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Abstract
Glioblastoma multiforme (GBM) is one of the most lethal malignancies of the central nervous system characterized by high 
mortality rate. The complexity of GBM pathogenesis, progression, and prognosis is not fully understood yet. GBM-derived 
extracellular vesicles (EVs) carry several oncogenic elements that facilitate GBM progression. The purpose of this study 
was to identify systems level molecular signatures from GBM-derived EVs using integrative analysis of publicly available 
transcriptomic data generated from plasma and serum samples. The dataset contained 19 samples in total, of which 15 sam-
ples were from plasma (11 GBM patients and 4 healthy samples) and 4 samples were from serum (2 GBM and 2 healthy 
samples). We carried out statistical analysis to identify differentially expressed genes (DEGs), functional enrichment analysis 
of the DEGs, protein–protein interaction networks, module analysis, transcription factors and target gene regulatory net-
works analysis, and identification of hub genes. The differential expression of the identified hub genes were validated with 
the independent TCGA-GBM dataset. We have identified a few crucial genes and pathways associated with GBM prognosis 
and therapy resistance. The DEGs identified from plasma were associated with inflammatory processes and viral infection. 
On the other hand, the hub genes identified from the serum samples were significantly associated with protein ubiquitinyla-
tion processes and cytokine signaling regulation. The findings indicate that GBM-derived plasma and serum DEGs may be 
associated with distinct cellular processes and pathways which facilitate GBM progression. The findings will provide better 
understanding of the molecular mechanisms of GBM pathogenesis and progression. These results can further be utilized for 
developing and validating minimally invasive diagnostic and therapeutic molecular biomarkers for GBM.
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Abbreviations
GBM	� Glioblastoma multiforme
EVs	� Extracellular vesicles
DEGs	� Differentially expressed genes
PPIs	� Protein–protein interactions

GO	� Gene ontology
TFs	� Transcription factors
OS	� Overall survival

Introduction

Glioblastoma multiforme (GBM) is a lethal disease and one 
of the most frequent malignancies of the central nervous 
system in adults. GBM is associated with poor prognosis 
and high mortality rate with the majority of the patients 
dying within 1 year of diagnosis (Ohgaki and Kleihues 
2007; LOBAMRDI and ASSEM 2017). The overall median 
survival of GBM patients is approximately 14 months even 
after the aggressive surgical resection followed by stand-
ard regimens of chemotherapy and radiotherapy. The recent 
clinical practices for molecular characterization of disease 
status in GBM patients are feasible with tissue specimens 
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obtained from biopsy and open surgery. However, both the 
approaches mentioned are invasive measures to assess the 
underlying pathogenesis in GBM. The standard management 
of GBM patients is also limited due to the lack of efficient 
monitoring system and therapeutic approaches such as MRI 
which cannot detect small tumors. Therefore, there is an 
urgent need to develop standard diagnostic approaches that 
would impart timely evaluation of disease status and therapy 
response in GBM patients (Santiago-Dieppa et al. 2014; Osti 
et al. 2019).

The extracellular vesicles (EVs) play an important role 
in clinical research purpose as diagnostic or prognostic bio-
marker in GBM progression and clinical treatment. EVs are 
mainly involved in the mechanism of intracellular commu-
nication and secrete DNA, mRNA, proteins, and membrane 
receptors to the target cells. Recent studies revealed that 
GBM cells release EVs that contains tumor-specific RNAs 
and proteins which can be detected in the systemic blood 
circulation of GBM patients. EVs have been suggested to 
function in normal development of nervous system and neu-
ron growth (Raposo and Stoorvogel 2013; Xu et al. 2018). 
EVs are known to be involved in wide array of pathological 
processes that are principle to cancer development such as 
angiogenesis, tumor invasion, cell proliferation, and chem-
oresistance. There is increasing evidences to show differ-
ential cargo content between glioma-derived EVs and EVs 
that are secreted by normal glial cells. The glioma-derived 
EVs contain several oncogenic factors which they release 
to neighboring cells through signal transduction and facili-
tate glioma progression (Basu and Ghosh 2019; Osti et al. 
2019). Recent study reported that GBM patient tends to 
show increased concentration of EVs compared to that of 
healthy controls. This indicated that blood-based EVs can 
act as a potential biomarker for GBM diagnosis, identifying 
molecular markers and evaluating therapy resistance (Lane 
et al. 2019). The EVs from serum, plasma, and cerebrospi-
nal fluid (CSF) provide important diagnostic and prognostic 
information. Cancer cell–specific mRNA and miRNA can be 
detected from EVs derived from blood and CSF (Whitehead 
et al. 2020). CSF has direct connection with the brain tumor 
cells. Patients suffering from GBM and other neurological 
disorders show increased concentration of CSF proteins and 
other tumor-specific cells. Sequence analysis of CSF based 
EVs can be used to detect genomic alteration in GBM. How-
ever, the isolation of CSF is a complex and painful procedure 
compared to the isolation of serum and plasma from blood 
(Saugstad et al. 2017; Duan et al. 2020). Hence, transcrip-
tomic analysis of GBM-derived EVs from serum and plasma 
bear potential to identify non-invasive diagnostic and prog-
nostic biomarkers for GBM.

