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Abstract
Neurodevelopmental disorders are defined as a set of abnormal brain developmental conditions marked by the early child-
hood onset of cognitive, behavioral, and functional deficits leading to memory and learning problems, emotional instability, 
and impulsivity. Autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, fragile X syndrome, 
and Down’s syndrome are a few known examples of neurodevelopmental disorders. Although they are relatively common 
in both developed and developing countries, very little is currently known about their underlying molecular mechanisms. 
Both genetic and environmental factors are known to increase the risk of neurodevelopmental disorders. Current diagnostic 
and screening tests for neurodevelopmental disorders are not reliable; hence, individuals with neurodevelopmental disorders 
are often diagnosed in the later stages. This negatively affects their prognosis and quality of life, prompting the need for a 
better diagnostic biomarker. Recent studies on microRNAs and their altered regulation in diseases have shed some light on 
the possible role they could play in the development of the central nervous system. This review attempts to elucidate our 
current understanding of the role that microRNAs play in neurodevelopmental disorders with the hope of utilizing them as 
potential biomarkers in the future.
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Introduction

The 5th edition of the Diagnostic and Statistical Manual of 
Mental Disorders (DSM-5) defines neurodevelopmental dis-
orders (NDDs) as a range of abnormal brain developmental 
conditions characterized by an early childhood onset of cog-
nitive, behavioral, and functional deficits that can result in 
memory and learning problems, emotional instability, and a 
lack of self-control (American Psychiatric Association 2013). 
Common NDDs include autism spectrum disorder (ASD), 
cerebral palsy (CP), attention-deficit/hyperactivity disorder 
(ADHD), Tourette syndrome (TS), fragile X syndrome (FXS), 
and Down’s syndrome (DS) (American Psychiatric Associa-
tion 2013). Children are being increasingly diagnosed with 
these disorders (Boyle et al. 2011). A recent population-based 

study in India reported NDDs to be a significant public health 
burden, with the probability of a clinical diagnosis being as 
high as 1:8 (Arora et al. 2018). There is a higher prevalence 
of comorbidities such as epilepsy (Reilly et al. 2014; Gillberg 
et al. 2017; Alabaf et al. 2019), asthma (Chen et al. 2013; 
Kotey et al. 2014), headaches (Parisi et al. 2014), migraines 
(Fasmer et al. 2011; Sullivan et al. 2014), autoimmune disor-
ders (Zerbo et al. 2015; Frye et al. 2017), and gastrointestinal 
problems (Chaidez et al. 2014; Ferguson et al. 2017; Li et al. 
2017) in individuals with NDDs. A higher mortality rate has 
also been observed among persons with NDDs (Dalsgaard 
et al. 2015; Hirvikoski et al. 2016; Schendel et al. 2016). A 
recent study in sub-Saharan Africa revealed that although 
child mortality rates have dropped from 3.4 million to 2.7 
million between the years 1990 and 2016, the mortality rate 
for children aged < 5 years with NDDs has increased from 
8.6 to 14.7 million (Olusanya et al. 2018). The prevalence 
of ASD in the USA has increased over time, with 1 in 150 
being reported in 2000–2002, 1 in 59 reported in 2014, and 
1 in 54 reported in 2016 (Maenner et al. 2020). Similarly, 
the incidence rate of DS in the USA has also increased from 
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49,923 in 1950 to 206,366 in 2010 (de Graaf et al. 2016). 
The global burden of ADHD and TS has been reported to 
be 5.29% (Smith 2017) and 0.3–1% respectively (Cath et al. 
2011). Comparatively, FXS has a global incidence rate of 
1/4000 in males and 1/8000 in females (Peprah 2011); for in-
depth population-based reports, refer to Peprah (2011). Stud-
ies have also shown that siblings of individuals with CP have a 
higher chance of developing NDDs and have higher mortality 
rates (Tollånes et al. 2016). A lack of education combined 
with the stigma and fear surrounding these disorders often 
results in children with NDDs being abandoned or institu-
tionalized, which can cause further trauma and exacerbate 
psychiatric symptoms (Dumaret and Rosset 1993; Solomon 
and Peltz 2008). Unless tested for during pregnancy, expectant 
mothers are often unaware that their fetus has an NDD and are  
unprepared for raising such an individual. On the other hand, 
couples may worry about having a severely affected child with 
NDD and may choose to terminate the pregnancy upon detec-
tion; for example, the termination rate in Denmark following 
a prenatal diagnosis of DS is high (> 95%) (Lou et al. 2018). 
However, these tests are not always reliable (Sainz et al. 
2012; Alldred et al. 2017; Santorum et al. 2017; Wiechec 
et al. 2017); benign variations in maternal DNA have been 
shown to increase false-positive screening results (Snyder 
et al. 2015). Similarly, these tests have also been known to 
generate false-negative results, which could in turn have nega-
tive psychological effects on the parents and their child (Hall 
et al. 2000; Simonsen et al. 2013; Simionescu and Stanescu 
2020). One factor that may often be overlooked by parents is 
that NDDs tend to vary in their severity, range, and duration of 
symptoms. Hence, a positive diagnosis does not always mean 
that the fetus will develop the most severe form of the condi-
tion. Therefore, better counseling and a more robust screen-
ing procedure are necessary to ensure that parents can make 
informed decisions.

