop-

ment mechanism of human diseases. However, most of the

traditional statistical methods are not suitable for process-

ing high-dimensionality and high-noise gene expression

data. Usually, one may choose a gene with a higher fold-

change (FC) value and lower P value for further research,

but may overlook some more important and useful infor-

mation in the profiling.

Unsupervised classification algorithms and unbiased

approach to searching for subgroups in the expression data

were among of the first statistical techniques to be applied

to microarray and gene expression profiling data analysis

[12]. While these techniques always produce a clustering of

genes, the expression patterns of the genes observed in the

sample data do not always characterize the pattern in the

whole population [13]. With the development of supervised

classification algorithms and machine learning algorithms,
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many researchers started to use these methods to identify

feature gene sets which allow for the classification of the

available samples. Compared to the unsupervised methods,

the genes selected by supervised machine learning algo-

rithms have more stable expression patterns both in train-

ing and test samples. Since no single algorithm is widely

accepted as the optimal method for mining gene expression

data [13], several algorithms are used in combination to

mine the gene expression data from a small study of gastric

cancer (GC).

GC is one of the most frequent cancers in the world.

Almost two-thirds of gastric cancer cases and deaths occur

in less developed regions. Despite remarkable declines in

GC mortality were noticed in almost the entire population

during the last decade in China, it remains a significant

cancer burden currently and is one of the key issues in

cancer prevention and control strategy in China [14]. We

previously used a 22-K oligonucleotide microarray with

optimized experimental protocols and analytical tools to

identify transcriptional expression profiles of GC from a

Chinese cohort, and identified a total of 1,519 differentially

expressed genes by comparing 20 samples with GC sam-

ples against matched normal samples [15]. These gene

expression profiling data provide significant research

materials for biomarkers identification that could be asso-

ciated with the biological characteristic of GC.

In this study, three different algorithms (CII, IGI and

Relief) were used to select feature genes based on differ-

entially expressed gene profiling of gastric cancer. Subsets

of these candidate biomarkers were used in a decision tree

(DT) classifiers, and the expression levels for a pair of

genes sufficiently distinguished GC samples from matched

normal ones. Moreover, real-time quantitative PCR was

used to validate the expression levels of these two genes in

30 validation cases. Other 58 validation cases were used for

immunohistochemistry staining. Finally, the sensitivity and

specificity of the candidate biomarkers were calculated

using ROC curves analyses.

Methods

Microarray data

The human genome oligonucleotide microarray was pre-

pared in CapitalBio Corporation (Beijing, China).

A Human Genome Oligo Set version 2.1 consisting of

about 22,000 human genes was purchased from Qiagen

Operon Company. A total of 20 GC and matched normal

samples were obtained from Beijing Cancer Hospital for

microarray experiments. Fluorescent dye–labelled DNA

was produced through a RNA amplification method and

subsequent enzymatic reaction. Arrays were scanned with a

confocal LuxScan scanner (CapitalBio Corp.), and images

were analysed with SpotData software (CapitalBio Corp.).

The raw data were normalized based on a LOWESS in the

R language package (http://www.R-project.org/). For

details of the microarray experiments, the readers are

referred to the paper by Zang et al. [15].

Clinical samples for laboratory validation

A total of 88 patients undergoing gastrectomy for poten-

tially curable GC at the Wuhan General Hospital of Gu-

angzhou Command from May 2010 to December 2012

were selected as subjects in this study. The patients in this

research project have given informed consent, and the

project has been approved by a suitably constituted Ethics

Committee of Wuhan General Hospital of Guangzhou

Command. The names of patients in this project were

anonymized.

CII algorithms

A basic idea of feature genes selection is to select genes

with high accuracy in classifying different types of sam-

ples. Divisibility can be computed via examining the

similarity of sample properties in the same category

(within-class distance), as well as the difference in the

properties for samples in different categories (between-

class distance). ‘‘Signal-to-noise ratio’’, a statistical t test,

which was proposed by Golub [16], as well as the genetic

Classification Information Index (CII) algorithm [17], can

better reflect the above-mentioned ideas and can serve as

measures to estimate how much classification information

each gene contains. Here, we used CII algorithm for feature

genes selection based on gene expression profiling of GC.

