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Coexisting ductal carcinoma in situ independently predicts lower
tumor aggressiveness in node-positive luminal breast cancer
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Abstract Primary breast invasive ductal carcinoma

coexisting with ductal carcinoma in situ (IDC-DCIS) is

characterized by lower proliferation rate and metastatic

propensity than size-matched pure IDC. IDC-DCIS is also

more often ER-positive, PR-positive and/or HER2-posi-

tive. This analysis aims to clarify whether the presence of

coexisting DCIS in IDC affects tumor aggressiveness in

various biological subtypes of breast cancer, respectively.

Tumor data obtained from 1,355 consecutive female

patients undergoing upfront surgery for primary breast

cancer were analyzed retrospectively; 196 patients with

pure DCIS were excluded. Based on evidence that immu-

nohistochemistry (IHC) provides a reasonable approxima-

tion of molecular phenotypes, the tumor samples were

divided into 4 groups: (1) luminal A (ER and/or PR-posi-

tive, HER2-negative, Ki67 B 12), (2) luminal B (ER and/

or PR-positive, HER2-negative, Ki67 [ 12), (3) HER2

(HER2-positive) and (4) basal-like (triple-negative) dis-

ease. Ki67 expression and nodal involvement of IDC with

or without DCIS in these groups were compared. The

number of patients with luminal A, luminal B, HER2 and

basal-like breast cancer were 396, 265, 258 and 117,

respectively. Ki-67 was lower in IDC-DCIS than in size-

adjusted pure IDC of both luminal A and luminal B sub-

types (P = 0.15 and \0.005, respectively). In HER2 or

basal-like tumors, there were no significant difference

between pure IDC and IDC-DCIS. The presence of coex-

isting DCIS in IDC predicts lower biological aggressive-

ness in luminal cancers but not in the conventionally more

aggressive HER2-positive and triple-negative subtypes.

Keywords Ductal carcinoma in situ (DCIS) � Invasive

ductal carcinoma (IDC) � Ki67 � Luminal breast cancer

Introduction

In breast cancer, ductal carcinoma in situ (DCIS) often

accompanies invasive ductal carcinoma (IDC). With the

implementation of mammography screening and earlier

detection of cancer, it is reported that up to 60% of invasive

tumors contain both IDC and DCIS (IDC-DCIS) [1]. While

currently available evidence supports a clonal relationship

between the DCIS and IDC components of IDC-DCIS

based on concordant expression of immunohistochemical

[2–5] and genomic [6–8] markers, the clinical significance

associated with the coexistence of DCIS in invasive disease

has not been conclusively defined.

We have previously shown that IDC-DCIS is charac-

terized by lower proliferation rate and metastatic propen-

sity than size-matched pure IDC, especially if the ratio of

DCIS to IDC size is high; IDC-DCIS is also more often

estrogen receptor (ER)-positive, progesterone receptor

(PR)-positive and/or human epidermal growth factor
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receptor 2 (HER2)-positive than is pure IDC [9]. Another

study similarly reported more frequent ER and PR posi-

tivity in IDC-DCIS [1], although not confirmed by other

smaller patient cohorts [10, 11]. Despite minor inconsis-

tencies across studies, it can generally be recognized that

IDC-DCIS represents a clinical and biological entity dis-

tinct from pure IDC. In fact, IDC-DCIS was associated

with better metastasis-free survival [1] and a trend for

better disease-free and overall survival which did not reach

statistical significance [9, 12].

Breast cancer is thus a heterogeneous disease, which can

otherwise be categorized by gene expression profiling into

at least 5 major biologically and prognostically distinct

subtypes, namely luminal A, luminal B, HER2-enriched,

basal-like, and normal breast-like tumors [13]. Whether the

association of DCIS with IDC predominantly corresponds

to particular molecular subtype(s), and whether indepen-

dent significance of such association exists within each

subtype, have not been studied.

To date, the use of gene expression profiling assays in

routine clinical practice is limited mainly by its cost, avail-

ability and technical complexity. On the other hand,

expression patterns of ER, PR and HER2 as determined by

immunohistochemistry (IHC) are more readily accessible,

and may correlate with gene expression microarray catego-

rization [14]. Recently, supplementation of these biomarkers

with Ki67, a nuclear marker of cell proliferation, was shown

to better separate the genetic subtypes [15]. Expression of

cytokeratin (CK) 5/6, CK 8/18 and/or epidermal growth

factor receptor (EGFR) were utilized to define the basal

subtype [16, 17]. A variety of other IHC markers including

androgen receptor (AR), p53, E-cadherin, MUC1 and

nuclear BRCA1 are under evaluation [18].