The Need for an Early Diagnostic Biomarker

While some NDDs such as DS have prenatal screening options, 
several other NDDs are diagnosed much later after birth. Indi-
viduals with DS or FXS may exhibit certain facial phenotypes 
specific to their condition, which increases the likelihood of 
early detection (Cornejo et al. 2017; Ciaccio et al. 2017). How-
ever, this is not true for NDDs such as ADHD, ASD, and TS 
that lack specific diagnostic tests and rely heavily on a behav-
ioral diagnosis (Wilens and Spencer 2010; Randall et al. 2018; 
Novotny et al. 2018). Studies have shown that compared with 
males, females with ASD have a higher risk of remaining undi-
agnosed or being diagnosed later into adulthood, with some 
individuals diagnosed after the age of 40 years (Lehnhardt 
et al. 2015; Bargiela et al. 2016; Young et al. 2018; Leedham 
et al. 2019; Green et al. 2019). The diagnosis of ADHD is 

often contentious, with some studies claiming ADHD to be 
an overly diagnosed and over-treated condition, whereas other 
researchers propose the opposite (Hamed et al. 2015). Patients 
with ASD are often misdiagnosed with ADHD in their early 
years only to be correctly diagnosed much later in their ado-
lescence (Kentrou et al. 2018). In the case of TS, although the 
usual age at symptom onset is around 3 years, individuals are 
typically not diagnosed until they are aged 8 years (Mol Debes 
et al. 2008; Shilon et al. 2008). This late diagnosis usually has 
a negative impact on individuals with NDDs as they can go 
through life being misunderstood, self-critical, and often suf-
fer from psychosocial difficulties, identity crises, addiction, 
and poor mental health, leading to suicidal ideations (Huntley 
et al. 2012; Agnew-Blais et al. 2018; Leedham et al. 2019). 
Therefore, there is a vital need for early diagnosis and inter-
vention for individuals with NDDs. An early diagnosis would 
provide more adjustment time for families to educate and pre-
pare themselves for raising an individual with special needs. 
This would also ensure that lifestyle changes are made accord-
ing to the child’s needs, including the use of applied behavior 
analysis, and other interventions such as the Early Start Denver 
Model, Picture Exchange Communication Systems, Discrete 
Trial Training, and Pivotal Response Treatment are used to 
educate children with NDDs instead of relying on the conven-
tional education system (Yu et al. 2020). Early childhood inter-
vention and treatment have been shown to reduce symptoms 
and complications of NDDs in adulthood, ensuring an overall 
better quality of life (Angulo-Barroso et al. 2008; Dawson et al. 
2012; O’Neill et al. 2012; McPhilemy and Dillenburger 2013; 
Anderson et al. 2014; Sullivan et al. 2014; Ornoy and Spivak 
2019; Smith et al. 2020). However, the current diagnostic tools 
are not precise enough to detect NDDs in their early stages, 
thus prompting the search for a more accurate and reliable bio-
marker that can aid in confirming the diagnosis and facilitate 
personalization of treatment regimens. MicroRNA (miRNA) 
has recently been discovered to play a role in several NDDs. 
This review aims to highlight its potential role as a biomarker.