IGI algorithm

In order to assess the importance of genes contributing to

sample classification and provide a criterion of measuring

the value of genetic classification, we adopt another algo-

rithm, the Information Gain Index (IGI), to evaluate the

ability of classification by a given gene [18].

Relief algorithm

The Relief algorithm evaluates the importance of attribute

classification based on within-class and between-class

distance [19]. This algorithm starts from a random sample

rather than from the statistical characteristics of the whole

class to estimate sample class separability. For any learning

sample S in the training set, the algorithm searches out K

(K [ 1) same-class samples closest to S (nearest Hit) and K

heterogeneous samples (nearest Miss). For the attribute Ai,
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if the difference between S and heterogeneous sample is

larger and the difference between S and same-class sample

is smaller, then the separability of sample S on attribute Ai

is greater and the classification weight of Ai is also greater.

DT algorithm

DT is a tree structure applied to classification in which each

internal node performs a test on a certain attribute and each

edge represents a test result. Each terminal leaf node rep-

resents a class or the class distribution, and the top node is

the root node [19]. DT construction involves two steps:

Tree Building and Tree Pruning. Tree Pruning is to reduce

fluctuation due to the existence of noise in training set after

Tree Building. Decision trees are sensitive to small samples

and can result in additional overhead when dealing with

continuous value discretization. So, intelligent threshold

search and intelligent pruning strategy are used to reduce

the computational complexity and increase classification

accuracy. The algorithm is described below:

-

-

Pathway and gene ontology (GO) analyses

To investigate the signalling pathway involved by the

feature genes, we used an integrated signalling pathway

database at http://www.biorag.org. This signalling pathway

database contains metabolic, cellular and regulatory path-

ways for human and mouse gene products from three dif-

ferent open source pathway resources: KEGG (http://www.

genome.ad.jp), BioCarta (http://www.biocarta.com) and

GenMAPP (http://www.genmapp.org). An integral gene

ontology database MAS (Molecular Annotation System,

http://www.capitalbio.com) was also used to annotate the

function of the productions encoded by these genes.

RNA extraction and real-time quantitative PCR

The relative expression levels of the candidate biomarkers

were tested using real-time PCR based on 30 GC specimens

and matched normal tissues. Total RNA was extracted from

the tissue samples according to a standard Trizol protocol

(Invitrogen, Carlsbad, CA, USA). 5 lg of total RNA was

reverse-transcribed to cDNA with 200U M-MLV reverse

transcriptase (Promega, Madison). RT reaction was set as

following conditions: 37 centigrade for 60 min, 72 centi-

grade for 10 min. Quantitative real-time PCRs were per-

formed in a total 20-ll reaction volume containing 2 ll of

cDNA, 0.6 ll 209 Eva Green (CapitalBio Corp., Beijing,

China), 0.5 ll of each 10uM forward and reverse primers,

0.5 ll of 2.5 mM dNTP, 1.5U Cap Taq polymerase (Capi-

talBio Corp., Beijing, China), 10 ll 2 9 PCR Buffer for Eva

Green and 6.1 ll of H2O. PCRs were carried out with the

following programmed parameters, heating at 95 centigrade

for 5 min followed by 40 cycles of a three-stage temperature

profile of 95 centigrade for 30 s, 57 centigrade for 30 s and

72 centigrade for 30 s. All reactions were performed in

triplicates, and the final Ct values were determined by the

average Ct value of the three reaction. The melting curves

for each PCR were carefully analysed to avoid nonspecific

amplifications in PCR products. The expression of each gene

was transformed using the 2-DDCt formula and normalized

with b-actin expression [20].

