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Abstract
Alzheimer's disease (AD), the most common type of dementia, is a serious neurodegenerative disease that has no cure yet, 
but whose symptoms can be alleviated with available medications. Therefore, early and accurate diagnosis of the disease 
and elucidation of the molecular mechanisms involved in the progression of pathogenesis are critically important. This 
study aimed to identify dysregulated miRNAs and their target mRNAs through the integrated analysis of miRNA and 
mRNA expression profiling in AD patients versus unaffected controls. Expression profiles in postmortem brain samples 
from AD patients and healthy individuals were extracted from the Gene Expression Omnibus database and were analyzed 
using bioinformatics approaches to identify gene ontologies, pathways, and networks. Finally, the module analysis of the 
PPI network and hub gene selection was carried out. A total of five differentially expressed miRNAs were extracted from 
the miRNA dataset, and 4312 differentially expressed mRNAs were obtained from the mRNA dataset. By comparing the 
DEGs and the putative targets of the altered miRNAs, 116 (3 upregulated and 113 downregulated) coordinated genes were 
determined. Also, six hub genes (SNAP25, GRIN2A, GRIN2B, DLG2, ATP2B2, and SCN2A) were identified by constructing 
a PPI network. The results of the present study provide insight into mechanisms such as synaptic machinery and neuronal 
communication underlying AD pathogenesis, specifically concerning miRNAs.
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Introduction

Complex biological processes are associated with a progres-
sive and gradual decline in the biochemical and physiologi-
cal activities of tissues and organs, leading to adult aging 
and age-related diseases such as cardiovascular disease, can-
cer, and dementia (Pugh and Wei 2001; Zhang et al. 2012; 
Gonul Baltaci et al. 2018; Kocpinar et al. 2020). Alzheimer's 
disease (AD) is a chronic neurodegenerative disease that is 
one of the most common forms of dementia among elderly 
people (Zhao et al. 2016; Gündoğdu et al. 2019; Istrefi et al. 
2020). The pathogenesis of AD is very complex and is 
known to be caused by multiple factors (Ceylan et al. 2019; 
Turkes et al. 2019; Kalayci et al. 2021). The deposition of 

extracellular β-amyloid peptides and intracellular neurofi-
brillary tangles (NFTs) are considered major hallmarks 
of AD (Lichtenthaler et al. 2011; Wakasaya et al. 2011; 
Durgun et al. 2020; Sever et al. 2020). However, the full 
mechanisms and other principal molecular drivers that may 
affect AD pathogenesis remain unclear. Therefore, a further 
understanding and unraveling of key molecular pathways 
that lead to aging and age-associated diseases will provide 
insights into the development of new strategic approaches 
for healthy aging.

MicroRNAs (miRNAs), a class of non-coding RNAs, 
are small regulatory RNAs that can regulate gene expres-
sion post-transcriptionally (Chen 2010; Vazquez et al. 
2010). miRNAs are critical for normal development and 
cellular homeostasis, and thus are involved in a vari-
ety of biological processes (Friedman and Jones 2009). 
Recent studies suggest that dysregulation and aberrant 
regulation and function of miRNAs may deeply impact 
cellular physiology, leading to the development of many 
diseases (Adams et al. 2014; Lai et al. 2016; Lee et al. 
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2016). Therefore, the identification and understanding 
of miRNA-target interactions are crucial for deciphering 
the regulatory mechanisms of miRNAs in various cel-
lular processes and disease progression (Ceylan 2021a, 
2021b). It has been shown that miRNAs participate in the 
regulation of gene expression in the aging process (Chen 
et al. 2010b; Lanceta et al. 2010). The high abundance of 
miRNAs within the nervous system, where they are key 
regulators of functions such as neuronal differentiation, 
neurogenesis, neurite growth, and synaptic plasticity, sup-
ports the hypothesis that miRNAs have a potential role in 
neurodegenerative diseases, especially in AD (Femminella 
et al. 2015; Moradifard et al. 2018).

The present study was carried out to demonstrate the 
association between miRNAs in AD brains and their target 
genes using bioinformatics analysis. Here we investigated 
and identified differentially expressed genes (DEGs), dif-
ferentially expressed miRNAs (DEmiRs), and miRNA-
mRNA interactions in the elderly AD brain, to provide 
novel insights into potential therapeutic targets that can 
be used to combat AD.

