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Abstract
DNA methylation and demethylation play an important role in neuropathic pain. In general, DNA methylation of CpG sites 
in the promoter region impedes gene expression, whereas DNA demethylation contributes to gene expression. Here, we 
evaluated the methylation status of CpG sites in genomic DNA promoter regions in dorsal root ganglions (DRGs) of diabetic 
neuropathic pain (DNP) mice. In our research, streptozotocin (STZ) was intraperitoneally injected into mice to construct 
DNP models. The DNP mice showed higher fasting blood glucose (above 11.1 mmol/L), lower body weight, and mechanical 
allodynia than control mice. Whole-genome bisulfite sequencing (WGBS) revealed an altered methylation pattern in CpG 
sites in the DNA promoter regions in DRGs of DNP mice. The results showed 376 promoter regions with hypermethylated 
CpG sites and 336 promoter regions with hypomethylated CpG sites. In addition, our data indicated that altered DNA meth-
ylation occurs primarily on CpG sites in DNA promoter regions. The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis revealed that differentially methylated CpG sites annotated genes were involved in activities of the nervous 
and sensory systems. Enrichment analysis indicated that genes in these pathways contributed to diabetes or pain. In conclu-
sion, our study enriched the role of DNA methylation in DNP.
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Abbreviations
DNP	� Diabetic neuropathic pain
DRG	� Dorsal root ganglion
KEGG	� Kyoto Encyclopedia of Genes and Genomes
P2X3R	� Purinergic P2X ligand-gated ion channel 3 

receptor
PWT	� Paw withdrawal threshold

STZ	� Streptozotocin
WGBS	� Whole-genome bisulfite sequencing

Introduction

According to the International Diabetes Federation data, 
9.3% of adults aged 20 to 79 years—a staggering 463 million 
people—are living with diabetes, and in 2045, the number 
will increase to 700 million. About 25% of patients with dia-
betes mellitus suffer from diabetic neuropathic pain (DNP) 
(Jolivalt et al. 2016; Shillo et al. 2019; Sloan et al. 2018). 
As an intractable problem accompanied by diabetes mellitus, 
DNP causes a huge economic and psychological burden on 
patients. Although DNP has drawn increasing attention, the 
underlying mechanisms remain unclear. Available data sug-
gest that the risk factors for the generation of DNP include 
glycemic burden, female gender, obesity, and genotype (vari-
ants of voltage-gated sodium channels [VGSC]) (Feldman 
et al. 2017; Rosenberger et al. 2020; Shillo et al. 2019). In 
addition, epigenetic regulation could play a vital role in DNP 
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(Cheng et al. 2015; Ciccacci et al. 2020; Guo et al. 2019; 
Liu et al. 2018b).

Epigenetic regulation includes DNA modification, histone 
modification, chromatin remodeling, and non-coding RNAs. 
DNA modification primarily includes DNA methylation and 
demethylation. In the mammalian genome, DNA methyla-
tion refers to the transfer of a methyl group to the C5 posi-
tion of cytosine to form 5-methylcytosine (5mC) by DNA 
methyltransferases (Li and Zhang 2014; Moore et al. 2013). 
DNA methylation can occur at several genetic locations, pri-
marily including promoters, exons, and introns (Jones 2012; 
Rauscher et al. 2015). DNA methylation of promoters occurs 
especially on CpG sites, which impairs transcription factor 
binding and silences gene expression (Moore et al. 2013). 
Methylated DNA could be demethylated by ten-eleven trans-
location proteins (He et al. 2011; Kohli and Zhang 2013; Morgan 
et al. 2018), which can oxidize 5mC to 5-carboxylcytosine 
via intermediates 5-hydroxymethylcytosine and 5-formylcy-
tosine and initiate the expression of specific genes. Hence, 
DNA methylation in the right place at the right time plays 
an important role in normal physiological functions. Altered 
DNA methylation may contribute to several disease processes 
(Ehrlich 2019; Liu et al. 2018a ; Luo et al. 2018).

Altered DNA methylation was also implicated in DNP 
(Zhang et al. 2015). In this research, the authors found dem-
ethylation of CpG sites in the p2×3r gene promoter region 
in the dorsal root ganglion (DRG) of DNP rats, along with 
an increased expression of purinergic P2X ligand-gated ion 
channel 3 receptor (P2X3R), annotated by the p2×3r gene. 
In type 2 diabetes (T2D), DNA methylation was associated 
with the progression of diabetic peripheral neuropathy (Guo 
et al. 2019). In their study, Kai Guo et al. found differen-
tially methylated CpG sites between significant sural nerve 
regeneration and degeneration. These results indicated that 
DNA methylation and demethylation occurred during the 
progression of diabetes. Although there are reports about 
DNA methylation in DNP, the whole-genome DNA methyla-
tion profiling in DNP DRGs has not been reported.