In this study, the GBM-derived EVs (plasma and serum) 
RNA-seq dataset were selected for integrative analysis. 
We performed functional enrichment, protein–protein 

interaction network analysis and module analysis of these 
DEGs for identification of hub genes in plasma and serum 
samples. Subsequently, the expression levels of the hub 
genes were validated against the independent TCGA-GBM 
dataset.

Materials and Methodology

Data Retrieval

The experimental design of the selected dataset 
(GSE106804) involves GBM derived extracellular vesicles 
isolated from both serum and plasma. The sequencing of 
GBM-derived EVs was carried out at the Broad Institute 
of Harvard and MIT, and the gene expression profiles were 
generated using Illumina Hiseq2000 platform (Reátegui 
et al. 2018). The selected dataset was retrieved and down-
loaded from the NCBI-GEO (https​://www.ncbi.nlm.nih.
gov/gds) in SRA format. The dataset included 19 samples 
in total, of which 15 samples were from plasma (11 GBM 
patients and 4 healthy samples) and 4 samples were from 
serum (2 GBM and 2 healthy samples).

Analysis of the RNA‑Seq Data

The retrieved dataset for GBM-derived EVs-RNA from both 
plasma and serum samples were converted to fastq format 
using fastq-dump. The raw reads in FASTQ format were 
preprocessed through in-house RNA seq analysis pipeline. 
The preprocessed high-quality reads after quality control 
were mapped using Hisat2 against the ensemble reference 
human genome Homo sapiens (GRCh38) (Kim et al. 2015). 
The mapped reads were then quantified at the feature (gene) 
level to obtain the count data for each gene. We have used 
DESeq2 package (Love et al. 2014) for identification of 
DEGs. The dataset for both serum and plasma were trans-
formed separately in DESeq2 using variance stabilizing 
transformation. Finally, the list of significant DEGs for both 
plasma and serum samples were selected by considering 
p-adjusted value < 0.05.

Functional Annotation and Pathway Enrichment 
Analysis

For better understanding of the biological role of signifi-
cant DEGs in GBM-derived plasma and serum samples, 
functional annotation and pathway enrichment analysis 
were performed using DAVID tool (Dennis et al. 2003). 
DAVID provides statistically significant functional annota-
tions for a given set of gene lists. For our study, we carried 
out gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis using 
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DAVID online tool. A p- value < 0.05 was considered as 
statistically significant.

Construction of PPI Networks and Identification 
of Hub Genes

Protein–protein interaction (PPI) networks were constructed 
using the STRING database with DEGs identified from the 
both plasma and serum (Szklarczyk et al. 2019). Cytoscape 
version 3.7.2 was used to analyze the networks (Paul 
Shannon et al. 1971). The Molecular Complex Detection 
(MCODE) algorithm implemented within cytoscape soft-
ware was used to detect tightly connected module (Pruitt 
et al. 2001). MCODE scores greater than or equal to 4 and 
the number of nodes > 4 were set as cutoff criteria with the 
default parameters (degree cutoff ≥ 2, node score cutoff ≥ 2, 
K-core ≥ 2, and max depth = 100). CytoHubba, another 
cytoscape plugin (Chin et al. 2014) was used to detect hub 
genes in the PPI network topology. The CytoHubba uses 
an ensemble approach by employing five calculation meth-
ods: MNC (maximum neighborhood component), degree, 
edge percolated component (EPC), eccentricity (EcC), and 
betweeness. The top ranked genes identified using these five 
algorithms were further intersected to identify consensus 
hub genes from plasma and serum networks.

