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Abstract
Aging is an inevitable process that negatively affects all living organisms and their vital functions. The brain is one of the most 
important organs in living beings and is primarily impacted by aging. The molecular mechanisms of learning, memory and 
cognition are altered over time, and the impairment in these mechanisms can lead to neurodegenerative diseases. Transcrip-
tomics can be used to study these impairments to acquire more detailed information on the affected molecular mechanisms. 
Here we analyzed learning- and memory-related transcriptome data by mapping it on the organism-specific protein–protein 
interactome network. Subnetwork discovery algorithms were applied to discover highly dysregulated subnetworks, which 
were complemented with co-expression-based interactions. The functional analysis shows that the identified subnetworks 
are enriched with genes having roles in synaptic plasticity, gliogenesis, neurogenesis and cognition, which are reported to 
be related to memory and learning. With a detailed analysis, we show that the results from different subnetwork discovery 
algorithms or from different transcriptomic datasets can be successfully reconciled, leading to a memory-learning network 
that sheds light on the molecular mechanisms behind aging and memory-related impairments.

Keywords  Memory-learning mechanisms · Transcriptome data · Subnetwork discovery · Protein–protein interactome 
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Introduction

The brain is the most important organ in higher organisms 
since it controls the functioning of other organs in the body. 
Specifically, it is responsible for higher cognitive functions, 
such as memory, learning and perception. Environmental 
and genetic factors can affect the brain and cause neurode-
generative diseases, but time alone is sufficient to lead to 
brain dysfunction (Crowder,  2014). This functional loss is 
called aging, which is negatively associated with cognition 
and memory performance of the brain. This decline in brain 
function is not understood well because of its complexity; it 
affects multiple systems and molecular processes such as lipid 
metabolism, insulin balance, calcium balance, inflammatory 
processes, mitochondrial function, myelination and extracel-
lular vesicles (Schiera et al. 2020; Harman and Martín 2020; 
Spinelli et al. 2019; Alberini et al. 2018).

Transcriptome data is commonly utilized in the litera-
ture to study the activity of genes in response to diseases 
and other dysfunctions (Malone and Oliver 2011). There 
are several studies in the literature that use transcriptome 
analysis to understand the molecular mechanisms of learning 
and memory. These experiments use the mouse and the rat 
as model organisms because they are readily available and 
have high genetic similarity to humans (Perlman 2016). Rat-
tus norvegicus is commonly used for memory and learning 
experiments. In these experiments, the effect of aging on the 
brain is investigated mostly by using behavioral responses of 
animals to memory tests (Verbitsky et al. 2004). These experi-
ments create a model for the aging brain to understand the 
molecular mechanisms of aging and their effects on memory 
performance by using experimental data from the hippocam-
pus region of the brain. Blalock et al. (Blalock et al. 2003) cre-
ated an aging brain model by comparing young and aged rats, 
which shows that the disturbance in the Ca + signaling mecha-
nism negatively affects neuronal activity in the cell and has 
side effects on bio-processing mechanisms, causing nutrient 
deficiency in neurons. This deficit reduces energy production, 
which is required for signaling mechanisms, and contributes 
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to diminished memory and learning performance (Blalock 
et al. 2003). Rowe et al. (Rowe et al. 2007) created a rat-based 
aging brain model and showed that memory-impaired animals 
have maintenance problems for glucose utilization, leading to 
downregulation in energy-providing astrocytic processes. This 
disturbance causes injury in signaling mechanisms and trig-
gers myelination/demyelination processes. Plasticity mecha-
nisms can be affected by myelination/demyelination processes 
and, consequently, influence learning and memory formation 
(Rowe et al. 2007).

These studies are limited in terms of elucidating 
mechanisms because the transcriptome data was ana-
lyzed without considering molecular interactions. Sub-
network discovery algorithms such as BioNet (Beisser 
et  al. 2010) and KeyPathwayMiner (KPM) (Alcaraz 
et al. 2014) can be employed to map transcriptome data 
on organism-specific protein–protein interactome (PPI) 
data. The aim of these tools is to extract significantly 
affected and interacting proteins from the vast PPI data. 
These algorithms are successful and have been used to 
identify essential mechanisms and proteins in the lit-
erature. KPM has been used, among others, to investi-
gate the molecular mechanism of Huntington’s disease 
(Alcaraz et al. 2011), to find biomarkers for the tumor 
cells (Huang et al. 2017) and to detect the chemotherapy 
response of breast cancer patients (Warsow et al. 2013). 
The BioNet algorithm was used to analyze the effect of 
silencing specific genes in bladder cancer ( Chen et al. 
2017), the mechanisms of ovarian cancer (Yin et al. 2016) 
and the recurrence risk in ovarian cancer patients (Cheng 
et al. 2018). Alternatively, network inference algorithms 
can be used to predict co-expression networks based on 
the correlation between gene expression levels of gene 
pairs. The weighted gene correlation network analysis 
(WGCNA) algorithm (Langfelder and Horvath 2008) was 
used in several studies, including understanding the effect 
of aging on DNA methylation (Horvath et al. 2012), com-
paring normal aging with Alzheimer’s disease condition 
(Miller et al. 2008) and comparing samples from various 
cancer types (Kalamohan et al. 2019). The studies in the 
literature have proven the success of these algorithms in 
discovering disease-associated subnetworks.

Here, we used these efficient subnetwork discovery algo-
rithms, KPM and BioNet, alongside memory- and learning-
related rat-based transcriptome data to discover subnetworks 
from the organism-specific PPI data. Further, we used the 
WGCNA algorithm to find highly correlated protein pairs 
in the discovered subnetworks. The subnetworks from the 
two algorithms and from two independent datasets were 
compared, functionally analyzed and memory and learning 
related proteins were deduced. The analyses led to the con-
struction of a memory-learning network. The main objec-
tive of this study is to reveal memory- and cognition-related 

molecular changes in the brain in response to aging by 
integrating transcriptome data with molecular interaction 
networks.