miRNA: an Overview

miRNAs are small non-coding RNAs (~ 22 nucleotides in 
length) that are involved in the regulation of gene expression 
through RNA interference or gene silencing (O’Brien et al. 
2018). Their function is critical to survival, as each cell in 
the human body possesses identical copies of DNA and cells 
differentiate and mature in response to the set of genes that 
are expressed or silenced. The process of miRNA synthesis 
begins in the nucleus, where RNA polymerase II transcribes 
miRNA genes into a hairpin loop structure referred to as pri-
mary miRNA (Yin et al. 2015). The RNA-binding protein 
DiGeorge Syndrome Critical Region 8 (DGCR8) then detects 
specific motifs such as the N6-methyladenylated GGAC 
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region of the primary miRNA and binds to it (Alarcon et al. 
2015). This is followed by DGCR8 coupling with a ribonu-
clease III enzyme called Drosha, which cleaves the primary 
miRNA into a smaller precursor miRNA (Denli et al. 2004). 
This precursor miRNA is then exported into the cytoplasm 
through a nuclear pore via the GTP-binding nuclear protein 
Ran/exportin-5 complex (Bohnsack et al. 2004). Upon its 
release into the cytoplasm, this precursor miRNA is recog-
nized by another enzyme, the RNase III endonuclease Dicer, 
which further cleaves the terminal loop of this precursor to 
generate a shorter double-stranded mature miRNA (Liu 
et al. 2015). The protein Argonaute-2 (AGO-2) then associ-
ates with Dicer to bind to the mature miRNA, which initi-
ates the unwinding of the double-stranded structure (Bossé 
and Simard 2010). This single guide strand binds to AGO-2 
couples with other proteins to form the miRNA-induced 
silencing complex (RISC), which carries out the crucial func-
tion of gene silencing (Kawamata and Tomari 2010). Upon 
completion of transcription, this structure can interact with 
complementary sequences on the newly generated messenger 
RNA (mRNA) and can inactivate it either by cleaving the 
mRNA strand (Park and Shin 2014) or by hindering mRNA-
ribosomal complex interaction (Antic et al. 2015) (all steps 
are illustrated in Fig. 1), thus inhibiting translation and pro-
tein generation. Studies have revealed that miRNAs regulate 
gene silencing by interacting with either the promoter region, 
the 5′ untranslated region (UTR), or the 3′ UTR of their tar-
get mRNA (Huntzinger and Izaurralde 2011; Xu et al. 2014; 
Ipsaro and Joshua-Tor et al. 2015). The interaction with the 
5′ UTR results in gene silencing (Zhang et al. 2018), whereas 
the binding of miRNA to the promoter region results in the 
upregulation of transcription (Dharap et al. 2013). Although 
miRNAs are usually known for gene silencing, several stud-
ies have reported their paradoxical role in the upregulation 
of gene expression and translational activation (Vasudevan 
and Steitz 2007; Orom et al. 2008; Truesdell et al. 2012; 
Bukhari et al. 2016). For further information, readers can 
refer to the comprehensive reviews detailing the regulation 
and function of miRNAs by Gebert and MacRae (2019) and 
O’Brien et al. (2018). Numerous studies have confirmed the 
involvement of miRNAs in embryogenesis (Tang et al. 2007; 
Feng et al. 2015; Yuan et al. 2016), apoptosis (Chang et al. 
2007; Asuthkar et al. 2012; Adams et al. 2016), cell adhe-
sion, and intracellular signaling (Harris et al. 2008; Cuman 
et al., 2015; Lui et al. 2015; Cheng et al. 2020). miRNAs 
are highly expressed in the central nervous system and have 
been shown to play a role in synaptic plasticity and memory 
formation (Busto et al. 2015; Ryan et al. 2015; Kremer et al. 
2018; Smith and Kenny 2018), axonal development of retinal 
ganglion cells (Marler et al. 2014; He et al. 2018; Mak et al. 
2020), differentiation of oligodendrocytes (Dugas et al. 2010; 
Letzen et al. 2010; Buller et al. 2012; Santra et al. 2014) and 
astrocytes (Neo et al. 2014; Shenoy et al. 2015; Zhou et al. 

2017), and the differentiation, proliferation, migration, and 
axonal growth of neural progenitor cells (Otaegi et al. 2011; 
Dajas-Bailador et al. 2012; Bian et al. 2013; Zhang et al. 
2013; Radhakrishnan and Alwin Prem Anand 2016), thus 
highlighting their critical role in neurodevelopment. Due to 
its diverse physiological roles, the dysregulation of miRNA 
has been implicated in numerous diseases including cancer 
(Peng and Croce, 2016), with more recent studies reporting 
altered miRNA activity in NDDs.