TFs‑hub Gene Regulatory Networks

We have carried out the transcription factors (TFs) and hub 
gene network analysis to identify the TFs that were associated 
with the hub gene from plasma and serum PPI networks. To 
perform the TFs to hub gene interaction analysis, we have 
used the JASPAR database (https​://jaspa​r.gener​eg.net/) which 
stores manually curated and non-redundant TF-binding pro-
files as position frequency matrices (PFMs). The hub TFs 
were identified from the JASPAR database, and regulatory 
network visualizations were done using NeworkAnalyst tool 
(Zhou et al. 2019).

Independent Validation and Clinical Significance 
of the Identified Hub Genes

GEPIA database was used to validate the expression of hub 
genes identified from PPI network and module analysis. The 
Gene Expression Profiling Interactive Analysis (GEPIA) 
database (Tang et al. 2017) is a Web-based tool that provides 
rapid and customizable functionalities based on The Cancer 
Genome Atlas (TCGA) and GTEx data. We considered p 
< 0.01 and fold change > 2 as a threshold. Additionally, 
to verify the genetic alterations associated with these hub 
genes, cBioPortal (https​://www.cbiop​ortal​.org/) was used 
to summarize possible transcriptional (mRNA) change 

and mutational alterations. The results were reported as an 
OncoPrint. To further confirm the prognostic value of hub 
genes, we have evaluated the survival curve of the eleven 
hub genes identified from PPIs network analysis. The overall 
survival (OS) curve of each hub gene was determined by log 
rank test. A p value < 0.05 was considered as statistically 
significant.

Results

Identification of DEGs in GBM‑Derived Plasma 
and Serum Samples

The analysis of the RNA-Seq data identified 636 and 269 
significant DEGs from GBM-derived serum samples and 
plasma samples, respectively. Among the total significant 
DEGs, the number of upregulated DEGs in serum samples 
was more than the downregulated DEGs. In GBM-derived 
plasma samples, we have observed that all the 269 DEGs 
were upregulated compared to that of normal plasma sam-
ples (supplementary Fig. 1a). Overexpression of some 
of these critical genes might play important role during 
GBM development. In total, 24 DEGs were found to be 
common between serum and plasma samples (supplemen-
tary Fig. 1b). All the common DEGs between plasma and 
serum samples were upregulated. Hierarchical clustering 
of GBM-derived plasma and serum DEGs showed distinct 
patterns in GBM samples compared to the healthy donors 
(HD) (supplementary Fig. 1c).These findings indicated 
that GBM-derived plasma and serum samples might carry 
distinct group of genes which could potentially reflect the 
molecular signatures of GBM progression.

Functional Annotations and Pathway Enrichment 
Analysis Revealed Distinct Biological Processes 
Associated with GBM‑Derived Plasma and Serum 
DEGs

After identification of significant DEGs, the functional GO 
terms and pathways enrichment analysis were carried out 
with significant DEGs of plasma and serum using DAVID 
tool. The significance of the functional biological process 
and pathways were selected by considering a threshold of 
p value less than 0.05. The functional enrichment analy-
sis shows that the plasma and serum DEGs are involved 
with distinct biological processes and pathways. The top 
five significant functional annotations with GO terms 
and KEGG pathways for plasma and serum are listed in 
Tables 1 and 2, respectively.
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The Hub Genes Identified Through PPI Analysis

PPI networks were constructed with plasma and serum 
DEGs to determine the potential interaction between 
the DEGs. The PPI networks were constructed using the 
STRING database with confidence score > 0.4, and only 
the query protein has been considered and visualized 
by Cytoscape software (Fig. 1a, b). The module analysis 
revealed that the all the plasma hub genes except CREB1 
were present in a module containing 14 nodes and 38 edges 
(Fig. 1c). These genes were associated with innate immune 
responses and ion transport. The hub genes from serum sam-
ples were present in a module containing 21 nodes and 210 

edges (Fig. 1d). This module was enriched in protein ubiq-
uitinylation processes and interleukin-mediated signaling.

The cytoscape plugin, Cytohubba, was used to screen 
the top ranked 25 hub genes from plasma and serum 
PPIs network by five topological scoring measures 
which include MNC, degree, EPC, EcC, and betweeness 
(Table 3). The predicted hub genes from each of the algo-
rithm were further intersected for the identification of con-
sensus significant hub genes in plasma and serum (sup-
plementary Fig. 2). The hub genes identified from plasma 
were CASP3, CREB1, NFKBIA, JAK2, TLR1, GRN, and 
GDI2. Similarly, the hub genes identified from serum were 
SOCS3, UBE2S, KLHL5, and FZR1.