Methods

Microarray Data and Data Processing

Experimental data was downloaded from the Gene Expres-
sion Omnibus (Clough and Barrett 2016) database with 
the accession numbers GSE854 (Blalock et al. 2003) and 
GSE5666 (Rowe et al. 2007). The samples in both data-
sets were collected from the hippocampal regions of 7-day 
(GSE854) or 5-day (GSE5666) trained rats. Samples from 
nine rats aged 4 months (young) and ten rats aged 24 months 
(old) were used from the GSE854 dataset to understand 
the effect of aging in memory and learning performance. 
The animals were trained with the Object Memory Test 
(OMT) and the Morris water maze (MWM) test. Simi-
larly, the GSE5666 dataset included data from ten rats aged 
4–6 months (young) and 20 rats aged 24–26 months (old) 
trained by the MWM test. In order to make the two data-
sets comparable, only data from 5-day-trained rats were 
selected from the dataset, and the subcategories in the aged 
rats were ignored in our study. The raw transcriptome data 
from both datasets were normalized by the RMA package 
in R, and PCA and Sammon mapping were used to detect 
outliers in MATLAB. Only one sample (GSM132538) from 
the GSE5666 dataset was detected as an outlier and removed 
from the dataset for further analysis. p values between age 
groups were calculated using the limma package in R 
(Ritchie et al. 2015).

Protein–Protein Interactome Data

Rattus norvegicus PPI data was created using five differ-
ent interactome databases, which are BioGrid (Stark et al. 
2006), Mint (Licata et al. 2012), Intact (Orchard et al. 2014), 
UniProt (Bateman 2019) and iRefindex (Razick et al. 2008) 
in December 2018. This interactome consists of 3704 pro-
teins and 7304 interactions. The transcriptome datasets 
used in this study include about 6000 (GSE854) and 12,000 
(GSE5666) unique proteins. Only a fraction of those pro-
teins could be mapped on the interactome, and many pro-
teins that may be relevant to memory and cognition were 
lost. To prevent this loss, the Rattus norvegicus interactome 
was enriched with the Mus musculus interactome by using 
the following criteria: (i) the Mus musculus interactome 
was created by using the five databases mentioned above 
(December 2018), and the size of the interactome was identi-
fied as 10,377 proteins and 36,380 interactions; (ii) ortholo-
gous genes were found by Ensemble BioMart (Yates et al. 
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2020), which matches genes of different organisms based 
on sequence similarity. For this study, only the orthologous 
genes that have the same gene name in both organisms were 
selected to create the final rat interactome. The assumption 
here is as follows: if the genes have the same name in both 
organisms, they have a higher chance of having the same 
function(s). All the interactions of orthologous genes in the 
Mus musculus interactome were transferred to the Rattus 
norvegicus interactome, leading to a final interactome size 
of 9500 proteins and 37,043 interactions.

Subnetwork Discovery

Two different subnetwork discovery algorithms were used 
to create subnetworks. BioNet (Beisser et al. 2010) is an 
R package, and KeyPathwayMiner (Alcaraz et al. 2014) is 
an open-source software project. Both methods use organ-
ism-specific interactome data and p values derived from 
the transcriptome data. The KPM algorithm was used as 
a Cytoscape application (Shannon et al. 2003), and all the 
analyses were performed in Cytoscape. p values were bina-
rized based on the threshold of 0.01 for KPM analysis. If 
the p value of the gene is below the threshold value, this 
gene is considered to be changed significantly, and it is 
assigned with the value of 1; otherwise, it is assigned to 0. 
The threshold value is the first parameter of KPM, and the 
second important parameter is “K value,” which gives the 
number of allowed nonsignificant genes in the discovered 
subnetworks. Interactome data and binarized p values of 
genes were introduced to KPM, and K value was adjusted 
to 2 in all simulations. BioNet analysis was performed in R. 
The false discovery rate (FDR) parameter was set to 0.1 for 
the GSE854 dataset and to 0.05 for the GSE5666 dataset.

Network Inference

The WGCNA algorithm (Langfelder and Horvath 2008) 
available as an R package was used to identify highly cor-
related protein pairs in the detected subnetworks by using 
Pearson correlation. Application of two subnetwork discov-
ery algorithms on two datasets led to a total of four subnet-
works. The combined list of genes from the four subnetworks 
was selected for WGCNA analysis to identify co-expression 
patterns between them. The gene expression data from each 
dataset was introduced to the algorithm separately along 
with the gene list to identify dataset-specific correlated pairs. 
The soft threshold parameter was chosen as 18, which cor-
responded to a 90% scale-free rate. “networkType” was set 
to “signed” to consider only positively correlated gene pairs, 
since they are more likely to have protein–protein interactions 
(Ramani et al. 2008), and they tend to have a more signifi-
cant functional association (Song et al. 2012) compared to 

negatively correlated genes. “minModuleSize” was adjusted 
to 100, and “mergeCutHeight” was adjusted to 0.25 for both 
datasets.

Functional Analysis

g:Profiler (Reimand et al. 2016) was used to detect the com-
mon functions of the proteins in the subnetworks through 
Gene Ontology (GO), pathway, miRNA and transcription 
factor (TF) enrichment analyses. Each subnetwork was func-
tionally analyzed separately in g:Profiler with the default 
correction type (g:Profiler correction) and p value cutoff of 
0.05 for significance. As an alternative approach, GeneCards 
(Stelzer et al. 2016) and NCBI (Agarwala et al. 2016) were 
used to go through the functions of specific proteins manu-
ally when needed.