miRNA Alterations in Neurodevelopmental 
Disorders

Autism Spectrum Disorder

The term ASD has been assigned to individuals suffering 
from a set of heterogenous NDDs characterized by social 
communication deficits and repetitive behavior, with intel-
lectual function ranging from severely impaired to excep-
tionally gifted (Nakata et al. 2019). Studies have suggested 
various causes and risk factors for ASD, including genetics, 
drug usage (e.g. anti-depressants), and environmental factors 
(e.g., toxins, maternal infection) (Amaral 2017). Numerous 
studies based on children with ASD have reported altera-
tions in their miRNA levels (Vasu et al. 2014; Hicks et al. 
2016; Kichukova et al. 2017; Hicks et al. 2020; Sehovic 
et al. 2020). Their saliva samples revealed downregulation 
of miR-23a-3p, miR-32-5p, miR-140-3p, and miR-628-5p, 
and an upregulation of miR-7-5p (Sehovic et al. 2020). The 
predicted target genes for these miRNAs (ZBTB20, GAS7, 
NTRK2, and SCN2A) (Table 1) have previously been shown 
to be involved in critical neural processes and have also been 
linked to ASD (Garbett et al. 2008; Chandley et al. 2015; 
Zhang et al. 2016; Jones et al. 2018; Spratt et al. 2019). 
Expression levels of 14 other miRNAs were also shown to 
be altered in the serum of children with ASD, with expres-
sion levels of five miRNAs (miR-181b-5p, miR-320a, miR-
572, miR-19b-3p, and miR-130a-3p) being significantly 
different enough to distinguish ASD individuals from 
the control group (Vasu et al. 2014). Furthermore, higher 
expression levels of serum miR-365a-3p, miR-619-5p, and 
miR-664a-3p were detected in children with ASD, along 
with the downregulation of miR-197-5p, miR-328-3p, miR-
424-5p, miR-500a-5p, and miR-3135a (Kichukova et al. 
2017). Studies have identified Fragile X Mental Retardation 
1 (FMR1) and Forkhead Box Protein P2 (FOXP2) mRNAs 
to be common targets for several of these altered miRNAs 
(Table 1) (Hicks et al. 2016; Sehovic et al. 2020). FMR1 
is essential for the regulation of synapses, and alterations 
in its resulting protein can cause FXS (Wang et al. 2012), 
which is known to account for 20% of female and 40–60% of 
male patients with ASD (Chaste et al. 2012). Additionally, 
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Fig. 1   The biosynthesis of 
microRNA (miRNA). The 
process begins in the nucleus of 
the cell where RNA Polymerase 
II transcribes the miRNA gene 
of interest to generate a primary 
miRNA. The primary miRNA 
is then cleaved by DiGeorge 
Syndrome Critical Region 8 
(DGCR8) and Drosha to create 
a shorter precursor miRNA 
which is transported into the 
cytoplasm via Exportin 5 in 
a RanGTP-dependent man-
ner. The terminal loop of this 
precursor miRNA undergoes 
further cleavage via Dicer 
resulting in the formation of a 
mature double stranded miRNA 
which proceeds to couple 
with Argonaute-2 (AGO-2), 
initiating the unwinding of the 
double stranded structure. This 
structure is recognized by sev-
eral other proteins that associate 
with it to form the miRNA-
induced silencing complex 
(RISC). The RISC carries out 
gene silencing either through 
messenger RNA (mRNA) cleav-
age or translational repression
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FOXP2 has been previously implicated in speech develop-
ment and language disorders (Kurt et al. 2012); thus, both 
FMR1 and FOXP2 are strong candidates for generating ASD 
phenotypes. Children with ASD have also been shown to 
have specifically altered miRNAs compared with peers with 
non-ASD NDDs (Hicks et al. 2020). A test that screens for 
these miRNAs could therefore be more accurate in diag-
nosing ASD and distinguishing it from other NDDs rela-
tive to behavioral analysis alone. Another study identified 
overexpression of serum miR-486-3p in individuals with 
ASD resulting in the downregulation of AT-Rich Interac-
tion Domain 1B (ARID1B) protein expression (Table 1) 
(Yu et al. 2018). ARID1B is crucial for neuronal differen-
tiation and maturation (Ka et al. 2016; Ronzoni et al. 2016), 
and an insufficiency of this protein can lead to alterations 
in the expression levels of c-Fos and Arc resulting in the 
abnormal development of dendrites and synapses (Yu et al. 
2018). These neural aberrations have previously been linked 
to cognitive deficits and autistic behavior (Curatolo et al. 
2014; Tang et al. 2014). In addition, mutations in ARID1B 
have also been associated with the development of ASD 
(Pinto et al. 2014; D’Gama et al. 2015; Alvarez-Mora et al. 
2016). The upregulation of miR-23a and downregulation 
of miR-106b have also been correlated with ASD and its 
associated comorbidities (Abu-Elneel et al. 2008; Sarachana 
et al. 2010). Altered pre-miRNA and miRNA expression 
levels have also been also detected in the superior temporal 
sulcus (miR-4753-5p and miR-1) and in the primary audi-
tory cortex (miR-664-3p, miR-4709-3p, miR-4742-3p and 
miR-297) of patients with ASD (Ander et al. 2015). The 
target genes of these miRNAs have been reported to be func-
tionally involved in the cell cycle, various neural processes, 
immune pathways, and canonical signaling pathways such 
as the PI3K-Akt signaling pathway, all of which have been 
associated with the development of ASD (Ander et al. 2015). 
Similarly, another study reported that patients with ASD 
exhibited higher expression levels of miR34c-5p, miR92a-
2-5p, miR-145-5p, and miR199a-5p, as well as lower expres-
sion levels of miR27a-3p, miR19-b-1-5p, and miR193a-5p 
(Vaccaro et al. 2018). These miRNAs were shown to regu-
late SIRT1, HDAC2 (Table 1), immune system development 
and response, and the PI3K/Akt/TSC/mTOR signaling path-
ways (Vaccaro et al. 2018). Previous studies have reported 
similar expression levels of these miRNAs in patients with 
Alzheimer’s disease (AD) (Wang et al. 2014). Additionally, 
MECP2, a common target of miR-199a-5p (Table 1), has 
also been linked to Rett syndrome (RS), which could explain 
the similarities observed between ASD and RS (Vaccaro 
et al. 2018). A recent study identified overlapping expres-
sion levels of miR-19a-3p, miR-361-5p, miR-3613-3p, miR-
150-5p, miR-126-3p, and miR-499a-5p in both animal and 
human models of ASD (Ozkul et al. 2020). Several studies 
have also observed altered miRNA function in association 

with ASD: miR-34b and miR-103a-3p (Huang et al. 2015), 
hsa-miR-21-3p and hsa_can_1002-m (Wu et al. 2016), miR-
6126 (Nakata et al. 2019), miR486-3p (Popov et al. 2012), 
and miR-142-5p, miR-142-3p, miR-451a, miR-144-3p, and 
miR-21-5p (Mor et al. 2015). The genes regulated by these 
miRNAs have all been predicted to be directly or indirectly 
involved in the pathophysiology of ASD and its associated 
comorbidities. Age-dependent alterations in miRNA expres-
sion levels have also been observed in patients with ASD 
(Stamova et al. 2015); this could explain the lack of a coher-
ent trend in previous studies.