Methods

Microarray Data Profiles

Datasets were retrieved from the Gene Expression Omnibus 
(GEO) database (http://​www.​ncbi.​nlm.​nih.​gov/​geo/). The  
GSE26972 data set, which was extracted from the study of Berson  
et al. (Berson et al. 2012), has a total of six samples, con-
taining three female non-demented controls (NDCs) and three  
female AD patients. The microarray platform was the GPL5188 
[HuEx-1_0-st] Affymetrix Human Exon 1.0 ST Array [probe 
set (exon) version]. The GSE157239 data set was used for its 
miRNA expression profile. The miRNA data set samples were 
obtained from 16 postmortem cases, including eight control 
individuals without neuropathological lesions or neurological 
signs and eight AD patients (Braak stage III or above) (Henr-
iques et al. 2020). The microarray platform was the GPL21572 
[miRNA-4] Affymetrix Multispecies miRNA-4 Array [Probe-
Set ID version]. A schematic representation of the methodology 
used in the present study is shown in Fig. 1.

Fig. 1   Flow diagram of the 
study. DEG, differentially 
expressed gene; DEmiR, dif-
ferentially expressed miRNA; 
PPI, protein–protein interac-
tion; GEO, Gene Expression 
Omnibus; GO, Gene Ontology; 
KEGG, Kyoto Encyclopedia of 
Genes and Genomes

274 Journal of Molecular Neuroscience (2022) 72:273–286

http://www.ncbi.nlm.nih.gov/geo/


1 3

Data Preprocessing, Screening of DEGs and DEmiRs

To identify DEGs and DEmiRs in AD compared to age-
matched controls, the selected data sets were analyzed using 
the GEO web tool GEO2R (Barrett et al. 2013). |LogFC|> 1 
and p < 0.05 were defined as the threshold for both data sets.

Acquiring the Intersection of DEG and DEmiR 
Targets

Firstly, the TargetScan online database (Agarwal et al. 2015) 
was used to predict the target genes of the up- and down-
regulated miRNAs with a high fold change (FC) (logFC > 1) 
value in the GSE157239 data set. The intersection of pre-
dicted targets by TargetScan was extracted using the Multiple 
List Comparator (http://​www.​molbi​otools.​com/​listc​ompare.​
html). Next, to identify the interaction between DEmiRs and 
DEGs, the upregulated DEmiR targets were matched with 
downregulated DEGs, and downregulated DEmiR targets 
were matched with upregulated DEGs using the Multiple List 
Comparator. Consequently, the overlapping genes between 
the predicted target genes of DEmiRs and DEGs obtained 
from the GSE26972 data set were obtained.

Gene Ontology and Pathway Enrichment Analysis

Gene over-representation analyses were conducted using the 
ToppFun application in the ToppGene toolbox (Chen et al. 
2009) to identify biological process (BP), cellular compo-
nent (CC), and molecular function (MF) annotations of the 
identified common genes. Pathway enrichment analyses of 
DEGs was classified by the KEGG (Kyoto Encyclopedia of 
Genes and Genomes) using the DAVID pathway viewer. A 
p-value of < 0.05 was set as the cutoff value for all enrich-
ment analyses.

Protein–Protein Interaction Network and Module 
Analyses

To evaluate the interrelationships among common DEGs, a 
protein–protein interaction network was constructed using the 
STRING (Search Tool for the Retrieval of Interacting Genes/
Proteins) database (Jensen et al. 2009). Then, the PPI network  
was analyzed and visualized using Cytoscape software.  
Additionally, based on the above data, the Molecular Complex 
Detection (MCODE) app in Cytoscape was used for module 
selection. The CytoHubba plugin of Cytoscape was used to 
identify hub genes. The functions and pathway enrichment of  
candidate hub genes were analyzed using the DAVID (database  
for annotation, visualization, and integrated discovery) (da 
Huang et al. 2009) bioinformatics resource.

In Silico Validation of Hub Genes

To determine which cell type expressed the identified hub 
genes, we queried the genes in the Single-cell Atlas of the 
Entorhinal Cortex in Human Alzheimer’s Disease database 
(Grubman et al. 2019).