Results and Discussion

Subnetwork Discovery from Transcriptome Datasets

In this study, BioNet and KPM were used to discover sub-
networks from the organism-specific PPI networks by map-
ping learning- and memory-related transcriptome data. The 
size of the discovered subnetworks is given in Table 1. The 
subnetworks are given in list format in Online Resource 1. 
These four subnetworks have proteins in common, as shown 
in Fig. 1. The GSE854 dataset has 106 proteins in common 
in BioNet and KPM results, and the KPM subnetwork is a 
subset of the BioNet subnetwork. The GSE5666 dataset has 
145 proteins in common in BioNet and KPM results. All 
four subnetworks have only 18 proteins in common, and 229 
proteins are subnetwork-specific, meaning that they appear 
only in one of the subnetworks (Fig. 1).

The exact mechanism of aging and memory deficits has 
not yet been identified. However, several mechanisms were 
reported in the literature related to the learning and memory 
mechanisms. Each subnetwork reported in Fig. 1 is enriched 
by several memory- and learning-related terms reported in 
the literature (Online Resource 2). Among the terms com-
monly observed in all identified subnetworks are gliogen-
esis, neurogenesis, central nervous system development, 
neuron and glial cell differentiations, cytokine production 

Table 1   The size of the subnetworks created by BioNet and KPM 
algorithms for two datasets

Datasets KeyPathwayMiner BioNet

GSE854 106 proteins 156 interac-
tions

219 proteins 419 inter-
actions

GSE5666 240 proteins 311 interac-
tions

203 proteins 273 inter-
actions
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and stimuli, signaling, circadian rhythm and oxidative stress. 
Cytokines are proteins that are responsible for cell inter-
actions and communications. They are known as messen-
ger molecules; they bind to receptors and evoke biological 
activity. In the nervous system, they work for inflamma-
tory responses. In case of nerve injury in neurons or any 
part of the nervous system, macrophages or microglia cells 
can migrate to the injured area, and they produce specific 
growth factors or cytokines that can be used for regenera-
tion of nerve cells and foster neurogenesis, contributing to 
learning and memory mechanisms by creating new connec-
tions between neurons. Gliogenesis and neurogenesis are 
also related mechanisms in learning and memory processes. 
Neurogenesis produces neurons from neuronal stem cells, 
and these neurons are further used in memory and learn-
ing mechanisms. Gliogenesis is responsible for myelination 
and for the production of supporting glia cells, oligoden-
drocytes and astrocytes. These cells protect neurons from 
the environment, repair the damaged parts of neurons and 
create myelin sheets for faster signal transmission (Rusznák 
et al. 2016). Myelin sheets cover axons to prevent them from 
damage and are responsible for safe and faster information 
transmission, by also contributing to the formation of new 
connections (Dutta et al. 2013). Transmission of matter and 
signal occurs through intracellular and intercellular signal-
ling mechanisms. Those mechanisms create signalling net-
works to transport stimuli and response and help neurons 
communicate with each other, contributing to learning and 
memory processes (Koseska and Bastiaens 2017). Circadian 
rhythm is a major molecular process that regulates physical 
events such as the cell cycle, feeding, body temperature, 

sleep–wake cycle and metabolism. This process also influ-
ences memory and learning performance in animals and 
cognitive performance in humans (Antoniadis et al. 2000). 
More specific terms regarding those mechanisms such as 
learning and memory, synaptic signaling, cognition, synap-
tic plasticity, aging, astrocyte differentiation and myelina-
tion also appeared in the enrichment results of some of the 
subnetworks.

Reconciliation of Between‑Subnetwork Differences

Subnetwork analysis was performed by using two methods; 
BioNet (Beisser et al. 2010) and KeyPathwayMiner (Alcaraz 
et al. 2011). BioNet and KPM algorithms both use PPI and 
transcriptome data to discover significant and meaningful 
subnetworks, but they use different methods and different 
parameters. Therefore, these two methods have some advan-
tages and disadvantages over each other. KPM allows users 
to choose the maximum number of nonsignificant genes 
allowed in the subnetwork (the K parameter), but p values 
are introduced to the algorithm in binarized format, which 
makes two significant but different p values the same. Bio-
Net has only one parameter (FDR) and does not binarize p 
values; it weighs each node by using its p value. However, 
the number of nonsignificant genes allowed in discovered 
subnetworks cannot be specified by users. Therefore, we 
first analyzed BioNet modules in terms of nonsignificant 
genes and compared them with KPM modules, which had 
two nonsignificant genes as set by the K parameter. BioNet 
modules have a higher number of nonsignificant genes than 
KPM modules, with eight genes for the GSE8654 dataset 
and 36 genes for the GSE5666 dataset (p value < 0.05). For 
a threshold of 0.01, the numbers are 89 and 49, respectively. 
The functional enrichment analysis results show that desir-
able subnetworks were created by both algorithms, but KPM 
results have more related functional terms about memory, 
learning and cognition (Online Resource 2).