Attention‑Deficit/Hyperactivity Disorder

Commonly observed in children, ADHD is a complex 
NDD characterized by hyperactivity and an inability to 
pay attention or control impulses, which can hinder edu-
cational progress and cause symptoms that persist into 
adulthood (Wu et al. 2015). This disorder can present 
with comorbidities such as ASD and other behavioral 
disorders in association with common risk factors such 
as genetics, early childhood trauma, prenatal or postna-
tal exposure to lead, and premature birth (Thapar et al. 
2013). Children with ADHD have been shown to have 
higher serum expression levels of hsa-miR-101-3p, hsa-
miR-130a-3p, hsa-miR-138-5p, and hsa-miR-195-5p 
as well as lower expression levels of hsa-miR-106b-5p 
(Zadehbagheri et al. 2019). Hsa-miR-101 is responsible 
for various neurological processes and in particular neu-
ronal excitation, synapse formation, and dendritic growth. 
By supervising the expression levels of NKCC1, KIF1A, 
and ANK2 (Table 1), it can modulate gamma aminobu-
tyric acid (GABA) signaling and protect the brain from 
hyperexcitability and memory impairment (Lippi et al. 
2016). In hippocampal neurons, this miRNA is known 
to regulate Ran-binding protein (RANBP9) (Table  1) 
expression levels and hence control the metabolism of 
the amyloid precursor protein (APP), which plays a criti-
cal role in AD (Barbato et al. 2014; Zadehbagheri et al. 
2019). Hsa-miR-130a controls neurite outgrowth and den-
dritic density by repressing the MECP2 gene (Table 1), 
a dysfunction that can lead to RS and ASD (Zhang et al. 
2016). It has been suggested that ADHD and ASD may 
share a common molecular mechanism (Zadehbagheri 
et al. 2019). hsa-miR-138-5p has been shown to monitor 
dendritic spine formation in hippocampal neurons (Siegel 
et al. 2009) by upregulating glycogen synthase kinase-3β 
(GSK-3β) (Table  1) and downregulating retinoic acid 
receptor alpha (RARA​) (Table 1). This enhances the phos-
phorylation of tau protein, which is involved in synaptic 
plasticity and memory formation (Schröder et al. 2014; 
Wang et al. 2015). Animal model studies have revealed 
that hsa-miR-195-5p inhibits dendritic degeneration and 
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neuronal death by downregulating APP, death receptor 
6 (DR-6), and BACE1 (Table 1) in the hippocampal and 
cortical brain regions (Ai et al. 2013; Chen et al. 2017). 
On the other hand, hsa-miR-106b orchestrates cell cycle 
arrest during neuronal lineage differentiation by modulat-
ing cyclin D1 (CCND1), E2F1, CDKN1A (p21), PTEN, 
RB1, RBL1 (p107), and RBL2 (p130) (Table 1) expres-
sion levels (Trompeter et al. 2011). Previous studies have 
also reported polymorphisms in the gene for hsa-miR-
106b to be linked to ASD (Toma et al. 2015). Signifi-
cantly higher serum levels of miRNA-let-7d have been 
detected in children with ADHD relative to their healthy 
counterparts (Wu et al. 2015; Cao et al. 2019). miRNA-
let-7d plays a crucial role in cellular differentiation and 
pluripotency, somatic reprogramming, neurogenesis, and 
synaptic plasticity (Andolfo et al. 2010; Wong et al. 2012; 
Wu et al. 2015); animal model studies have identified that 
overexpression of this miRNA in the rat prefrontal cortex 
results in suppression of the TH gene (Table 1), which 
is essential for dopamine metabolism (Wu et al. 2010; 
Weaver et al. 2012). Altered expression levels of miR-
652-3p, miR-148b-3p, and miR-942-5p were also detected 
in patients with ADHD in association with the downregu-
lation of their target genes (B4GALT2, SLC6A9, TLE1, 
ANK3, TRIO, TAF1, and SYNE1) (Table 1) (Nuzziello 
et al. 2019). These genes are crucial for neuron survival 
(Dastidar et al. 2012), cognitive functioning (Iqbal et al. 
2013), neuronal migration (Zong et al. 2015), axon guid-
ance (Zong et al. 2015), memory formation (Nuzziello 
et al. 2019), and regulation of glutamate and GABAA 
receptors at the postsynaptic membrane (Zhang et  al. 
2017; Rathje et al. 2019). Several other miRNAs have 
also been reported to alter the expression of ADHD- 
associated genes such as SNAP-25, BDNF, DAT1, HTR2C, 
and HTR1B (Wu et al. 2010; Németh et al. 2013; Sánchez-
Mora et al. 2013; Kandemir et al. 2014; Ye et al. 2016; Wu 
et al. 2017; Srivastav et al. 2018; Tian et al. 2019; Huang 
et al. 2019). Recent studies have linked the SLC1A3 gene 
with ADHD susceptibility (Turic et  al. 2005; Huang 
et al. 2019). This gene encodes the excitatory amino acid 
transporter 1 (EAAT1), which is essential for astrocytic 
glutamate reuptake upon synapse, preventing spill-over 
into neighboring synapses; it is predominantly found in 
the cerebellum, which has a role in motor movements 
(Parkin et al. 2018). Mutations in this gene can alter the 
hsa-miR-3171 (Table 1) binding site (Huang et al. 2019). 
Knockdown of the EAAT1 analogue in mice has been 
shown to generate ADHD phenotypes (Karlsson et al. 
2008; Karlsson et al. 2009). Furthermore, methylpheni-
date, the conventional drug used to treat ADHD, has been 
proven to control the striatal levels of EAAT1 (Cavaliere 
et al. 2012), further emphasizing the crucial regulatory 
role of miRNAs in NDDs.