In this study, we studied the changes in DNA methylation 
in genomic DNA promoter regions in DNP mice. We believe 
this study will provide a better understanding of the role of 
DNA methylation in DNP.

Materials and Methods

Animals. Male C57BL/6 wild-type mice (18–22 g) were pur-
chased from Capital Medical University. Four mice were 
housed per cage in a temperature- and light-controlled room 
with a 12-h:12-h light: dark cycle. Mice were provided water 
and food ad libitum. All animal experimental procedures 
were approved by the experimental animal ethics committee 
of Capital Medical University.

Establishment of Type 1 Diabetics in Mice. Mice were 
fasted overnight and provided free access to water. Next, 
mice were administered an intraperitoneal injection of freshly 
prepared streptozotocin (STZ, 50 mg/kg/day; Sigma, S0130) 
for five consecutive days. Control mice received an intra-
peritoneal injection of citrate buffer (5 mL/kg/day) (Zheng 
et al. 2018) for five days. The fasting blood glucose (mmol/L) 
was detected at the fourth week using the blood sample col-
lected from the tail vein using the ACCU-CHEK® Mobile 
blood glucose meter (Roche). When the blood glucose meter 
showed “high,” the data were recorded as 33.3 mmol/L. Mice 
with fasting blood glucose over 11.1 mmol/L were consid-
ered diabetic and used for subsequent studies. In addition, the 
body weight of mice was recorded.

Paw Withdrawal Threshold. The 50% paw withdrawal 
threshold of hind paws was measured using calibrated von 
Frey hairs (Stoelting, Wood Dale, IL, USA). Briefly, mice 
were placed on a metal mesh floor and covered with trans-
parent plastic cages. Before the test, mice were allowed to 
habituate for at least 30 min for three consecutive days. 
Eight von Frey hairs (0.02, 0.04, 0.07, 0.16, 0.40, 0.60, 1.00, 
1.40 g) were selected (Zheng et al. 2017). Each test began 
with 0.16 g von Frey filament that was applied perpendicu-
larly to the plantar surface in the center of either hind paw 
for 3 to 5 s. Responses were recorded as positive when mice 
showed paw withdrawal, flinching, or paw licking. In addi-
tion, 50% paw withdrawal threshold (PWT) was measured 
using the “up-and-down” method as previously described 
(Chaplan et al. 1994; Chen et al. 2018) and calculated using 
the following formula: 50% PWT (g) = 10X + kd/104, where 
X is the value of the final von Frey hair used, k is the value 
measured from the pattern of positive/negative responses, 
and d is the average increment (in log units) between von 
Frey hairs used. If a mouse responded to the lowest von Frey 
hair, 0.02 g was recorded. If a mouse did not respond to the 
highest von Frey hair, 2.00 g was recorded.

Whole-Genome Bisulfite Sequencing. Harvested L3–L5 
DRGs of mice and mixed DRGs from three mice to obtain 
sufficient tissue and considered as one sample. The control 
and DNP groups included three samples. Genomic DNA 
was extracted from DRGs using the Wizard Genomic DNA 
Purification Kit (Promega) and sequenced in Igenecode Tech-
nology (Beijing, China). The quality of extracted DNA was 
measured and evaluated. Only high-quality genomic DNA 
was used for the subsequent study. The genomic DNA was 
fragmented to about 200 bp by sonication. Bisulfite was used 
to convert the unmethylated cytosine to uracil, whereas meth-
ylated cytosine was unaffected. Finally, PCR amplification 
was performed. The libraries were quantified and sequenced 
on Illumina HiSeq. To better understand the function of 
differentially methylated CpG site annotated genes, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis was 
performed (Kanehisa and Goto 2000). The KEGG database 
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is updated daily and is freely available (http://​www.​genome.​
ad.​jp/​kegg/). A hypergeometric test was used for enrichment 
analysis of the KEGG pathway, and p < 0.05 was considered 
significant.