In addition to its potential role in subtype prediction, Ki67

is an independent adverse prognostic factor for breast cancer

survival [19, 20] and reportedly predictor of response to

chemotherapy [21]. Its expression is independent of tumor

size and nodal status [22–24]. There is currently no standard

cutoff Ki67 value above which a high-risk group can be

defined, although most data suggested a level of 10–14% [25].

This study aims to compare tumor aggressiveness, in

terms of Ki67 expression, in IDC with and without coex-

isting DCIS stratified by biological subtypes and lymph

node status, and to assess any independent significance of

associated DCIS within each subgroup.

Methods

Patients and classification

Consecutive female patients undergoing upfront surgery

for primary early ductal breast cancer in a single tertiary

referral institute in Hong Kong between October 2000 and

September 2008 were identified as previously described

[9]. Data of a total of 1,355 tumor samples included in a

prospectively maintained database were analyzed; 196

patients with pure DCIS were excluded. The remaining

1,159 tumor samples were classified according to ER, PR,

HER2 and Ki67 expression, based on evidence that IHC

provides a reasonable approximation of molecular pheno-

types, into: (1) luminal A (ER and/or PR-positive, HER2-

negative, Ki67 B 12), (2) luminal B (ER and/or PR-posi-

tive, HER2-negative, Ki67 [ 12), (3) HER2-enriched

(HER2-positive) and (4) basal-like (triple-negative) dis-

ease. In the subsequent analysis comparing Ki67 of

IDC-DCIS versus pure IDC within each subtype, luminal

cancers comprising of both luminal A and B subtypes were

studied as one entity, to avoid possible confounder imposed

by the predefined Ki67 cutoff. Tumor samples were further

stratified by lymph node status into node-positive and

-negative subgroups, which are often considered separately

in the current literature due to their distinct prognosis and

management implications.

Histopathological and immunohistochemical

examination

Tumor histolopathology and the number of involved lymph

nodes were evaluated by routine hematoxylin-eosin (H&E)

staining. IHC analysis was performed with standard com-

mercial kits on formalin-fixed, paraffin-embedded speci-

mens. All the tumor histolopathology and IHC data were

centrally reviewed in a central laboratory in Hong Kong.

IHC of ER and PR were assessed using 6F11 and 1A6

antibodies, respectively, and detected by the polymer

EnVision system (Dako, Glostrup, Denmark). Expression

of ER and PR were graded by the semi-quantitative

H-score, where a score of over 50 out of 300 was inter-

preted as positive [26]. The IHC assay used for HER2 was

A0485 (polyclonal antibody; Dako). HER2 positivity was

defined by IHC 3? (strong positive staining on at least

10% of breast tissue specimen) and/or fluorescent in situ

hybridization (FISH)-amplified (HER2 DNA to chromo-

some 17 centromere DNA ratio of at least 2) [27], the latter

using PathVysion Vysis FISH (Abbott, Chicago, IL, USA).

Finally, expression of Ki-67 was assessed by immuno-

staining with the antibody SP6 in all the analyzed cases. In

cases of IDC-DCIS, Ki67 values of the invasive cancer

component were used for analyses.

Statistical analyses

Summary statistics were used to describe patient demo-

graphics and pathological characteristics of tumor samples.

Ki67 indices of tumors in different subtypes were
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compared by the Mann Whitney U test. Spearman corre-

lations were calculated to determine the association

between variables. Adjustment for tumor size was per-

formed by multivariate logistic regression. Univariate and

multivariate analyses using a linear regression model were

performed to assess factors affecting Ki67. Predictor vari-

ables evaluated included age, tumor size, grade, ER, PR

and HER2 expression where applicable, and the presence

of DCIS. Calculations were performed using the statistical

software SPSS, version 18. Significance was assumed at

P \ 0.05.

Results

Patient demographics

The number of evaluable patients with luminal A, luminal

B, HER2-enriched and basal-like breast cancer were 396,

265, 258 and 117, respectively. In particular, within our

HER2-enriched cohort, HER2-positivity was defined by

IHC 3? in 245 patients (95%) while gene amplification

was detected in the remaining 13 (5%).