Tourette Syndrome

Characterized by the early childhood onset of involuntary 
motor and vocal tics, TS can be present with other comorbid 
disorders such as obsessive-compulsive disorder, anxiety, 
ASD, ADHD, behavioral disorders, and learning disabilities 
(Pagliaroli et al. 2020). However, unlike other NDDs, little is 
currently known about the molecular mechanisms underly-
ing TS. Several studies have detected genetic variants of the 
Slit protein and Trk-like family member 1 (SLITRK1) gene 
in brains of individuals affected by TS (Abelson et al. 2005; 
O’Roak et al. 2010). Similar expression levels of mutant 
SLITRK1 mRNA (containing var321) and hsa-miR-189 have 
been noted in the neocortex, hippocampus, and cerebellum 
of TS mice models (Abelson et al. 2005). SLITRK1 is crucial 
for dendritic growth in neurons, and its expression levels 
are regulated by miR-189 (Table 1) (Abelson et al. 2005). 
However, the var321 mutation upregulates the miR-189 
silencing function, which results in the neuro-morphological 
abnormalities seen in patients with TS (Abelson et al. 2005; 
O’Roak et al. 2010). Several studies have detected poly-
morphisms in the SLITRK1 gene that contributes to the TS 
phenotype (Miranda et al. 2009; Karagiannidis et al. 2012; 
Inai et al. 2015); however, other studies have reported no 
SLITRK1 gene variants in certain populations (Deng et al. 
2006; Fabbrini et al. 2007; Zimprich et al. 2008; Yasmeen 
et al. 2013), suggesting genetic heterogeneity in TS. Lower 
expression levels of miR-429 have also been reported in 
patients with TS relative to healthy controls (Rizzo et al. 
2015). miR-429 belongs to the miR-200 family that is known 
to modulate the epithelial-mesenchymal transition by silenc-
ing ZEB1 and ZEB2 (Table 1) (Korpal et al. 2008; Ragusa 
et al. 2010). These miRNAs have been shown to induce 
differentiation of midbrain dopaminergic neurons as well 
as ventral midbrain and hindbrain neural progenitor cells 
by regulating SOX2 and E2F3 (Table 1) expression levels 
(Peng et al. 2012). Animal model studies have also reported 
that miR-429 plays a crucial role in dendrite formation and 
synaptic plasticity (Eipper-Mains et al. 2011; Rizzo et al. 
2015), thus further supporting the morphological altera-
tions observed in brains of individuals with TS (Steeves 
et al. 2008; Patel et al. 2011; Tossell et al. 2011; Rizzo et al. 
2015). miR-429 shares the same genetic locus (1p36.33) as 
several copy number variants have been implicated in ASD 
(Vaishnavi et al. 2013; Marrale et al. 2014). Genetic vari-
ants of the nicotinic acetylcholine receptor alpha 7 subunit 
(CHRNA7) gene and Netrin 4 (NTN4) gene (Table 1) have 
also been reported to alter the seed sequence of miRNA-
106b and miRNA-198b, resulting in a five-fold reduction 
in their expression levels in brains of individuals affected 
by TS (Pagliaroli et al. 2017). CHRNA7 is essential for the 
release of various neurotransmitters (Sinkus et al. 2015) and 
for cognitive processes (Wallace and Porter 2011; Lendvai 
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et al. 2013; Wallace and Bertrand 2013), whereas NTN4 has 
been shown to play a role in cell migration, tissue morpho-
genesis, angiogenesis, and apoptosis (Xu et al. 2017). Lower 
expression levels of CHRNA7 have also been previously 
reported in ASD brains, suggesting a possible link between 
the two (Allen-Brady et al. 2010; Yasui et al. 2011). Simi-
larly, a more recent study reported genetic variants of the 
LIM homeobox 6 (LHX6), inner mitochondrial membrane 
peptidase subunit 2 (IMMP2L), and arylacetamide deacety-
lase (AADAC) genes were associated with altered miRNA 
function in patients with TS (Pagliaroli et al. 2020). LHX6 is 
critical for the regulation of striatal and cortical interneurons 
(Grigoriou et al. 1998; Liodis et al. 2007; Zhao et al. 2008; 
Kreitzer et al. 2009) as well as the differentiation and forma-
tion of neural and lymphoid cells (Tepper et al. 2007). The 
protein encoded by IMMP2L ensures that transit proteins 
in the mitochondria are correctly processed, thus indirectly 
regulating apoptosis (Pagliaroli et al. 2020). Although not 
much is known about the function of the AADAC protein 
in the brain, studies have detected AADAC expressed in the 
hippocampus, corpus callosum, and caudate nucleus, which 
are regions commonly affected in TS (Plessen et al. 2009). 
The mutant AADAC also occurs in close proximity to the 
binding site of miR-4263, which has been reported to play a 
role in the differentiation of embryonic and neural stem cells 
(Goff et al. 2009; Pagliaroli et al. 2020), thus suggesting a 
possible role in TS.