Tissue microarray and immunohistochemistry (IHC)

staining

A total of 58 human gastric specimens were obtained from

the Wuhan General Hospital of Guangzhou Command. The

patients were fully informed and gave consents for col-

lection of clinical samples. Tissue microarray blocks were

constructed in Beijing Cancer Hospital. For each case, we

sampled five tissue cores at 1.0 mm in diameter, including

two tumours and one matched-adjacent normal mucosa

tissues to construct the tissue microarray. IHC staining was

performed using EnVision? Kit (Dako, Denmark). The

section was incubated with anti-COL2A1 and anti-ATP4B

at 4� overnight. More than 5 % stained cells in the tissue

was defined as positive reaction in this experiment.
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Receiver operating characteristic (ROC) curve

and statistical analyses

ROC curve analysis was conducted using the MedCalc soft-

ware packages (version 8.2.1.0; Mariakerke, Belgium). The

area under the curves (AUC) value provided a measure of the

overall performance of a diagnostic test. The ratio of gene

signal intensities and Ct value of each gene were used for

ROC calculation in training and test samples, respectively.

For all statistical analyses, a difference with P \ 0.05 was

considered statistically significant based on t test approach.

Results

Feature gene selection using three machine learning

algorithms

The Classification Information Index (CII) algorithm was

first used for feature gene selection. Each gene was marked

as i (i = {i1, i2…i1519}), as shown in Fig. 1a, and was dis-

tributed in 5 intervals. One hundred and seventy-four can-

didate genes with high CII value (i [ 0.5) were selected

(Table 1). Information Gain Index (IGI) was also used to

select feature genes. The IGI of each gene was marked as

g (g = {g1, g2…g1519}), as shown in Fig. 1b, and was dis-

tributed in 5 intervals. Two hundred and two candidate genes

with the small IGI values (g \ 0.6) were selected (Table 1).

Finally, the Relief Algorithm employed the Mahalanobis

squared distance as classifying index. The classification

weight of each gene was marked as w (w = {w1,

w2,…w1519}), as shown in Fig. 1c. All 1,519 genes were

distributed in 6 intervals, and the 149 candidate genes with

high classification weight (w [ 20) were selected (Table 1).

Combining the results of the three algorithms described

above, 32 genes were identified as candidate biomarkers to

further validation (Fig. 1d), including 11 genes down-reg-

ulated and 21 genes up-regulated in GC samples compared

with normal ones. Fold-change values of all the candidate

biomarkers are shown in Table 2.

Fig. 1 Feature gene selection based on three machine learning

algorithms. a Feature gene selection using CII algorithm; b feature

gene selection using IGI algorithm; c feature gene selection using

Relief algorithm; d extraction of the common divisor from the results

of the three algorithms above. Thirty-two genes were composed of the

common divisors
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Biological significance of the candidate biomarker

genes

The signalling pathways and annotated functions of the

proteins encoded by these genes were investigated. The

down-regulated gene group contained two gene families,

ATP4 and KCN, and participated in ion transport and

ATPase activity. The up-regulated gene group contained

six members (COL2A1, COL3A1, COL4A1, COL6A3,

COL8A1 and COL11A1) of the collagen family and par-

ticipated in ion transport activity, cell–cell adhesion and

inflammatory response pathways (Table 3). Different

functions were found in the different gene groups. ATP4

and KCN members were classified in potassium ion

transport (GO: 0006813) and metabolism (GO: 0008152),

and collagen family members were classified in cell

adhesion (GO: 0007155), phosphate transport (GO:

0006817) and negative regulation of cell proliferation (GO:

0008285) (Table 4).

Extraction of the classification rules using DT

Subsets of the 32 candidate genes were then used in DT

classifiers. The samples were separated into 4 sets con-

taining 5 GC samples and 5 matched normal samples.

Three sets were used as the training set, and the remaining

set became the test set. The verification was repeated 4

times so that each set became the testing set. The results

showed that DT composed of two genes, COL2A1 and

ATP4B, obtained the best classification accurate rate

(100 %). If the expression levels of COL2A1 and ATP4B

are represented by Ec and Ea, respectively, a sample is

classified as cancerous only if Ec [ 1.302 and Ea \ 3.102

(Fig. 2).