Fig. 1   PPI network and module analysis of plasma and serum DEGs. 
a, b The PPI network with 269 plasma DEGs and 636 serum DEG 
constructed using string database. The DEGs with highest degree are 
represented with large circular nodes. c, d Module analysis of PPI 

network identified significant module with 14 nodes and 38 edges 
from PPI network of plasma. A significant module with 21 nodes and 
210 edges was identified from PPI network of serum
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Identification of Key TFs Associated 
with the Predicted Hub Genes

The JASPAR database was used to identify the transcrip-
tional regulators of the hub genes identified from plasma 
and serum. The TFs for the hub were predicted to construct 

the network (Fig. 2). In total 37 nodes and 50 interactions 
were identified from plasma hub genes and TFs. Similarly, 
an interaction network of 33 nodes and 45 was obtained from 
the serum hub genes. The hub genes showed association 
with various TFs (Table 4). The JAK2 gene identified from 
plasma had the highest degree of TFs. On the other hand, in 

Table 1   Enriched GO terms associated with DEGs of GBM-derived plasma and serum DEGs. The table represents top five significantly 
enriched biological processes and associated with plasma and serum DEGs. The genes in bold letter represents hub gene.

GO terms Counts p value Genes

Enriched biological processes associated with plasma DEGs
  Innate immune response 20 1.53E−06 HMGB2, TLR1, ANXA1, PGLYRP1, TRIM25, PADI4, SIGLEC14, LCN2, 

C1QA, CD46, IGHD, DEFA4, CLEC4A, JAK2, TREML1, IGLC2, 
IGLL5, IGLC1, MX2, IGLC3

  Phagocytosis, engulfment 6 6.37E−05 IGHD, VAMP7, IGLC2, IGLL5, IGLC1, IGLC3
  Complement activation, classical pathway 8 2.17E−04 C1QA, CD46, IGHD, IGKV2D-28, IGLC2, IGLL5, IGLC1, IGLC3
  Viral process 8 2.66E−04 IL2RB, KAT2B, RAN, CREB1, NFKBIA, IL2RG, ABI1, TRAM1
  Phagocytosis, recognition 5 3.58E−04 IGHD, IGLC2, IGLL5, IGLC1, IGLC3

Enriched biological processes associated with serum DEGs
  Protein ubiquitination 22 0.002461 SOCS3, DTX2, SPSB4, PINK1, HERC1, UBAC1, KLHL2, MID2, 

KCTD10, KLHL5, MED30, FBXW5, KBTBD3, KLHL9, KLHL15, 
UBE2M, FANCF, NFE2L2, RNF135, TNFAIP1, RNF14, RNF111

  Inflammatory response 22 0.004572 TPST1, NLRP6, ADGRE2, AIMP1, TSPAN2, TOLLIP, ADGRE5, CXCL2, 
PIK3CD, TLR2, TLR5, SGMS1, NFAM1, PF4V1, TNFRSF1A, LAT, 
LTB4R, TICAM1, BCL6, NFE2L2, TNIP2, ADAM8

  Transport 20 0.007973 SLC20A1, PITPNB, GRIN2A, ABCB1, CACNB4, HERC1, LCN10, 
ABCB4, SLC25A11, MTCH2, ATP2A3, CNIH4, VAMP7, SLC7A1, 
SLC25A22, SLC6A6, TMED10, ABCB10, PITPNC1, SLC35F5

  Positive regulation of apoptotic process 16 0.03429 ABR, VAV3, APH1A, CLU, GRIN2A, NR4A1, PDCD2, TNFSF10, 
MTCH2, TIAM2, PPID, BCL6, ANO6, MAP2K6, LTA, EIF2B5

  Exit from mitosis 4 0.00460 CTDP1, CLASP2, SPAST, UBE2S

Table 2   Enriched KEGG pathways associated with DEGs of GBM derived plasma and serum DEGs. The table represents top five significantly 
enriched biological pathways associated with plasma and serum DEGs. The genes in bold letter represents hub gene