Results

Identification of DEmiRs and DEGs

In the present study, the differences in the miRNA 
expression profiles between six AD samples (62–94-year-
old women) and five age-matched control samples 
(69–90-year-old women) of temporal cortex tissues 
were analyzed. A total of two (hsa-miR-1299 and hsa-
miR-7150) upregulated and three (hsa-miR-4286, hsa-
miR-4449, and hsa-miR-3195) downregulated miRNA 
were obtained after preprocessing of the GSE157239 
data set. TargetScan software predicted 2182 common 
targets for hsa-miR-1299 and hsa-miR-7150 (Fig. 2a). By 
the same approach, 52 common targets were predicted  
by TargetScan for downregulated miRNAs (Fig.  2b). 
After data preprocessing, a total of 4312 DEGs were 
obtained from the GSE26972 data set, of which 3517 
genes were upregulated and 795 were downregulated. 
Further analysis of these genes using a Venn diagram 
revealed 113 intersection genes between upregulated 
DEmiR targets and downregulated DEGs (Fig. 2c), and 
three intersection genes between downregulated DEmiR 
targets and upregulated DEGs (Fig. 2d).

Gene Ontology (GO) Function and KEGG Pathway 
Enrichment Analysis of Overlapped Genes

The functions and pathway enrichment of the DEGs  
were evaluated at the ToppGene website. Gene Ontology 
(GO) analysis further classified the DEGs into the three 
functional groups, i.e., biological process (BP), cellular  
component (CC), and molecular function (MF), as  
summarized in Table 1. The detailed GO analysis results 
for the DEGs are shown in Supplementary Table S1. 
According to the KEGG pathway enrichment analysis, 
upregulated genes were mainly enriched in adipocytokine 
signaling, PPAR signaling, glucagon signaling, insulin 
resistance, hepatitis C, non-alcoholic fatty liver disease 
(NAFLD), and cAMP signaling. The downregulated 
genes were mainly enriched in nicotine addiction and 
neuroactive ligand–receptor interaction (Table 2).
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PPI Network Analyses and Module Analyses

Using the STRING online database and Cytoscape software, 
a total of 67 DEGs (2 upregulated and 65 downregulated) of 
the 116 altered DEGs from the entorhinal cortex were screened 
into the DEG PPI network, containing 67 nodes and 117 edges 
(Fig. 3). In total, one module (cluster 1) with a score > 5 was 
detected by the Cytoscape plug-in MCODE (Fig. 4a). Cluster 
1 contained nine nodes including ANK3, CNTNAP2, NFASC, 
DLG2, SCN8A, GRIN2B, SNAP25, SCN2A, and ATP2B2  
with 26 edges. The most connected nodes were identified from 
the PPI network using CytoHubba based on the betweenness 
algorithm (Fig. 4b). According to the betweenness scores, the ten 
highest-scored genes, including SNAP25, PACSIN1, GRIN2A, 
GRIN2B, SGIP1, GABRA4, DLG2, ATP2B2, GABRA3, and 
SCN2A, are listed in Table 3. Among the screened genes, 
SNAP25, GRIN2A, GRIN2B, DLG2, ATP2B2, and SCN2A 
were selected as hub (centrally located) genes. The MCODE 
score (> 3) and clustering status (found in cluster 1) were used 
as selection criteria.

GO Function and KEGG Pathway Enrichment 
Analysis of Hub Genes

To explore the biological functions and pathways of the 
genes, the enrichment analyses of the hub genes were evalu-
ated using the DAVID online tool. GO annotation and path-
way analysis results for six hub genes are summarized in 
Table 4.

Validation of Cell‑Type‑Specific Expression of Hub 
Genes

Major cell types of the human brain in which hub genes 
are expressed were identified using a single-cell/nuclei 
RNA-seq data set of AD samples of human brain tissues. 
Expression signatures detected from human postmortem 
AD brain tissues showed that all of the hub genes are 
predominantly expressed in neurons (Fig. 5).

Fig. 2   Venn diagrams of DEGs, miRNAs, and the miRNA targets 
from GEO data sets. (a) Common upregulated miRNA targets, (b) 
common downregulated miRNA targets, (c) the intersection of down-
regulated DEGs and upregulated miRNA targets, (d) the intersection 

of upregulated DEGs and downregulated miRNA targets. DEGs, 
differentially expressed genes; GEO, Gene Expression Omnibus; 
miRNA, microRNA
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Discussion