The patients’ demographic data are presented in

Table 1. Median age in all subgroups were similar at

48–49 years, although there was a higher proportion of

young patients (age B 35) with basal-like cancers (Spear-

man Correlation = -0.063, P = 0.033). Most patients in

all subgroups were premenopausal, consistent with the

local epidemiology [28]. Approximately 10% of luminal

and HER2-enriched tumors were screen-detected; a lower

percentage was noted in basal-like tumors likely due to

their aggressive natural history, but the difference was not

statistically significant (Spearman correlation = -0.034,

P = 0.304). Basal-like patients more often received breast

conservation surgery as compared to those in other sub-

groups (OR = 1.85, P = 0.003) despite similar tumor

sizes; the observation that these tumors were less associ-

ated with concomitant DCIS (Spearman correlation =

-0.083, P \ 0.01) suggested the latter might contribute to

extensive disease indicating mastectomy. There was also a

trend toward more frequent axillary dissection in the basal-

like subtype (Spearman correlation = -0.05, P = 0.109).

Tumor characteristics of different biological subtypes

The luminal and HER2-positive subtypes were more

frequently IDC-DCIS rather than pure IDC (Spearman

correlation = 0.002 with P = 0.935; and Spearman cor-

relation = 0.112 with P = \ 0.0005, respectively), and

vice versa for basal-like tumors (Spearman correlation =

-0.134, P \ 0.01), as illustrated in Table 2. In concor-

dance with available evidence, HER2 and basal-like

subtypes were more aggressive than their luminal coun-

terparts, as reflected by higher Ki67 levels (Spearman

correlation coefficient -0.31 and -0.46, respectively,

P \ 0.01); basal-like tumors were also more likely to be of

higher histological grade (Spearman correlation = 0.254,

P \ 0.01).

Significance of coexisting DCIS within biological

subtypes

On comparing size-adjusted IDC with or without DCIS

within the same luminal subtype, Ki67 was found to be

lower in IDC-DCIS than pure IDC (coefficient esti-

mate = -0.074, P \ 0.01). Moreover, in luminal patients

with involved lymph nodes, DCIS emerged as an inde-

pendent factor predicting Ki67 (P = 0.03); other factors

included tumor grade (P \ 0.01), ER (P \ 0.01) and PR

level (P = 0.02) (Table 3). On the other hand, in node-

negative luminal cancers, the only factors after multivariate

regression analysis were age (P = 0.09), tumor grade

(P \ 0.01) and ER score (P \ 0.01). In the intrinsically

more aggressive HER2 or basal-like tumors, however, the

presence of associated DCIS did not correlate significantly

with Ki67.

Discussion

Our study shows that the presence of coexisting DCIS in

IDC is associated with significantly lower Ki67 levels in

luminal breast cancers, but not in the conventionally more

aggressive HER2-positive and triple-negative subtypes

where apparent high-risk factors such as HER2-overex-

pression and high tumor grade play a predominant role.

Particularly in luminal node-positive patients, the ability of

associated DCIS to predict Ki67 is independent of ER

level, tumor size and grade. As Ki67 in turn prognosticates

survival and also predicts chemotherapy response, our

findings may potentially aid risk stratification and adjuvant

treatment decision in some luminal cancers where the

benefit of chemotherapy beyond endocrine therapy is

controversial [29].

In modern adjuvant treatment of breast cancer, research

efforts have been directed to identify patient subgroups

where unnecessary therapy can be safely withheld, thus a

shift from a more inclusive strategy toward personalized

medicine. Accompanying the development of this concept,

the use of chemotherapy in hormone-positive node-nega-

tive patients was progressively reduced over recent years

[30]. In ER-positive patients, the absolute increment in

10-year overall survival brought about by chemotherapy

in addition to hormonal therapy is only approximately

2–10% depending on age and nodal status, implying

1538 Med Oncol (2012) 29:1536–1542

123



over-treatment in most patients, and at the expense of

increased toxicities [31, 32]. Patients did not benefit

equally from chemotherapy; subgroups deriving minimal

benefit from chemotherapy could be observed regardless of

nodal status [33, 34].

Multigene tumor assays correlated with prognosis and

chemotherapy benefit in ER-positive node-negative [35,

36] and, more recently, in postmenopausal node-positive

patients [36, 37]. Commercially available multigene assays

include 21-gene recurrence score assay (OncotypeDx),

70-gene expression profile (MammaPrint) and 50-gene

expression profile (PAM50). Although the recurrence score

was reported to influence patient management decisions

[38], the clinical use of these assays are still limited [29].

Moreover, the significance of an intermediate recurrence

score, and whether all ER-positive patients are indicated

for the assays are yet to be clarified. It is thus likely that the

assays will not replace conventional clinicopathological

parameters in prognosis and chemotherapy benefit predic-

tion. It is also important to identify additional markers

which are more easily accessible. The presence of associ-

ated DCIS in IDC, as shown in this study, may supplement

the selection of patients in whom multigene assays should

be performed or, in low-risk cases, where chemotherapy

can be avoided.