Fragile X Syndrome

FXS is a common X-linked inherited intellectual disorder 
that arises due to hypermethylation of the upstream CpG 
islands and CGG repeats in the 5′ UTR of the FMR1 gene, 
resulting in the downregulation of fragile mental retar-
dation protein (FMRP) expression, which is an essential 
translational regulator during synapsis (Jin et al. 2004a; 
Wang et al. 2012). FXS has been shown to be a monogenic 
cause of ASD (Wang et al. 2012). FMRP can reversibly 
block ribosomal progression on mRNA during transla-
tion, thus regulating the levels of several presynaptic and 
postsynaptic proteins that have been associated with ASD 
(Darnell et al. 2011). Early studies in Drosophila have 
revealed that the miRNA protein AGO-1 predominantly 
regulates FMRP function during neurodevelopment and 
synaptogenesis (Jin et al. 2004b), whereas modulation via 
the bantam miRNA has been shown to be involved in pri-
mordial germ cell differentiation and maintenance (Yang 
et al. 2009). miR-125 and miR-132 (Table 1) are known 
to interact with FMRP to regulate group 1 metabotropic 
glutamate receptors (mGluR1) and N-methyl-d-aspartate 
receptor (NMDAR) signaling during normal neurodevel-
opment (Lin 2015). An in vivo study in zebrafish that 
utilized anti-FMR1 miRNA detected synaptic deformities 

and increased long-term depression (LTD) via mGluR1 
(Lin et al. 2006). Another zebrafish study reported that 
miRNA overexpression resulted in hypermethylation of 
the FMR1 5′-r(CGG) region causing neurite deformations 
and synaptic dysfunction, suggesting a crucial role in 
FXS (Chang et al. 2008). The 3′ UTR of the FMR1 gene 
was also shown to be targeted by miR-19b, miR-302b*, 
and miR-323-3p (Table 1), causing gene repression and 
generating the FXS phenotype (Yi et al. 2010). A knock-
out study in mice revealed overexpression of several 
pre-miRNAs and miRNAs, with miR-34b, miR-340, and 
miR-148a (Table 1) shown to significantly downregulate 
reporter gene expression levels through the Met 3′ UTR 
(Liu et al. 2015). The miRNA miR-302 has been shown 
to play a physiological role by inhibiting FMR1 transla-
tion and regulating neurodevelopment during the early 
stages of embryogenesis (Lin 2015). Following the blasto-
cyst stage, miR-302 expression levels are downregulated, 
thus freeing FMR1 to synthesize FMRP and initiate neural 
development. However, in FXS, there is an accumulation 
of mutated miRNAs that results in hypermethylation of 
the promoter regions of the FMR1 gene, causing gene 
repression and a lack of FMRP production (Lin 2015). 
During spermatogenesis, the accumulation of these 
mutated miRNAs results in the downregulation of FMRP 
expression, causing hyperproliferation of Sertoli cells 
and spermatogenic defects (Ramaiah et al. 2019). These 
miRNAs have also been reported to modulate the levels of 
the eukaryotic translational initiation factor (eIF4E) and 
the cytoplasmic FMR1 interacting protein 1 (CYFIP1) 
that, when coupled with FMRP, create a translational 
regulatory complex (Ramaiah et al. 2019). A more recent 
in vitro study reported that the genes involved in the dif-
ferentiation of neurons and axon guidance were abnor-
mally expressed in FXS-derived neurons (Halevy et al. 
2015). These genes were shown to be targeted by the RE-1 
silencing transcription factor (REST), which was over-
expressed in FXS cells. A further investigation revealed 
lower expression levels of hsa-mir-382 in these cells, and 
the subsequent reintroduction of an hsa-mir-382 (Table 1) 
analog resulted in REST suppression and upregulation 
of its target genes, thus highlighting the importance of 
miRNAs in normal neurodevelopment. In addition, recent 
urine samples from children with FXS revealed the over-
expression of several miRNAs involved in the regulation 
of developmental processes, homeostasis, and neuronal 
function (Putkonen et al. 2020). Of these miRNAs, miR-
125a was shown to have a significantly higher expres-
sion level compared with the control group. miR-125a 
has been associated with normal mGluR1 regulation, 
thereby hindering synaptic plasticity in FXS (Putkonen 
et al. 2020). This further supports the notion that miRNAs 
can be used as potential biomarkers for FXS.
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Down’s Syndrome