Data Analysis. Data are expressed as mean ± standard 
error of the mean (SEM). GraphPad Prism 7 software was 
used for statistical analysis. Unpaired Student’s t-test was 
used for comparison between two groups (Fig. 1). A p < 0.05 
was considered significant.

Results

Induction of DNP in Mice

To establish DNP in mice, diabetes was induced in male 
C57BL/6 wild-type mice by intraperitoneal injection 
of STZ for five days. After four weeks, mice with STZ 

treatment showed higher fasting blood glucose (mmol/L) 
when compared with control mice (Fig. 1a), and the val-
ues were 29.30 ± 1.64 mmol/L in STZ-treated mice and 
8.58 ± 0.31 mmol/L in control mice (n = 9). STZ-treated 
mice were significantly lighter in weight (g) than control 
mice (Fig. 1b), with values 22.71 ± 0.65 g in STZ-treated 
mice and 27.99 ± 0.56 g in control mice. Frey hairs method 
used to test the sensitivity to mechanical stimuli revealed 
that STZ-treated mice showed reduced threshold (g) to 
mechanical stimulation in both left and right paws (Fig. 1c, 
d). The values were 0.19 ± 0.04 g in STZ-treated mice and 
1.57 ± 0.17 g in control mice for left paws and 0.18 ± 0.05 g 
in STZ-treated mice versus 1.66 ± 0.15 g in control mice 
for right paws (n = 9). For all the aforementioned cases, 
the data are expressed as mean ± SEM, *** p < 0.001, and 
unpaired t-test. Therefore, STZ-treated mice showed DNP 
behavior.

Fig. 1   Intraperitoneal injec-
tion of STZ to induce DNP in 
mice. a The level of fasting 
blood glucose in control (ctrl) 
and DNP mice. b The body 
weight of ctrl and DNP mice. c 
and d Mechanical allodynia in 
the left and right paws of DNP 
mice. All data are expressed as 
mean ± SEM. ***p < 0.001 when 
compared with ctrl, unpaired 
t-test
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Distribution of Differentially Methylated Regions

The methylation of cytosine in different regions had 
varying effects on gene expression. The analysis of 
our data indicated that 386 promoter regions, 473 exon 
regions, and 8896 intron regions were hypermethylated 
in cytosines, whereas 347 promoter regions, 421 exon 
regions, and 7858 intron regions were hypomethylated 
in cytosines in STZ-induced DNP mice when com-
pared with control mice (Fig. 2a). Further analysis of 
our data revealed that among 386 hypermethylated pro-
moter regions, 376 promoter regions were CpG hyper-
methylated, and among 347 hypomethylated promoter 
regions, 336 promoter regions were CpG hypomethyl-
ated (Fig. 2b). These results indicate that altered DNA 
methylation in promoter regions primarily occurred in 
CpG sites. Based on these findings, we conclude that dif-
ferentially methylated CpG sites play an important role in 
the regulation of gene expression.

Kyoto Encyclopedia of Genes and Genomes 
Enrichment Analysis of Differentially Methylated 
CpG Sites in Promoter Regions

To better understand the function of differentially methylated 
CpG sites in promoter regions, their annotated genes were 
analyzed by the KEGG pathway. We found annotated genes 
in the KEGG pathway that were involved in the sensory sys-
tem, nervous system, neurodegenerative diseases, and energy 

metabolism (Fig. 3). Enrichment analysis showed that 13 
pathways were significantly enriched (p < 0.05), including 
“starch and sugar metabolism” and “glycerophospholipid 
metabolism,” which are involved in diabetes and diabetic 
peripheral neuropathy (Fig. 4). In addition, we noticed that 
the “asthma” pathway includes a gene (IL-10) related to pain 
(Fig. 4; Table 1) (Iwasa et al. 2019; Khan et al. 2015). The 
CpG sites in the IL-10 gene promoter regions were hyper-
methylated in DNP mice, which may inhibit IL-10 expres-
sion and contribute to DNP. This finding was consistent with 
that reported in certain previous studies (Khan et al. 2015). 
The results indicated that altered DNA methylation occurs in 
genes associated with diabetes or pain in DRG of DNP mice.