The pathogenesis of AD is extremely complex, involving mul-
tiple pathways and genes. As is the case with many other neu-
rodegenerative diseases, the disease is predictable but remains 
incurable (Zarrin et al. 2021). Therefore, understanding the 
mechanisms underlying AD would aid in finding the best cure 
options as early as possible, which would improve the quality 
of life in patients with AD. Gene expression arrangements are 
altered in different stages of the disease. Therefore, the iden-
tification of differentially expressed genes in the brain tissues 
may help us understand the pathogenesis of AD. It is known 
that women are disproportionately affected by Alzheimer’s, 
and this disease forces them to make difficult choices about 
their lives. Additionally, World Health Organization reports 
and recent studies show that nearly two-thirds of deaths from 
the disease and other forms of dementia are in women (Snyder 
et al. 2016). Therefore, it is critical to identify risk factors that 
contribute to the risk of AD or that can be used as a target in 
treatment, especially in women. Hence, in this study, gene and 
miRNA expression profiles belonging to female patients were 
integrated to explore expression alterations in AD.

MicroRNAs are sophisticated regulatory non-coding 
RNAs that influence almost every aspect of cellular func-
tion (Ramakrishna and Muddashetty 2019). Due to their key 
roles in translational regulation and target mRNA decay, 
these molecules are implicated in the pathology of many 
disorders (Jo et al. 2015). Since miRNAs are involved in 
normal development and various biological processes, it is 
believed that their abnormal expression may be associated 
with many human diseases such as cardiovascular disorders 
(Wojciechowska et al. 2017), cancer (Peng and Croce 2016), 

inflammation (Contreras and Rao 2012), infectious diseases 
(Kim et al. 2017), and both central and peripheral neurologi-
cal disorders (Zhang et al. 2018; Majidinia et al. 2020a). To 
date, many miRNAs have been identified as critical elements 
for the regulation of neuronal development, synapse forma-
tion, and cognitive functions lost in AD (Somel et al. 2010; 
Chen and Qin 2015). Moreover, recent studies have shown 
that an estimated 70% of all identified mature miRNAs in 
humans are expressed in the nervous system (Adlakha and 
Saini 2014). Therefore, elucidating the key mechanisms 
involving miRNAs and their targets might provide important 
insights into the pathogenesis of neurodegenerative diseases 
including AD.

In the present study, 116 DEmiR-targeted DEGs were 
identified in AD brain tissues compared to normal tissues 
based on gene expression profile data. Moreover, it was 
indicated that DEGs, including SNAP25, GRIN2A, GRIN2B, 
DLG2, ATP2B2, and SCN2A, were hub genes in the PPI 
network analysis (see Table 3). All six of these genes were 
downregulated in AD samples versus unaffected controls, 
suggesting that these genes may play critical roles in AD 
pathogenesis and/or progression.

Previous studies have shown that abnormalities in the 
pre-and/or postsynaptic machinery (neurotransmitters/ 
neurotransmitter receptors and ion channels) were  
compromised in many age-related neurological disorders 
including AD (Mhatre et al. 2014; Ceylan and Erdogan 
2017; Melland et al. 2020). According to GO and pathway 
enrichment analysis, hub genes are particularly enriched in 
synaptic function, synaptic regulation, learning, and memory 
(see Table 4). The majority of AD treatment approaches are  
focused on the beta-amyloid and tau protein pathologies 

Table 2   KEGG pathway 
analysis of DEGs. KEGG, 
Kyoto Encyclopedia of Genes 
and Genomes

Expression Description Genes p-Value

Downregulated Nicotine addiction GRIN2A, 
GRIN2B, 
CHRNB2,

GABRA3, 
GABRA4

7,02E − 06

Neuroactive ligand-receptor interaction HTR4, GRIN2A, 
GRIN2B, 
SSTR5,

CRHR1, 
CHRNB2, 
GABRA3,

GABRA4

5,89E − 04

Upregulated Adipocytokine signaling pathway PPARA​ 1,65E − 02
PPAR signaling pathway PPARA​ 1,72E − 02
Glucagon signaling pathway PPARA​ 2,45E − 02
Insulin resistance PPARA​ 2,54E − 02
Hepatitis C PPARA​ 3,11E − 02
Non-alcoholic fatty liver disease (NAFLD) PPARA​ 3,53E − 02
cAMP signaling pathway PPARA​ 4,67E − 02
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(Klafki et  al. 2006; Jackson et  al. 2019). However, the  
synapse itself may also be an important endpoint for disease 
modification. It is known that the function, structure, and 
eventually the number of synapses change over time (Chen 
et al. 2019). This process, which is called synaptic plasticity, 
affects synaptic contact and optimizes neural connections,  
which are essential for cognitive functions (Fu and Ip 2017; 
Li et  al. 2019). Therefore, determining the underlying  
mechanisms associated with the maintenance and recovery  
of synaptic function is important in the development  

of synaptic function-based therapeutic strategies in the  
treatment of dementia (Majidinia et al. 2020b).