Table 2 Thirty-two fold changes of the candidate genes selected by CII, IGI and Relief algorithms

ACC Symbol Change FC value Q value ACC Symbol Change FC value Q value

NM_000705 ATP4B Down 31.470 0 NM_001854 COL11A1 Up 9.945 0

NM_000704 ATP4A Down 15.960 0 NM_001844 COL2A1 Up 10.112 0

NM_003032 SIAT1 Down 2.865 0 BC014245 CTHRC1 Up 10.080 0

NM_005136 NM_005136 Down 6.657 0 AB033025 KIAA1199 Up 6.096 0

NM_018658 KCNJ16 Down 3.788 0 AB029000 SULF1 Up 4.636 0

NM_017434 DUOX1 Down 2.340 0 NM_004369 COL6A3 Up 7.886 0

NM_005327 HADHSC Down 2.187 0 NM_003118 SPARC Up 4.809 0

AF070578 SLC38A6 Down 44.08 0 NM_001711 BGN Up 5.079 0

AB051462 PRDM16 Down 2.053 0 NM_001850 COL8A1 Up 16.086 0

NM_002360 MAFK Down 4.536 0 NM_001845 COL4A1 Up 6.216 0

NM_002252 KCNS3 Down 1.883 0 NM_006843 SDS Up 2.664 0

NM_001276 CHI3L1 Up 3.824 0 NM_003652 CPZ Up 6.282 0

D38522 SYT11 Up 1.610 0 NM_007361 NID2 Up 6.859 0

NM_012101 TRIM29 Up 2.127 0.0001 NM_013372 GREM1 Up 7.787 0

J04162 FCGR3B Up 3.570 0 NM_000090 COL3A1 Up 3.165 0

AK057865 THY1 Up 4.788 0 NM_003131 SRF Up 1.905 0.0001

Table 1 Feature gene selection using CII, IGI and Relief algorithm

Algorithms Intervals Gene numbers Percentage

CII i \ 0.5 1,345 88.50

0.5 \ i \ 1 110 7.20

1 \ i \ 1.5 42 2.70

1.5 \ i \ 2 16 1.10

i [ 2 6 0.50

IGI g \ 0.2 5 0.30

0.2 \ g \ 0.4 50 3.20

0.4 \ g \ 0.6 147 9.50

0.6 \ g \ 0.8 487 32

0.8 \ g \ 1 830 55.50

Relief w \ 0 1 0.06

0 \ w \ 10 769 50.50

10 \ w \ 20 599 39.64

20 \ w \ 30 107 7.04

30 \ w \ 40 28 1.84

w [ 40 14 0.92

i Classification Information Index of each gene

g Information Gain Index of each gene

w Relief classification weight of each gene
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Validation of the feature genes using real-time

quantitative PCR and IHC staining

In order to validate the candidate feature genes (COL2A1

and ATP4B) from our prediction model, quantitative real-

time PCR was used to measure the level of expression

using additional 30 validation cases containing 30 GC

samples and matched normals. The results showed that

COL2A1 was expressed high in GC samples and expressed

low in matched normal ones; ATP4B was expressed low in

GC samples and expressed high in matched normal ones.

Among these 30 matched GC samples, COL2A1 was up-

regulated in 25 GC samples (83.3 %) and ATP4B was

down-regulated in 26 GC samples (86.7 %) (Fig. 3a, b).

In addition, other 58 validation cases were used for

IHC staining. The results showed that COL2A1 was

expressed high in 44 GC samples with the positive rate of

75.9 % (44/58); ATP4B was expressed low in 47 GC

samples with the negative rate of 81.0 % (47/58) (Fig. 4,

Table 5). The IHC results were matched with PCRs that

COL2A1 was high-expressed and ATP4B was low-

expressed in GC samples.