Discussion

DNA methylation and demethylation are important reg-
ulators of gene expression and play a major role in pain  
(Chidambaran et al. 2017; Garriga et al. 2018; Gombert et al.  
2020; Sun et al. 2015). Although certain reports indicate 
that under pain conditions, altered DNA methylation occurs 
in DRG and contributes to pain sensitivity (Garriga et al. 
2018; Zhang et al. 2015), genomic DNA methylation status  
in DRG with DNP has not been reported. We examined 
the DNA methylation status in the DRG of DNP mice at 
four  weeks using whole-genome bisulfite sequencing 
(WGBS). The results indicate that altered DNA methylation 
occurs primarily in intron regions; however, in the upstream 

Fig. 2   Distribution of differ-
entially methylated CpG sites. 
a The number of differentially 
methylated regions in DNP 
mice when compared with ctrl. 
b The number of promoter 
regions with differentially meth-
ylated CpG sites
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regions, namely, promoter regions, altered DNA methylation 
preferentially occurs in CpG sites (Fig. 2). These findings 
are consistent with those reported earlier (Guo et al. 2019). 
We identified 712 promoter regions with differentially meth-
ylated CpG sites; among these, 376 were hypermethylated, 
and 336 were hypomethylated. DNA methylation at different 
sites had a varying effect on gene expression; for example, 
methylation in the promoter regions usually impeded gene 

transcription, whereas in intragenic regions increased the 
activity of the gene (Guo et al. 2019; Rideout III et al. 1990).

To better understand the function of annotated genes with 
differentially methylated CpG sites, KEGG analysis was 
performed. As expected, the annotated genes were involved 
in the functions of nervous and sensory systems. Enrich-
ment analysis of KEGG pathways revealed that “starch and 
sugar metabolism” and “glycerophospholipid metabolism” 

Fig. 3   KEGG pathway of differentially methylated CpG sites in the promoter regions annotated genes. Some annotated genes are involved in the 
sensory system, nervous system, neurodegenerative disease, and energy metabolism
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were significantly enriched. Similar to our results, Kai Guo 
et al., who performed KEGG pathway enrichment analy-
sis, found that “glycerophospholipid metabolism” pathway 
was significantly enriched. However, they had compared 
significant sural nerve regeneration and degeneration in 
type 2 diabetes, whereas we compared healthy and DNP 
mice in DRG. Reduced sugar and starchy carbohydrate 
intake can reverse diabetic disorder (Feinmann 2016). In 

the “glycerophospholipid metabolism” pathway, glycer-
ophospholipids are components of cell membranes and are 
involved in several neurological diseases, such as Alzhei-
mer’s disease, ischemia, and spinal cord trauma (Farooqui 
and Horrocks 2001; Frisardi et al. 2011). Another signifi-
cantly enriched pathway that attracted our attention was 
the “asthma” pathway, including an annotated gene IL-10. 
Previous studies reported the involvement of IL-10 in pain. 

Fig. 4   Enrichment analysis of KEGG pathways and all 13 signifi-
cantly enriched pathways are shown. The size of the dot means the 
number of genes in each pathway. The color means the p-value. Rich 
factor means the percentage of annotated genes to all genes belong-

ing to the KEGG pathway. A hypergeometric test was used for enrich-
ment analysis of the KEGG pathway. A p < 0.05 was considered sig-
nificant
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Changes in the IL-10 expression in different tissues under 
different pain conditions varied. For example, the expression 
of IL-10 in the paw (skin, muscle, and fascia) increased sig-
nificantly in Complete Freund’s Adjuvant-induced inflam-
matory pain (Martins et al. 2016). However, the levels of 
IL-10 decreased significantly in the affected side of DRGs 
in chronic constriction injury- and partial sciatic ligation-
induced neuropathic pain (Khan et al. 2015). Further analy-
sis of our data revealed that promoter regions of IL-10 were 
hypermethylated, which could inhibit gene expression. 
These results suggest the involvement of decreased IL-10 
expression in DRG in DNP mice, similar to that observed 
in chronic constriction injury and partial sciatic ligation 
neuropathic pain models. Although we found that only the 
IL-10 gene was directly involved in pain, a report indicated 
that curcumin alleviated chronic pain induced-depression by 
modulating glycerophospholipid metabolism and ether lipid 
metabolism (Zhang et al. 2020). These findings suggested 
that genes involved in “glycerophospholipid metabolism” 
and “ether lipid metabolism,” significantly enriched path-
ways in our research, might also be involved in pain.

Conclusions

We observed altered genomic DNA methylation status in 
DRGs of DNP mice. Certain genes were found to be related 
to diabetes, and others were involved in pain conditions. We 
believe that our work will further enrich the knowledge of 
epigenetic regulation in DNP and provide potential targets 
for DNP treatment.
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