Presynaptic terminals are spots of pathological alterations  
causing a synaptic loss in AD, and are also the site of many 
specific operations critical to standard neuronal functions 
(Overk and Masliah 2014). It was previously reported that 
multiple terminal proteins are affected in AD, which results 
in widespread synaptic pathology in multiple brain regions 
(Zhou and Liu 2015). Synaptosomal-associated protein  
25  kDa (SNAP25), is a membrane-associated protein 

Fig. 3   Protein–protein interaction network. The red nodes represent the upregulated genes, the blue nodes indicate the downregulated genes, and 
each line refers an interaction
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involved in synaptic transmission (Irfan et al. 2019). This 
protein is widely expressed but is highly variable in the 
mammalian nervous system. Furuya et al. (Furuya et al. 
2012) reported that SNAP25 was expressed differentially 
across various brain regions in postmortem AD tissues. 
The fact that the protein is not uniformly expressed in all 
neuronal populations in the nervous system suggests that 
SNAP25 is involved in specific transmitter pathways (Minger  
et al. 2001). It has also been shown that SNAP25 levels are  
reduced in the temporal, occipital, frontal, and parietal  
cortex regions of the brain in patients with AD (Corradini  
et al. 2009). Other studies have similarly noted that SNAP25 
was reduced in AD, and thus neurotransmission was 
impaired (Noor and Zahid 2017).

Neurotransmitter receptors are tuned by the signaling 
pathways of the brain in response to a pathological status 
to maintain homeostasis in the nervous network (Berg et al. 
2013; Domercq et al. 2013). NMDA glutamatergic receptors 
(N-methyl-d-aspartate receptors; NMDARs) are one of the 
main receptors implicated in AD symptoms (Liu et al. 2019). 
Insufficient or excessive synaptic stimulation of NMDAR 
signaling compromises neuronal cell survival (Wang and 
Reddy 2017). Thus, NMDAR signaling must be tightly regu-
lated because abnormal stimulation may disrupt the balance 
between neuronal survival and death. NMDARs are hetero-
tetramers consisting of two GluN1 and two GluN2 subu-
nits (Luo et al. 2011). GRIN2A and GRIN2B are the main 
subunits of functional NMDARs and they are the principal 

Fig. 4   The functional sub-network analysis of PPI network. (a) The 
sub-module from the PPI network of DEGs from samples of AD and 
healthy controls. The blue nodes represent the downregulated genes. 

(b) Construction of PPI network of hub genes. The grades of the 
colors represent the betweenness score. Lines indicate protein–protein 
interactions

Table 3   Property scores and 
MCODE status of the top 10 
hub genes in the PPI network. 
MCODE, Molecular Complex 
Detection

Name Betweenness score Degree MCODE cluster MCODE node status MCODE score

SNAP25 1238,99,444 22 Cluster 1 Clustered 4.107
PACSIN1 580,90,476 6 - Unclustered 3.0
GRIN2A 411,78,254 11 Cluster 1 Seed 3.888
GRIN2B 409,60,794 12 Cluster 1 Clustered 4.107
SGIP1 294 3 Cluster 3 Clustered 2.0
GABRA4 284,83,333 2 - Unclustered 0.666
DLG2 283,60,317 13 Cluster 1 Clustered 4.666
ATP2B2 252,89,444 9 Cluster 1 Clustered 4.0
GABRA3 222,83,333 3 - Unclustered 0.5
SCN2A 217,74,206 12 Cluster 1 Clustered 4.027
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NMDARs found predominantly in brain regions affected 
by AD (Chen et al. 2010a). Numerous studies suggest that 
the GluN2B subunit, encoded by the GRIN2B gene, is of 
particular importance for the pathogenesis of AD, for sev-
eral reasons: (1) GRIN2B is found to be abundant in areas 
where pathological signs of AD are concentrated and spread, 
including the neocortex (Hynd et al. 2004); (2) a GRIN2B-
containing NMDA receptor antagonist prevents Aβ-induced 
synaptic plasticity disruption (Hu et al. 2009); (3) dysfunc-
tion of GRIN2B may contribute to memory impairment in 
AD patients (Clayton et al. 2002). Similarly, it was found 
that the GRIN2A subunit, encoded by the GRIN2A gene, 
plays essential roles not only in learning and memory but 
also in synaptic plasticity and is significantly reduced in 
sensitive regions in AD brains (Sun et al. 2017). Studies 
have also shown that the suppression of GRIN2A impairs 
the learning of complex motor skills (Lemay-Clermont 
et al. 2011). Therefore, these data suggest that the modula-
tion of these subunits could be an effective strategy to treat 