The low overlap between the subnetworks derived 
from different datasets and different discovery algorithms 
(Fig. 1) led us to test the hypothesis that algorithm-specific 
or dataset-specific proteins can indeed have the same func-
tions, reconciling the differences in the results. To this 
aim, we checked the functions of the proteins not com-
mon between the subnetworks in terms of learning and 
memory. Even in the same dataset, nearly 40–50% pro-
teins are different in BioNet and KPM subnetworks. In 
the GSE854 dataset, the KPM subnetwork is a subset of 
the BioNet subnetwork, that is, the BioNet subnetwork 
covers all the proteins identified by the KPM subnet-
work. In the GSE5666 dataset, 145 proteins are common 
in both subnetworks, while 58 proteins are specific to 
the BioNet subnetwork, and 95 proteins are specific to 
the KPM subnetwork (Fig. 1). To understand the reason 

Fig. 1   Intersection of four subnetworks identified from two different 
datasets by two different subnetwork discovery algorithms. Venn dia-
gram representation was obtained from the Venny tool (https​://bioin​fogp.
cnb.csic.es/tools​/venny​/.)
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behind the difference between subnetworks identified by 
the two algorithms in terms of the number of not-shared 
proteins, functional enrichment analysis was performed for 
subnetwork-specific proteins using g:Profiler with a high 
p value cutoff (0.5) to capture all protein-function asso-
ciations. Comparison of the functions of specific proteins 
reveals that 46 proteins from the BioNet subnetwork and 
66 proteins from the KPM subnetwork in the GSE5666 
dataset are different, but they have common functions 
(GO terms) such as system development, regulation of 
biological processes and structure development. Only 12 
proteins from the BioNet subnetwork and 29 proteins from 
the KPM subnetwork are functionally different (Table 2). 
The analysis shows that the majority of the subnetwork-
specific proteins indeed have the same functions. This 
means that one reason behind the discrepancy between 
the results of different algorithms is that different algo-
rithms capture different proteins functioning in the same 
molecular processes.

Reconciliation of Between‑Dataset Differences

Both transcriptomic datasets studied here aim to under-
stand the effect of aging on learning and memory mecha-
nisms by using Rattus norvegicus as a model organism, 
but there are some differences between the two studies. 
These studies used the same organism and same region 
of the brain (hippocampal CA1 region), but different plat-
forms were used for transcriptome analysis. GSE5666 used 
the Affymetrix Rat Expression 230A Array, and GSE854 
used the Affymetrix Rat Genome U34 Array. The number 
of genes that are captured by these chip designs is differ-
ent. GSE854 dataset consists of 8800 probes, and 5748 
of these probes are unique in terms of associated genes, 
but the GSE5666 dataset consists of 15,923 probes, and 
11,860 of the probes are unique. The number of signifi-
cantly changed genes is also different for both datasets for 
young–aged comparison. GSE854 has 407 (7% of data) 
significantly changed genes at threshold of p = 0.01, and 
GSE5666 has 924 (8% of data) significantly changed genes 
at the same threshold. Nearly the same percentage of data 
significantly changed across the two datasets. One other 
difference between the two datasets, which may be the rea-
son behind the differences in the discovered subnetworks, 

is that the samples were taken immediately after the 5-day 
training in GSE5666, while they were taken 24 h after the 
7-day training in GSE854.

KPM and BioNet algorithms map transcriptome data on 
interactome data. For GSE854, 61% of the transcriptome 
data was mapped on the interactome data by KPM, and 
this corresponds to 37% of the proteins in the interactome. 
Nearly 3500 genes were used from the transcriptome data 
for subnetwork discovery analysis. For GSE5666, 72% of 
the transcriptome data and 58% of the interactome data was 
used. Nearly 8500 genes were used for subnetwork discov-
ery analysis. The size of the subnetworks may vary due to 
the chips used in the experiments. Both datasets have 5368 
genes in common (93% of the GSE854 dataset and 45% of 
the GSE5666 dataset). The size of the subnetworks affects 
the common functional property of the subnetwork since as 
the number of nodes increases, their common functions may 
change. Functional enrichment analysis was performed for 
the identified subnetworks in g:Profiler. In the subnetwork 
analysis, GSE854 gave more learning- and memory-related 
terms than GSE5666. They both have neuron, nervous 
system-related terms, cytokine production and regulation, 
immune system processes, neurogenesis and gliogenesis 
functional terms, but in GSE854 synaptic plasticity, learn-
ing and memory terms also explicitly exist in the enrich-
ment analysis results. As a result, GSE854 gives more reli-
able subnetworks based on functional analysis at first sight.

We wanted to check the differences between the data-
sets in terms of subnetworks created by BioNet and KPM. 
In BioNet, only 33 proteins were common between the 
datasets and we checked the functions of different pro-
teins between the datasets (Fig. 1). Functional enrichment 
analysis result reveals that the number of functionally dif-
ferent proteins between the subnetworks derived from the 
two datasets is indeed much lower, since most of the pro-
teins were associated with the same GO functional terms 
(Table 3, Online Resource 3). These different but function-
ally same proteins are related to the cytokine production 
and response, aging, nervous system development, glio-
genesis, axon development, stress response, signaling and 
lipid response. In KPM, only 26 proteins are common in 
both datasets at first sight, and we compared the functions 
of dataset-specific proteins. These proteins were found to 
be commonly associated with cytokine production, oxi-
dative stress, nervous system development, gliogenesis, 
postsynaptic density and neuron-to-neuron synapse func-
tions, and the number of functionally same genes is indeed 
much higher, implying that the discovered subnetworks are 
functionally much more similar to each other (Table 3). 
With this analysis, we have proven that the subnetworks 
that were discovered from the different datasets and ini-
tially found to differ significantly have a high degree of 
functional similarity.

Table 2   Analysis of proteins for the GSE5666 dataset between the 
subnetworks discovered by the two algorithms

Protein definition BioNet KPM

Different proteins 58 95
Functionally same proteins 46 66
Functionally different proteins 12 29
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Critical Assessment of Functional Analysis Results

Functional enrichment analysis reveals that the four discov-
ered subnetworks include memory- and learning-related pro-
teins but some of the proteins did not seem functionally rel-
evant, as reported in Tables 2 and 3 (labelled as functionally 
different proteins). We used two approaches to better under-
stand this result; first, we focused on the less-known path-
ways, processes, miRNAs and transcription factors identified 
in our enrichment analysis results as significantly affected 
and checked if they were reported to be linked to memory-
learning mechanisms in the literature. Then, we performed 
one-by-one investigation of the proteins in the subnetworks 
that were not relevant to learning- and memory-associated 
molecular mechanisms at first sight (Online Resource 3). 
Online Resource 3 provides the list of functionally common/
different proteins for each subnetwork.