Table 3 Candidate feature genes involved in signal pathways

Pathway Name Gene P value Q value

Anion transport COL3A1 COL8A1 COL6A3 0.0 0.0

COL11A1 COL2A1 CTHRC1

COL4A1

Potassium ion transport ATP4A KCNS3 KCNJ16 7.0E-6 0.0

ATP4B

Extracellular matrix (sensu Metazoa) CHI3L1 COL8A1 COL6A3 1.1E-5 0.0

BGN

Skeletal and muscle development SPARC COL11A1 COL2A1 1.62E-4 0.0

COL8A1 COL6A3

Cell–cell adhesion COL11A1 0.112488 0.0

ATPase activity ATP4A ATP4B 0.004527 0.0

Apoptosis SULF1 0.180134 0.0

Inflammatory response pathway COL3A1 2.94E-4 0.0

Histogenesis SPARC COL11A1 0.006662 0.0

MAPK signalling pathway SRF 0.122968 0.0

Humoral immune response ST6GAL1 0.208921 0.0

Extracellular space GREM1 CHI3L1 SULF1 0.001302 0.0

Table 4 GO analyses of the candidate feature genes

Go term (biological process) Protein P value Q value

GO:0006817 phosphate transport COL4A1 CTHRC1 COL8A1 0.0 0.0

COL3A1 COL6A3 COL2A1

COL11A1 COL3A1 COL11A1

GO:0007155 cell adhesion COL8A1 NID2 COL6A3 0.01841 0.015298

COL11A1

GO:0008285 negative regulation of cell proliferation COL6A3 0.177913 0.085398

GO:0006813 potassium ion transport ATP4A ATP4B KCNJ16 2.04E-4 4.14E-4

KCNS3

GO:0008152 metabolism ATP4A ATP4B SULF1 0.999982 0.34008

GO:0001525 angiogenesis THY1 0.079839 0.050453

GO:0007275 development ST6GAL1 GREM1 0.696721 0.267847

GO:0006915 apoptosis SULF1 0.539967 0.218064

GO:0006959 humoral immune response ST6GAL1 0.184938 0.087767
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Sensitivity and specificity analyses of the candidate

biomarkers

A total of 40 training (including 20 GC samples and 20

matched normal samples) and 176 test samples (including

88 GC samples and 88 matched normal samples) were used

for ROC analysis according to the microarray data and

relative expression value, respectively. The results showed

combined COL2A1 and ATP4B as a classifier for classi-

fication of GC and normal samples with high sensitivity

(100 % in training samples and 96.3 % in test samples) and

specificity (100 % in training samples and 95.65 % in test

samples) (Fig. 5; Table 6). These data indicate that com-

bining COL2A1 and ATP4B as a classifier was sensitive

and specific in classifying the GC and normal samples both

in training and test sets.

Discussion

High-throughput microarray technologies had generated a

large amount of data, after which various statistical and

machine learning methods were adopted to analyse these

data for finding gene or protein expressed pattern investi-

gation and search for new biomarkers of human diseases.

Selecting the biomarkers which contain most useful

information used in molecular classification of human

diseases was a most emergent and essential work for

Fig. 2 Extraction of the rule sets using Decision Tree algorithm.

a The most accurate rule set contains two genes: COL2A1 and

ATP4B. The expression levels of COL2A1 and ATP4B are

represented by Ec and Ea. If Ec \ 1.302, we recognize the samples

as normal; if Ec [ 1.302, Ea [ 3.102, we recognize the samples as

normal; only if Ec [ 1.302 and Ea \ 3.102, we recognize the samples

as GC. b All of the samples were classified correctly by using our

two-gene classifier

Fig. 3 COL2A1 and ATP4B

were differential expressed in

GC samples and matched

normal ones using real-time

PCR. a COL2A1 was up-

regulated in 25 of 30 GC

samples; b ATP4B was down-

regulated in 26 of 30 GC

samples. ‘‘X-axis’’ represents

the samples; ‘‘Y-axis’’

represents the FC value
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microarray data analysis. In this article, we reported an

optimized data-mining and prediction model for identifi-

cation of biomarkers based on gene expression profiling

data from a group of Chinese GC patients.