DS or trisomy 21 is a chromosomal abnormality that arises 
due to an extra copy or fragment of the 21st chromosome. 
It is associated with severe comorbidities including cogni-
tive deficits, mental retardation, immune system disorders, 
leukemia, congenital heart defects, hypotonia, dementia, and 
early onset AD (Lim et al. 2015a). Due to the high mortal-
ity rate associated with this disorder, expectant women are 
widely offered screening and diagnostic testing as optional 
components of prenatal care. The prevalence of DS has been 
directly linked to maternal age (Wu and Morris 2013). A 
recent genome-wide microarray study in DS placental sam-
ples reported overexpression of miRNA on chromosome 
21 (miR-99a, miR-125b, and let-7c) as well as other chro-
mosomes (miR-542-5p, miR-10b, miR-615, and miR-654) 
(Lim et al. 2015b). The placental samples also exhibited 
higher expression levels of mir-1973 and mir-3196, which 
have been suggested to modulate the genes involved in 
neurodevelopment. Another study reported up to 20 genes 
being upregulated in DS placental samples, with BACE2, 
CBS, RUNX1, and CRYAA​ showing significant associations 
with DS comorbidities (Lim et al. 2015a); miR-504, miR-
320c, miR-1298, miR-1297, miR-891b, and miR-513a-3p 
(Table 1) have been reported to be involved in upregula-
tion of these genes. This study also found miR-133b, miR-
188-3p, and miR-1301 to be responsible for the downregula-
tion of five other genes linked to complications of DS such 
as mental retardation, behavioral problems, and congenital 
abnormalities. Several human and animal model studies have 
reported altered miRNA expression levels in fetal samples 
affected by DS (Xu et al. 2013b; Lin et al. 2016; Arena et al. 
2017; Karaca et al. 2018; Zbucka-Kretowska et al. 2019). 
A recent study in pregnant women with fetal DS reported 
elevated levels of hsa-miR-15a, hsa-let-7d, hsa-miR-142, 
hsa-miR-23a, hsa-miR-199, and hsa-miR-191, as well as 
lower levels of hsa-miR-1290, hsa-miR-1915, hsa-miR30e, 
hsa-miR-1260, hsa-miR-483, hsamiR-548, and hsa-miR-590, 
with their target genes being implicated in generating DS 
phenotypes (Zbucka-Kretowska et al. 2019). Another study 
reported higher levels of miR-125b-2, miR-155, and miR-
3156 in the amniotic fluid of pregnant women with fetal 
DS relative to controls (Karaca et al. 2018). Overexpres-
sion of miR-99a-5p, miR-155-5p, and let-7c-5p has also 
been implicated in cardiac anomalies in fetal DS (Izzo et al. 
2017). The prevalence of leukemia and immune system 
disorders in patients with DS could also be attributed to 
alterations in miRNA expression levels (Xu et al. 2013a; 
Shaham et al. 2015). Overexpression of miR-155, miR-
802, miR-125b-2, let-7c, and miR-99a has been reported 
in DS with downregulation of their target mRNA (Elton 
et al. 2010; Elton et al. 2013; Siew et al. 2013; Alexandrov 
et al. 2018). The complement factor H (CFH) mRNA that 

is targeted by miR-155 (Table 1) is critical for neuroprotec-
tion, the immune response, complement opsonization, and 
leukocyte infiltration (Griffiths et al. 2009; Li et al. 2012). 
Thus, the overexpression of miR-155 may silence CFH 
function, possibly resulting in the pathological phenotype 
observed in patients with DS (Li et al. 2012). Both in vivo 
and in vitro studies have reported higher expression levels 
of miR-155 and miR-802 (Table 1) to result in decreased 
levels of methyl-CpG binding protein 2 (MECP2), causing 
developmental defects and neuronal malformations (Elton 
et al. 2010; Keck-Wherley et al. 2011; Lu et al. 2013). Lower 
levels of MECP2 in DS have also been associated with poor 
synaptic strength, which could result in cognitive deficits 
and reduced synaptic plasticity (Chao et al. 2007). Intel-
lectual deficits due to the downregulation of enhancer of 
zeste homolog 2 (EZH2) by miR-138-5p (Table 1) have also 
been associated with DS (Shi et al. 2016). Therefore, altered 
miRNA function could play a significant role in neurodevel-
opment and DS-related comorbidities.

Conclusion

Although our current knowledge regarding the role of miR-
NAs in NDDs is limited, it is a promising area for future 
research. Several of the abovementioned studies detected 
altered miRNA expression levels using liquid biopsy sam-
ples (e.g., blood, urine, saliva) from patients with NDDs, 
thus eliminating the necessity for invasive procedures while 
also providing a more reliable diagnostic method than 
behavioral diagnosis alone. Northern blotting, in situ hybrid-
ization, reverse transcription qPCR, microarray, and next-
generation sequencing are few of the existing assays that can 
detect altered miRNA levels in liquid biopsies (Dave et al. 
2018). However, each method has its advantages and disad-
vantages (summarized by Dave et al. 2018), and researchers 
have yet to discover a full-proof miRNA-based screening 
test for NDDs. Currently, the Food and Drug Administration 
(FDA) has authorized a number of miRNA-based tests for 
cancer diagnosis which have been proven to be more sensi-
tive and specific as compared with the conventional screen-
ing methods (Dave et al. 2018). Therefore, there is a possi-
bility for miRNA to be used as a potential diagnostic marker 
for NDDs in the near future. The utilization of miRNAs 
to facilitate early diagnoses would ensure that individuals 
with NDDs are provided with the right kind of care begin-
ning in their developmental years. They could be introduced 
to special enrichment classes designed for their condition, 
allowing them to learn and develop in a safe environment. 
An early diagnosis would also help prepare families and 
caretakers well in advance. Current treatment options for 
NDDs are limited. However, identification of target miRNAs 
could facilitate the development of new treatment options.
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