Kinase binding is one of the terms identified in the 
functional enrichment analysis that seems not relevant to 
learning and memory. There are some kinases known to 
be involved in memory and learning mechanisms such as 
calcium/calmodulin-dependent protein kinase II (CaMKII), 
extracellular-signal-regulated kinase (ERK1/2), protein 
kinase A (PKA), protein kinase G (PKG), etc. These kinases 
regulate synaptic transmission via changing ion channel 
densities or trigger protein synthesis, which affects synap-
togenesis. Kinase binding and kinase activity is important 
to create, store and recall memory in the adult brain (Giese 
and Mizuno 2013). PKA is a serine–threonine kinase, which 
is known to form hippocampus-dependent memory via con-
trolling synaptic plasticity (Abel and Nguyen 2008). miR-
19b was identified to be enriched in the functional enrich-
ment analysis. It is one of the important miRNAs about 
learning and memory mechanisms. miR-19a-b, miR-20a 
and miR-92a have functions in neurite remodeling and neu-
rogenesis (Schiera et al. 2020). miR-19b targets the ADRB1 
gene, and they have a role in memory stabilization (Volk 
et al. 2014).

There are some transcription factors (EGR1, EGR2, 
EGR3, SRF, WT1) in our functional enrichment analysis 
which seems unrelated to the learning and memory terms 
at first sight. We also checked these transcription factors in 
terms of whether they have a function in controlling learning 

or memory mechanisms. Early growth response (EGR) fac-
tor family proteins increase long-term memory and synap-
tic plasticity with CREB (cAMP response element binding 
protein) and activating protein 1 (AP-1) (Alberini 2009). 
Serum response factor (SRF) is one of the important TFs 
that control long-term memory and synaptic plasticity. This 
TF is primarily expressed in neurons and targets EGR1 and 
EGR2 TFs (Alberini and Kandel 2015). The Zif268/EGR 
TF family is expressed during development and triggers the 
memory formation (Veyrac et al. 2014). EGR1 and EGR3 
TF families are related to the long-term potentiation and syn-
aptic plasticity and are expressed in the nervous system, and 
EGR2 is expressed in Schwann cells to trigger myelination 
in the peripheral nervous system (Adams et al. 2017). There 
are five members in the EGR family, one of which is Wilms 
tumor 1 (WT1). Synaptic plasticity and memory flexibility 
are important mechanisms for learning and memory to regu-
late and control behavior. Any impairment in memory flex-
ibility causes neurodegenerative disorders such as autism. 
WT1 is one of the important TFs responsible for regulating 
synaptic plasticity via decreasing memory strength. This 
TF is activated in the hippocampus, and its overexpression 
causes memory weakness (Mariottini et al. 2019).

The mitogen-activated protein kinase (MAPK) signaling 
pathway and some of the related transcription factors (E2F1, 
TEAD2, SP1) were detected in the enrichment analysis, and 
their relationships with the memory and learning mechanisms 
were checked from the literature. The MAPK signaling path-
way is important for short- and long-term memory formation 
in early phases of development (Ribeiro et al. 2005). MAPK 
expression and activity increase after training to help store 
information in the brain and use it when necessary (Michel 
et al. 2011). MAPK/ERK signaling pathway inhibition causes 
learning memory problems in many species, especially in 
rats (Miao et al. 2018). There are many transcription factors 
that regulate the MAPK signaling pathway, among which 
are TEA domain transcription factor 2 (TEAD2), E2F tran-
scription factor 1 (E2F1) and Sp1 transcription factor (SP1) 
(Zellmer et al. 2010). SP1 is important in Alzheimer’s disease 
to respond to inflammatory signals. It influences memory 
performance, and the absence of this TF causes memory defi-
cits and cognitive dysfunction in mice. SP1 also regulates 
neuronal survival genes (Citron et al. 2015). E2F1 mutation 

Table 3   Number of functionally same proteins between datasets

Method Dataset # of proteins 
(nodes)

# of common proteins 
between datasets

# of functionally same proteins 
between datasets

# of functionally different 
proteins between datasets

KPM GSE854 106 26 42 38
GSE5666 240 26 82 132

BioNet GSE854 219 33 119 67
GSE5666 203 33 115 55
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causes memory-related deficits in mice, and expression of 
genes targeted by E2F1 decreases with aging in mice and 
causes memory deficits (Ting et al. 2014). TEAD2 is related 
to the neural development and neuronal tube closure at some 
stages of the brain development, and it regulates paired box 
gene 3 (PAX3) gene expression, which is related to mam-
malian brain development (Kaneko et al. 2007).