In this new strategy, we used an optimized method of

combined multiple machine learning algorithms for data

mining in small set of gene expression data. Three machine

learning algorithms were used to select feature genes based

on differentially expressed gene profiling of GC, which

contains 1,519 genes. Our results showed that different

feature genes were selected by different algorithms; there

was a common set of 32 genes contained by all algorithms.

DT determined the final classification rule set; COL2A1

and ATP4B were identified as an optimal classifier for

distinguishing GC samples from normal ones. These two

genes have been validated in 88 test GC cases compared

with the matched normal samples, including 30 cases in

PCR experiment and 58 cases in IHC staining. Our clas-

sification model used combination of two genes that clas-

sified GC and normal samples to a high accuracy. Some

previous studies also used a two-gene classifier in the

investigation of subclass of human diseases, including

cancer [21, 22].

The function and clinical significance of COL2A1 and

ATP4B were reported by some researchers. COL2A1 is

located on human chromosome 12q13, encoding the

alpha-1 chain of type II collagen, a fibrillar collagen

found in cartilage and the vitreous humour of the eye.

There are two transcripts identified for this gene. Most of

the research paper reported that the COL2A1 gene poly-

morphism is related to some of the genetic diseases,

including advanced stages of osteoarthritis [23, 24],

skeletal dysplasia [25, 26], knee osteoarthritis [27], con-

genital toxoplasmosis [28] and stickler syndrome [29–32].

However, no research articles reported that the gene

polymorphism and differential expression were associated

with human cancer. We supposed that type II collagen

family is an important protein family which participated

in sustaining the stabilization of the physiological struc-

ture in normal cells, tissues and organs. ATP4B is located

on human chromosome 13q34, encoding the member of

the P-type cation-transporting ATPases. This enzyme is a

proton pump that catalyses the hydrolysis of ATP coupled

with the exchange of H? and K? ions across the plasma

membrane and responsible for gastric acid secretion [33].

In the mouse model, it was reported that ATP4B was

required for normal function, development and membrane

structure of mouse parietal cells [34]. No previous

research has reported that this gene was associated with

the development of human cancer, although our micro-

array results showed that it was down-regulated in 20

training and 58 test GC specimens.

In this article, we have documented a systematic data-

mining model for biomarkers identification based on a gene

expression profiling data, and we identified COL2A1 and

Fig. 4 IHC staining results.

COL2A1 was negatively

expressed in normal cases

(a) and positively expressed in

GC cases (b). ATP4B was

positively expressed in normal

case (c) and negatively

expressed in GC case (d)

Table 5 Tissue microarray and IHC staining results

Antibody Types of samples Positive Negative P value

COL2A1 T = 58 44 (75.9 %) 14 (24.1 %) 0.0001

N = 58 24 (41.4 %) 34 (58.6 %)

ATP4B T = 58 11 (19.0 %) 47 (81.0 %) 0.0001

N = 58 37 (63.8 %) 21 (36.2 %)

T tumour samples; N normal samples
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ATP4B as a signature for GC classification. The two-gene

signature obtained by our predictive model was validated

in validation samples by real-time PCR and IHC staining

and might be useful o recognize the biological character-

istics of GC.
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24. Hämäläinen S, Solovieva S, Hirvonen A, Vehmas T, Takala EP,
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Bilateral vitreous hemorrhage in a newborn with Stickler syn-

drome associated with a novel COL2A1 mutation. J AAPOS.

2011;15(3):311–3.

31. Yaguchi H, Ikeda T, Osada H, Yoshitake Y, Sasaki H, Yonekura

H. Identification of the COL2A1 mutation in patients with type I

Stickler syndrome using RNA from freshly isolated peripheral

white blood cells. Genet Test Mol Biomarkers. 2011;15(4):

231–7.

32. Richards AJ, McNinch A, Martin H, Oakhill K, Rai H, Waller S,

Treacy B, Whittaker J, Meredith S, Poulson A, Snead MP.

Stickler syndrome and the vitreous phenotype: mutations in

COL2A1 and COL11A1. Hum Mutat. 2010;31(6):E1461–71.
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