Notably, in node-positive luminal patients, the coexis-

tence of DCIS was an independent prognosticator and

predictor, irrespective of the level of hormone receptor

expression. Although IDC-DCIS is also more often ER

and/or PR-positive [9], results of the present study suggest

associated DCIS provides further information to predict

lower tumor aggressiveness, in addition to its effect med-

iated through hormone receptor expression. On the other

hand, node-negative luminal patients generally represent a

low-risk and biologically less aggressive group. This may

explain the finding in this study that concomitant DCIS,

despite the trend to associate with lower Ki67, was not an

independent factor predicting the latter.

We have postulated previously that the presence of

DCIS in IDC indicates a carcinogenesis process where mild

genetic deficits are acquired progressively, whereas pure

IDC arising de novo is a result of one or more major

(epi)genetic event [9]. While the genetic aberrations

involved tumor progression from in situ carcinoma to

invasiveness are minor and localized [39] and hence dif-

ficult to be identified [40–42], major mutations in specific

Table 1 Patient demographics of different biological subtypes of breast cancer

Characteristics Luminal [% (no. of patients)] HER2-positive

[% (no. of patients)]

Basal-like

[% (no. of patients)]
All luminals Luminal A Luminal B

Age at diagnosis

Median (range) 48 (26–91) 49 (26–91) 47 (28–88) 48 (28–84) 49 (24–86)

B35 5.9 (39) 4.8 (19) 7.5 (20) 9.3 (24) 12.0 (14)

36–50 56.0 (370) 53.8 (213) 59.2 (157) 53.9 (139) 42.7 (50)

C51 37.7 (249) 41.2 (163) 32.5 (86) 36.4 (94) 43.6 (51)

Unknown 0.4 (3) 0.2 (1) 0.8 (2) 0.4 (1) 1.7 (2)

Menopausal status

Pre-menopausal 63.5 (420) 60.4 (239) 68.3 (181) 66.7 (172) 60.7 (71)

Post-menopausal 36.5 (241) 39.6 (157) 31.7 (84) 33.3 (86) 39.3 (46)

Mode of discovery

MMG screening 9.4 (62) 11.1 (44) 6.8 (18) 10.1 (26) 5.1 (6)

Self-detected 78.2 (517) 73.7 (292) 84.9 (225) 81.8 (211) 88.0 (103)

Others 12.4 (82) 15.2 (60) 8.3 (22) 8.1 (21) 6.9 (8)

Primary surgery

Mastectomy 48.6 (321) 49.0 (194) 47.9 (127) 60.1 (155) 36.8 (43)

Breast conservation 49.2 (325) 48.7 (193) 49.8 (132) 38.4 (99) 60.7 (71)

Others 2.2 (15) 2.3 (9) 2.3 (6) 1.5 (4) 2.5 (3)

Axillary surgery

Axillary dissection 31.6 (209) 29.0 (115) 35.5 (94) 29.5 (76) 38.5 (45)

Sentinel LN 59.3 (392) 62.4 (247) 54.7 (145) 59.3 (153) 52.1 (61)

Nil 9.1 (60) 8.6 (34) 9.8 (26) 11.2 (29) 9.4 (11)

Total number 661 396 265 258 117

Data are presented as percentages, with total case numbers following in parentheses
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tumor subtypes are more often described. For example,

BRCA1 and TP53 mutations play a particular role in basal-

like tumors [43, 44], and overexpression of HER2 encoded

by ERBB2 drives carcinogenesis of HER2-positive disease

[45–48]. These genotypes/phenotypes are also negative

prognosticators, if without targeted therapy in the case of

HER2-positive disease [49–51]. Taken together, these

considerations explain our finding in the present study that

concomitant DCIS did not significantly affect Ki67 in the

basal-like and HER2-positive subtypes, where mutated

BRCA1/TP53 and HER2, respectively are predominant

factors overriding the otherwise lower biological aggres-

siveness reflected by concomitant DCIS.