brain diseases in the future. DLG2 encodes a membrane-
associated protein, discs large MAGUK scaffold protein 2, 
which is a key scaffolding protein at postsynaptic sites and 
is required for NMDA receptor complex formation (Frank 
et al. 2016). It has been shown that DLG2 interacts with 
GRIN2A, and plays a role in synaptic dysfunction in AD 
(Irie et al. 1997). Also, it was previously reported that DLG2 
expression is downregulated in the AD transcriptome and 
proteome network (Hallock and Thomas 2012). Recently, 
Yu et al. (Yu et al. 2017) revealed that DLG2 restoration in 
AD models ameliorated learning and memory impairment, 
improving Aβ-mediated cognitive dysfunction. Therefore, 
DLG2, which plays a critical role in the postsynaptic ter-
minal, is predicted to contribute to cognitive flexibility, and 
ensuring proper modulation of DLG2 might be a potential 
therapy for AD.

It is known that calcium (Ca2+) is a ubiquitous second  
messenger, and is involved in neuronal life processes (Popugaeva  
et al. 2018). Numerous studies suggest that dysregulation of  

Table 4   GO and KEGG pathway analysis of hub genes in the PPI network. GO, Gene Ontology; MF, molecular function; BP, biological process; 
CC, cellular component; KEGG, Kyoto Encyclopedia of Genes and Genomes

Category Description Genes p-Value

BP Chemical synaptic transmission SNAP25, GRIN2A, DLG2, GRIN2B 2,8E − 5
BP Serotonin metabolic process GRIN2A, ATP2B2 2,4E − 3
BP Transport GRIN2A, ATP2B2, GRIN2B 4,1E − 3
BP Glutamate receptor signaling pathway GRIN2A, GRIN2B 4,5E − 3
BP Ionotropic glutamate receptor signaling pathway GRIN2A, GRIN2B 7,1E − 3
BP Learning or memory GRIN2A, GRIN2B 1,1E − 2
BP Long-term synaptic potentiation SNAP25, GRIN2A 1,1E − 2
BP Sensory perception of pain GRIN2A, DLG2 1,5E − 2
BP Locomotory behavior SNAP25, ATP2B2 2,5E − 2
BP Calcium ion transmembrane transport GRIN2A, ATP2B2 3,5E − 2
CC Cell junction SNAP25, GRIN2A, DLG2, ATP2B2, GRIN2B 1,9E − 6
CC Postsynaptic membrane GRIN2A, DLG2, GRIN2B 1,3E − 3
CC Neuron projection SNAP25, GRIN2A, GRIN2B 1,6E − 3
CC NMDA selective glutamate receptor complex GRIN2A, GRIN2B 3,0E − 3
CC Integral component of plasma membrane GRIN2A, ATP2B2, SCN2A, GRIN2B 4,1E − 3
CC Plasma membrane SNAP25, GRIN2A, DLG2, ATP2B2, GRIN2B 1,1E − 2
CC Presynaptic membrane SNAP25, GRIN2A 1,7E − 2
CC Voltage-gated potassium channel complex SNAP25, DLG2 2,4E − 2
CC Synaptic vesicle SNAP25, GRIN2A 2,5E − 2
CC Postsynaptic density GRIN2A, DLG2 4,9E − 2
MF NMDA glutamate receptor activity GRIN2A, GRIN2B 2,4E − 3
MF Extracellular-glutamate-gated ion channel activity GRIN2A, GRIN2B 5,3E − 3
MF Ras guanyl-nucleotide exchange factor activity GRIN2A, GRIN2B 3,4E − 2
KEGG cAMP signaling pathway GRIN2A, ATP2B2, GRIN2B 4,8E − 3
KEGG Nicotine addiction GRIN2A, GRIN2B 2,3E − 2
KEGG Cocaine addiction GRIN2A, GRIN2B 2,8E − 2
KEGG Amyotrophic lateral sclerosis (ALS) GRIN2A, GRIN2B 2,9E − 2
KEGG Long-term potentiation GRIN2A, GRIN2B 3,8E − 2
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the intracellular Ca2+ levels and Ca2+-signaling pathways play 
major roles in the regulation of synaptogenesis and neuronal 
survival (Stafford et al. 2017), and thus they might act as a major 
progenitor of AD pathogenesis, such as Aβ accumulation and 
abnormal hyperphosphorylation of tau (Hermes et al. 2010). 
In the regulation of calcium homeostasis, many genes play a 
critical role, including ATP2A2 and ATP2B2. ATP2B2, which 
encodes plasma membrane calcium-transporting ATPase 2, is 
expressed at high levels in the brain, and plays a crucial role  
in removing divalent ions from cells to maintain intracellular 
calcium homeostasis (Kong et al. 2015). In Brendel et al.’s study  
(Brendel et al. 2014), the authors revealed that experimental  
downregulation of ATP2B2 increased the vulnerability of  
neuronal cells due to insufficient calcium efflux and significantly  
suppressed cell survival. Previous investigations also reported 
that ATP2B2 is primarily localized in specific parts of the 
CNS and is found predominantly in neurons, and the function 
of PMCA (plasma membrane calcium ATPases) in synaptic 
membranes of the brain decreases with aging (Zaidi et al. 1998; 
Garcia and Strehler 1999). All these findings raise the possibility 
that modulating this activity in vivo can help reduce the risk of 
AD development.