As a complementary approach to the enrichment analysis, 
we searched one by one the proteins that are subnetwork-
specific and irrelevant to the memory-learning mechanism 
to uncover their functions. Proteins identified as function-
ally different by BioNet and KPM between the two datasets 
(Table 3) were searched in NCBI and GeneCards one by 
one. Some of these proteins are related to the brain, learning 
and cognition mechanism based on NCBI and GeneCards. 
Bcas1, brain-enriched myelin-associated protein 1, is a 
specific protein for the GSE5666 BioNet subnetwork. This 
protein is required for myelination in the brain and mostly 
expressed in Schwann cells and oligodendrocytes (Ishimoto 
et al. 2017). By knocking out the corresponding gene by 
point mutation and comparing the behavior of the knock-out 
mice with that of the control group, Ishimoto and colleagues 
showed that the lack of this protein causes hypomyelination, 
which brings about schizophrenia and anxiety-like behaviors 
in mice. Myelination is important for learning and memory 
mechanisms, so this protein is indeed relevant for our analy-
sis (Ishimoto et al. 2017). In an RNA-seq-based independent 
analysis, bcas1 was found to be enriched in oligodendrocytes 
(Sharma et al. 2015). Agrin is another GSE5666 BioNet-
specific protein and related to the synapse development 
and regeneration based on Rat Genome Database (Smith 
et al. 2020). Also, agrin is important in synaptogenesis. It 
functions by organizing electrical and chemical transmis-
sion between neurons, and this transmission is important in 
memory mechanisms (Martin et al. 2005). Neural cell adhe-
sion molecule 1 (NCAM1) is one of the GSE854 BioNet-
specific proteins. Djordjevic and colleagues exposed rats to 
chronic stress and showed that mRNA expression of NCAM1 
is increased in the hippocampus in stressed animals, which 
implies involvement of NCAM1 in stress-induced cognitive 
disturbance and synaptic instability. This protein is responsi-
ble for nervous system development, and it can act as a syn-
aptic plasticity biomarker (Djordjevic et al. 2012). NCAM1 
is also important in enhancing spatial learning and memory 
in rats (Knafo et al. 2012). Schizophrenia is a neurodevelop-
mental disorder with alterations in cognitive functions, and 
NCAM1 was also reported to be differentially methylated 
in schizophrenia patients in a genome-wide DNA methyla-
tion study (Viana et al. 2017). Probable global transcription 
activator SNF2L2 (SMARCA2) is another GSE854 Bio-
Net-specific protein and responsible for the differentiation 
of  neuronal stem cells to neurons in the brain based on a 
proteomic study (Lessard et al. 2007). ATP-binding cassette 

sub-family A member 2 (ABCA2) is a GSE5666 KPM-
specific protein and mostly expressed in the brain and has 
a function in myelination (Tanaka et al. 2003). The authors 
showed through immunohistochemical analysis that ABCA2 
expression level is specifically different in oligodendrocytes 
during brain development (Tanaka et al. 2003). ABCA2 is 
also related to Alzheimer’s disease, and overexpression of 
this gene upregulates the production of amyloid-beta and its 
precursor protein (Chen et al. 2004). Ferritin heavy chain 1 
(FTH1) is another GSE5666 KPM-specific protein that is 
responsible for iron storage, and lack of this protein causes 
neurodegenerative disease in rats, because iron accumulation 
can cause toxicity in the brain (Finazzi and Arosio 2014). 
Nerve growth factor receptor (NGFR) is a GSE854 KPM-
specific protein, and its levels were found to be lower in the 
blood samples of schizophrenia patients, implying a role 
of the protein in neuron differentiation and survival during 
development. (Zakharyan et al. 2014).

Analysis of Co‑expression‑Based Interactions

Subnetwork discovery analysis led to four subnetworks 
from the two datasets. These subnetworks have common 
and specific proteins, as shown in Fig. 1. We proved in our 
previous analyses that the subnetwork-specific proteins, even 
if their names are different, are involved in the same cel-
lular tasks. In this section, we aim to show that there is a 
correlation-based relationship between subnetwork-specific 
proteins and proteins shared by different subnetworks (com-
mon proteins). In other words, we here show that although 
the specific proteins were identified only in one subnetwork 
in the protein–protein interactome-based analysis, they are 
strongly co-expressed with the common proteins.

The two subnetwork discovery methods led to two 
subnetworks for each dataset. The four subnetworks were 
combined, and the combined network includes 471 genes 
and 829 unique interactions. These 471 genes were used 
to create a highly correlated network through WGCNA to 
identify co-expressed pairs. Four hundred and sixty-seven 
of the genes are available in GSE5666 while 327 are avail-
able in the GSE854 dataset. WGCNA was performed for 
the two datasets separately, and one module was created 
for each dataset. These two modules were combined under 
the name “WGCNA Network,” and it has 138 genes and 
564 interactions (Online Resource 4). In the WGCNA net-
work, the edge score cutoff was adjusted to 0.05, which 
corresponds to a Pearson correlation value of 0.85 (0.05 to 
the power of the soft threshold of 1/18). That is, only gene 
pairs showing a positive correlation higher than 0.85 were 
considered. Later, we further combined the WGCNA net-
work with the combined subnetworks, which had 471 genes 
and 829 interactions, and we refer to the final network as 
the “Memory-Learning Network.” The Memory-Learning 
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Network includes 471 genes and 1389 interactions (Fig. 2) 
(Online Resource 4, Online Resource Fig. 1).

Our major goal in the incorporation of co-expression 
information was to understand the relationship of the 
subnetwork-specific proteins with other proteins in the 
Memory-Learning Network. Therefore, we focused on 
49 proteins in the Memory-Learning Network that are in 
the set of subnetwork-specific proteins and co-expressed 
with other proteins in the network. Fifteen of those pro-
teins are specific for the GSE5666 KPM subnetwork, 16 
for the GSE5666 BioNet network and 18 for the GSE854 
BioNet network. The 49 specific proteins were found to be 
co-expressed with 89 proteins from the common protein 
set based on the WGCNA analysis. Complement C1Q B 
chain (C1Qb) is one of the specific proteins. It has a func-
tion in inflammatory/immunity processes and its expression 
increases with aging (Qiu et al. 2016). Its co-expression 
with Cathepsin S (CTSS) was commonly identified in both 
WGCNA networks obtained from the two datasets. Impair-
ment of CTSS causes neurodegenerative and psychiatric 

diseases such as anxiety, stress-related impairments in the 
brain and major depressive disorder (Niemeyer et al. 2020).