Not all tumors harboring such major mutations arise de

novo and become pure IDC as would have predicted by our

initial postulation. It is also known that the hormone

receptor and HER2 genotype and phenotype are predefined

early and remain stable in the development of breast

lesions [39], thus the acquisition of the aggressive basal-

like or HER2-positive genotype/phenotype during stepwise

tumor progression in IDC-DCIS is less likely. This obser-

vation exemplifies the heterogeneity of breast cancer even

Table 2 Comparison of tumor characteristics of different biological subtypes

Characteristics Luminal [% (no. of patients)] HER2-positive

[% (no. of patients)]

Basal-like

[% (no. of patients)]
All luminals Luminal A Luminal B

Subgroups

Pure IDC 46.7 (309) 43.9 (174) 50.9 (135) 36.8 (95) 66.7 (78)

IDC-DCIS 53.3 (352) 56.1 (222) 49.1 (130) 63.2 (163) 33.3 (39)

IDC size (cm)

Median (range) 1.8 (0.07–10) 1.6 (0.07–10) 2.2 (0.09–10) 1.6 (0.01–9.5) 2.2 (0.2–9)

Grade

1 15.9 (105) 23 (91) 5.3 (14) 2.7 (7) 1.7 (2)

2 45.1(298) 55.6 (220) 29.4 (78) 24.8 (64) 7.7 (9)

3 38 (251) 19.9 (79) 64.9 (172) 69.8 (180) 90.6 (106)

Unknown 1.1 (7) 1.5 (6) 0.4 (1) 2.7 (7) 0 (0)

Lymph node status

Negative 60.1 (397) 62.9 (249) 55.8 (148) 61.2 (158) 61.5 (72)

1–3 lymph nodes 27.2 (180) 27.3 (108) 27.2 (72) 23.3 (60) 23.9 (28)

4–9 lymph nodes 7.9 (52) 6.3 (25) 10.2 (27) 10.1 (26) 7.7 (9)

[9 lymph nodes 3 (22) 1.8 (7) 5.7 (15) 4.3 (11) 5.1 (6)

Unknown 1.5 (10) 1.8 (7) 1.1 (3) 1.2 (3) 1.7 (2)

Lymphovascular invasion

Negative 60.8 (402) 68.4 (271) 49.4 (131) 55.0 (142) 61.5 (72)

Positive 39.2 (259) 31.6 (125) 50.6 (134) 45.0 (116) 38.5 (45)

Ki-67 index (%)

Median (range) 10 (0–95) 6 (0–12) 28 (13–95) 21 (0–80) 50 (0–95)

Total number 661 396 265 258 117

Data are presented as percentages, with total case numbers following in parentheses

Table 3 Univariate and multivariate model for prediction of node-positive breast cancer

Variable Univariate Multivariate

Beta (95% CI) P value Beta (95% CI) P value

Age 2.71 (-1.40, 6.82) 0.20 – – –

Tumor size 1.10 (-0.53, 2.74) 0.18 – – –

Tumor grade 14.19 (10.74, 17.64) \0.01 11.15 (7.70, 14.59) \0.01

ER score -0.09 (-0.12, -0.06) \0.01 -0.05 (-0.8, -0.3) \0.01

PR score -0.07 (-0.09, -0.04) \0.01 -0.03 (-0.5, -0.04) 0.02

Presence of DCIS 10.08 (5.32, 14.85) \0.01 4.68 (0.35, 9.00) 0.03
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within subtypes, and that the carcinogenesis pathway of

individual tumor involves a complex interplay of various

major and minor (epi)genetic factors.

There are several limitations in our study. It is a retro-

spective analysis of data, although the database was pro-

spectively maintained. Also, molecular subtypes of breast

cancer were defined by IHC surrogates rather than the gold

standard of gene expression profiling; the IHC definitions

in the present study were based on a 4-marker panel,

without supplementation with less essential markers such

as AR, EGFR, CK 5/6 and CK 8/18. Controversies exist in

the IHC classification system; for example it remains

unresolved whether ER and/or PR-positive and HER2-

positive disease correlates with luminal B or HER2-enri-

ched subtype [52]. Also, the normal breast-like subtype

was not included in this study as in many other IHC studies

due to the complex and variable expression patterns of this

particular subtype [53]. The luminal A and B subtypes

were analyzed in combination rather than separately, but

the evaluation of semi-quantitative ER and PR scores as a

continuous variable in multivariate analysis provided ade-

quate assessment of the effect of hormone receptor levels.

Finally, as matured survival data is not yet available

at the time of this writing, the ability of coexisting DCIS

to directly predict relapse and survival could not be eval-

uated, although Ki67 is an established marker of such

outcomes.

In conclusion, the presence of associated DCIS signifies

lower biological aggressiveness in luminal IDC, especially

node-positive disease. Concomitant DCIS, determined

during routine pathological examination, may represent a

potential cost-effective consideration in the adjuvant

management of breast cancer.
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