Electrical activity is a key component in the formation of 
synapses and brain development (Planells-Cases et al. 2000). 
Action potentials enable the release of neurotransmitters  
necessary for triggering neuronal signaling from the synaptic 
terminal. Voltage-gated sodium channels (NaChs) play major 
roles in the generation and propagation of action potentials 
in neurons (de Lera Ruiz and Kraus 2015). SCN2A (sodium 
voltage-gated channel alpha subunit 2) is the most abundant 

NaChα subunit postnatally, playing an important role in  
maintaining central nervous system function, and therefore its 
levels remain higher through adulthood (Israel et al. 2017). 
Moreover, studies have also shown that SCN2A deficiency 
may affect the interaction of other α subunits with the β 
subunits and thereby modulate the expression of functional 
channels (Lakhan et al. 2009). SCN2A has been previously 
reported to contribute to excitability for proper synaptic 
formation and development (Kruth et al. 2020). Additional 
studies using knockout (Scn2a−/−) and heterozygous  
haploinsufficient mouse models (Scn2a+/−) have revealed that  
Scn2a loss impairs neuronal excitability, synaptic function, and  
voltage-gated sodium channel-mediated currents, and leads to 
massive neuronal apoptosis (Planells-Cases et al. 2000; Spratt  
et al. 2019).

To summarize, dysregulated miRNAs and their target mRNAs 
involved in important biological processes such as postsynaptic  
machinery, neurotransmission, and neuronal life in AD are 
revealed together here for the first time. The results correlate 
well with many previous studies, proving that these genes have 
the potential to cause disease and/or trigger important disease-
related events. Our integrative analysis highlights miRNA and 
mRNA candidates that may contribute to the disruption of  
synaptic plasticity observed in AD. Overall, we identified hub 
genes and crucial pathways, particularly associated with the 
synaptic mechanism that may affect the course of AD initiation 
and progression. These findings contribute to an understanding  
of the molecular mechanisms involved in AD pathogenesis 
in addition to other major hallmarks of AD, and may provide  
insights for new therapeutic strategies and targets.

Fig. 5   Transcriptomic specificity of the hub genes. Cell types with the largest magnitude Z-score found in the entorhinal cortex. The size and 
color grades of each point indicate the abundance of the gene
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Conclusion

Given the complexity observed in AD pathophysiology, the 
identification of differentially expressed miRNAs/mRNAs 
using integrative bioinformatics-based analyses can reveal 
specific mechanisms and molecular events for therapeutic 
intervention. In the present study, changes in the miRNA 
and mRNA expression patterns in the AD brain were inves-
tigated using miRNA and mRNA expression profiles. How-
ever, some limitations to this study should also be noted. 
Firstly, these differentially expressed genes and microRNAs 
need to be further examined to verify the analysis results. 
Secondly, these RNAs were screened from different cases 
and healthy samples, which could have affected the results.
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