Figure 3 shows how WGCNA identifies co-expression-
based interactions between the specific proteins and the pro-
teins identified by multiple subnetworks (common proteins). 
The 49 proteins belong to the three different subnetworks 
(GSE854 BioNet, GSE5666 KPM and GSE5666 BioNet sub-
networks), and they do not interact based on the subnetwork 
discovery algorithms. However, the WGCNA approach reveals 
that specific proteins from a subnetwork can be co-expressed 
with the specific proteins from other subnetworks or with the 
common subnetwork proteins. Peptidyl arginine deiminase 2 
(PADI2) protein is one of these proteins and specific to the 
GSE854 BioNet subnetwork, and it is co-expressed with 
C1Qb (specific protein), which is specific to the GSE5666 
KPM subnetwork. PADI2 is related to myelination and has 
a role in the onset of the neurodegenerative diseases such as 
multiple sclerosis. The overexpression of this protein in trans-
genic mice was shown to cause demyelination in brain tissue 
(Musse et al. 2008). In another study, ATAC-seq was used 

Fig. 2   Memory-learning-related network. Green represents 49 spe-
cific proteins that are common between the WGCNA co-expression 
network and the list of subnetwork-specific proteins. Turquoise pro-

teins are other subnetwork proteins discovered by KPM or BioNet 
subnetworks. Red interactions come from WGCNA co-expression 
analysis
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to show PADI2-driven inhibition of oligodendrocyte differ-
entiation, and the protein was shown to interact with several 
myelin proteins via a pull-down assay (Falcão et al. 2019). 
C1Qb protein has co-expression-based interaction with C4A 
and FCGR2B proteins, which are specific to the GSE5666 Bio-
Net subnetwork. Complement component 4 (C4A) protein is 
found in human dendrites, cell bodies and neuronal synapses, 
and increase in its expression with C4B is related to schizo-
phrenia (Sekar et al. 2016). FCGR2B (FC fragment of IgG 
receptor IIb) is related to Alzheimer’s disease via increasing 
amyloid-β toxicity in the brain, and knocking out this gene 

increases amyloid-β resistance (Kam et al. 2013). C1Qb has 
also co-expression interactions with common proteins (e.g. 
CTSS, ANXA3, LAMP2, B2M). Annexin A3 (ANXA3) is 
upregulated in the brain in nerve injury or post-ischemic con-
ditions (Kessler et al. 2008; Konishi et al. 2006). Lysosome-
associated membrane 2 (LAMP2, GSE854 BioNet KPM-
specific) is a Parkinson’s disease (PD)-related gene, and its 
expression significantly decreases in PD condition (Wu et al. 
2011). Beta-2 microglobulin (B2M, a common protein) is also 
related to PD, and its expression increases in dopaminergic 
striatal regions in the brain (Mogi et al. 1995). Therefore, the 

Fig. 3   Co-expression of 49 subnetwork-specific proteins with com-
mon and specific proteins. Non-colored proteins are proteins captured 
in more than one subnetwork; green shows GSE5666 BioNet-specific 
proteins, blue shows GSE5666 KPM-specific proteins and pink shows 

GSE854 BioNet-specific proteins. Red interactions represent the co-
expression interaction of 49 specific proteins with each other. This 
figure shows how 49 WGCNA proteins are co-expressed with each 
other and with the commonly identified subnetwork proteins
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WGCNA-derived co-expression network proves that although 
these proteins were identified by the different datasets/algo-
rithms, and they do not interact in the discovered subnetworks, 
they are co-expressed. Prostaglandin D2 synthase (PTGDS) is 
also one of the 49 proteins, and it is specific to the GSE5666 
KPM subnetwork. It has three co-expression interactions; 
plasmolipin (PLLP) (common protein), crystallin alpha B 
(CRYAB) (common protein) and cysteine- and glycine-rich 
protein 1 (CSRP1) (specific protein). CSRP1 has a function in 
neuronal development and maintenance (Hetmańczyk-Sawicka 
et al. 2020). The authors identified a decrease in the mRNA 
expression of CSRP1 gene in Niemann-Pick C disease patients 
in microarray experiments, a neurodegenerative disease, which 
was additionally confirmed by quantitative real-time PCR 
(Hetmańczyk-Sawicka et al. 2020). PLLP is related to myeli-
nation, and its expression decreases in the brain in chronic 
social stress  (Cathomas et al. 2019). Co-expression analysis 
links PTGDS with CSRP1 protein, which is specific to the 
GSE5666 BioNet subnetwork, and with PLLP protein, which 
is specific for GSE854 subnetworks, bridging the two proteins 
identified by different datasets. Protein phosphatase 3 catalytic 
subunit alpha (PPP3CA), a GSE854 BioNet-specific protein, is 
another of the 49 specific proteins, and it is co-expressed with 
ribosomal protein L21 (RPL21) (common protein). PPP3CA 
is one of the long-term potentiation genes, and it is related 
to the synaptic plasticity mechanism in immature rats (Göl 
et al. 2019). Fumarylacetoasetaz (FAH) is another of the 49 
specific proteins, and it is primarily expressed in white matter 
in the brain, and the mutation of this gene decreases visual/
spatial learning performance in mice (Hillgartner et al. 2016). 
FAH is specific to the GSE5666 BioNet subnetwork and has 
co-expression-based interactions with GSE5666 KPM-specific 
proteins (FIS1, C4B, C1Qa), GSE854 BioNet-specific proteins 
(SRSF5, IRF1 AND EDF1) and lots of common proteins such 
as B2M, CTSS, CDH1. FIS1 is known as mitochondrial fission 
1 protein, and its overexpression causes abnormal mitochon-
drial functions and triggers Alzheimer’s disease (Wang et al. 
2009). Interferon regulatory factor 1 (IRF1) protein expression 
increases in traumatic brain injury condition (Rao et al. 2003), 
and it was reported to be associated with programmed cell 
death and inflammation (Yanai and Taniguchi 2008). Another 
study reported that IRF1 is downregulated by miR130b, lead-
ing to suppression of cell apoptosis in cerebral ischemia/rep-
erfusion, a condition that accelerates neurodegeneration (Liu 
et al. 2020). The cadherin 1 (CDH1) protein has a protective 
effect in the hippocampus and increases neuroplasticity in 
ischemia condition (Zhang et al. 2019). WGCNA-based results 
show that many subnetwork-specific proteins (Fig. 1) are co-
expressed together, or they are co-expressed with the common 
proteins in the combined subnetwork, implying that although 
they were classified as functionally different proteins (Table 3), 
these proteins are indeed linked to the proteins with memory-
learning-related functions.

Novelty of Network‑based Data Analysis Over 
the Traditional Analysis

Several experimental designs were presented in the litera-
ture to elucidate the effect of aging on learning and mem-
ory performance. Rattus norvegicus is commonly used as a 
model organism in these studies, and animals with different 
age groups are trained with SWM, OMT or other memory 
tests. At the end of the training, the hippocampal region 
of the brains of animals was extracted, and transcriptome 
data was collected. Basic statistical analyses (Student t test, 
ANOVA) were performed with transcriptome data, differen-
tially expressed genes were identified and functional enrich-
ment analysis was performed on significantly changed genes 
to detect the underlying mechanisms of the effect of aging 
on memory. In this study, these analyses were expanded 
with network-based approaches. Mainly two network-based 
approaches were used for this study, subnetwork discovery, 
which maps transcriptome data on the organism-specific PPI 
network to find subnetworks, and network inference, which 
predicts co-expression-based interactions by using Pearson 
correlation. Network-based approaches are important to 
understand topological relationships of genes and their func-
tions in specific conditions. Not only significant genes but 
also experimentally proven interaction/relationships of genes 
were used in this study to understand the effect of aging 
on memory deficits. Functional analyses of the discovered 
subnetworks proved that these modules include cognition-, 
learning- and memory-related terms. Some of these terms 
were already identified in the original studies that reported 
those transcriptome data, without incorporating networks 
into analysis (Blalock et al. 2003; Rowe et al. 2007). These 
terms are nervous system development, immune system pro-
cesses, signal transduction, axonal growth, myelinogenesis, 
cytokine production and regulation. In the network-based 
analysis, learning, memory, synaptic plasticity, circadian 
rhythm terms are clearly detected, which are important for 
learning and memory. There are some common and differ-
ent genes and processes between our analysis and the two 
studies reporting the transcriptome datasets analyzed here  
(Blalock et  al. 2003; Rowe et  al. 2007). cAMP/protein 
kinase A (PKA)-related signaling, EGR1 transcription fac-
tor, FTH1, CTSS, C1Qb, FAH, ANXA3, LAMP2, FCGR2B, 
B2M, PTGDS, RPL21 and Agrin genes, cytokine metabo-
lism, neurogenesis and myelination are common genes and 
processes. On the other hand, our network-based analy-
sis discovered memory-related genes (BCAS1, NCAM1, 
SMARCA2, ABCA2, NGFR, PADI2, CSRP1, PLLP, 
PPP3CA, FIS1, IRF1, C4A-B, CRYAB AND CDH1), tran-
scription factors (EGR 2,3, WT1, TEAD2, SP1, E2F1, CaM-
KII, ERK1/2, PKG) and a miRNA (Mir-19b), which were 
not captured in the original analysis that solely focused on 
statistical analysis of the data.
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Conclusions

Learning and memory processes have not been fully 
resolved yet at a molecular scale. In the literature, there are 
related transcriptome data collected from rats. These studies 
conducted various statistical analyses aimed at elucidating 
memory and learning mechanisms but ignored interactome 
data. In this study, we mapped the learning- and memory-
related transcriptome data on organism-specific interactome 
data and determined subnetworks that include significantly 
altered and interacting protein pairs between young–aged 
comparison of trained rats. The subnetworks were generated 
for two different datasets by using two different algorithms to 
document the effect of the dataset and algorithm differences 
on the results. Our analysis showed that within the same 
dataset, different subnetwork discovery algorithms create 
different subnetworks, but these subnetworks are enriched 
with proteins with common functions. Also, within the same 
subnetwork discovery algorithm, different datasets create 
different subnetworks. However, we showed here that they 
also have common functions in terms of memory-learning 
mechanisms. In addition, functionally different proteins were 
searched in NCBI and GeneCards. With a detailed functional 
examination, we have shown that proteins whose memory-
learning association cannot be detected as a result of func-
tional analysis are indeed related to memory-learning and 
the brain. Our analysis of co-expressed gene pairs within the 
combined subnetwork using the WGCNA algorithm further 
validated our findings, since high co-expression between 
the subnetwork-specific/dataset-specific and common pro-
teins showed that even if the specific proteins do not inter-
act physically across different subnetworks/datasets, they 
are positively correlated based on the WGCNA analysis. 
Based on those analyses, we created the Memory-Learning 
Network which considers organism-specific interactome 
data, significantly changed genes and positive correlations 
between proteins with two different subnetwork discovery 
algorithms as well as a network inference algorithm. We 
believe that our network-based approach presented here 
gives novel insights on extracting memory- and learning-
related molecular mechanisms from transcriptome data.
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