KEGG pathways Counts p value Genes

Enriched KEGG pathways involved with plasma DEGs
  Th1 and Th2 cell differentiation 5 0.008067 NFKBIA, IFNGR2, IL2RB, JAK2, IL2RG
  Human T-cell leukemia virus 1 infection 8 0.009799 NFKBIA, KAT2B, CREB1, IL2RB, E2F3, IL2RG, RAN, ATF4
  Th17 cell differentiation 5 0.014845 NFKBIA, IFNGR2, IL2RB, JAK2, IL2RG
  TNF signaling pathway 5 0.016551 NFKBIA, CREB1, CASP3, CXCL5, ATF4
  Viral carcinogenesis 7 0.019304 NFKBIA, KAT2B, CREB1, ACTN1, CASP3, HIST2H2BE, ATF4

Enriched KEGG pathways involved with serum DEGs
  Glycerophospholipid metabolism 10 0.003727 LPGAT1, PLA2G12A, MBOAT2, PISD, LPIN2, PCYT2, LPCAT2, GPAT3, 

AGPAT2, SELENOI
  TNF signaling pathway 10 0.008121 ICAM1, IL18R1, TNFRSF1A, SOCS3, PIK3CD, CXCL2, MAP2K4, MLKL, 

MAP2K6, LTA
  Toll-like receptor signaling pathway 9 0.022373 IKBKE, TOLLIP, PIK3CD, TICAM1, MAP2K4, TLR2, TLR5, STAT1, 

MAP2K6
  Ubiquitin-mediated proteolysis 9 0.011462 FZR1, UBE4A, SOCS3, KLHL9, UBE2M, HERC3, UBE2J2, HERC1, 

UBE2S
  Chemokine signaling pathway 11 0.029863 PLCB3, VAV3, PIK3CD, STAT5B, CXCL2, GNB4, GRK5, STAT1, PF4V1, 

CRK, PLCB2
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serum, FZR1 is connected with maximum number of TFs. 
However, no TF was found to be associated with CASP3. 
From the hub gene and TF networks, it was observed that 
the family of FOX TFs such as FOXC1 and FOXL1 were 
the highly connected TFs associated with both plasma and 
serum hub genes. The FOX genes belong to superfamily of 
TFs which are associated with several important biological 
and cellular processes. Therefore, any genetic alteration of 
FOX can lead to aberrant of cells and may result in carcino-
genesis. The FOXC class such as FOXC1 is known to play 
a crucial role in cancer formation. However, the mechanism 
of action of FOXC1 TF is still unclear. The expression of 
FOXL1 is reported to be associated with overall survival and 
worst clinical outcome in high-grade glioma patients. Hence 
FOXL1 might serve as candidate marker for clinical out-
come of GBM patients (Yang et al. 2017; Chen et al. 2019).

Validation of the Expression and Genetic Alteration 
of the Identified Hub Genes

The differential expressions of the predicted hub genes were 
validated using the GEPIA database. The box plots of the 
expression levels showed that hub genes identified from both 
plasma and serum were significantly overexpressed in GBM 
samples from TCGA-GBM dataset compared with normal 
tissues (p value < 0.01 and log fold change of 1). This was 
in agreement with our results (Fig. 3a).

The cBioPortal was used to analyze the genomic altera-
tion of hub genes with a study from GBM (TCGA, Firehouse 
Legacy dataset) which showed that 32% (44/136) of GBM 

cases undergo genetic alteration which includes amplifica-
tion, deletion, mRNA upregulation, mRNA downregulation, 
and several mutations (Fig. 3b).

The prognostic significance of the eleven hub genes 
(Table 3) identified from GBM-derived plasma and serum 
samples were analyzed using the GEPIA survival plot to 
determine whether the hub gene expression is correlated 
with the survival of GBM patients from TCGA dataset. 
According to the median group cutoff, the patients were 

Fig. 2   Transcription factor prediction of hub genes. Each hub gene 
is regulated by different transcription factors. The circular red nodes 
represent the hub gene and square blue nodes represent the associated 

TFs. a The network of TFs and hub genes for plasma. b The network 
of TFs and hub genes for serum

Table 3    Identification of significant hub genes from plasma and 
serum. The tables represent the top five significant hub genes iden-
tified from plasma and serum PPI network employing five topologi-
cal measures (MNC, degree, EPC, EcC, and betweeness) using cyto-
hubba

Genes Degree MNC EcC EPC Betweeness

Hub genes identified from plasma
  CASP3 16 9 0.193 40.58 3903.42
  TLR1 12 5 0.193 33.46 2865.19
  GDI2 12 6 0.193 39.12 2664.73
  GRN 11 6 0.193 39.30 2530.42
  CREB1 11 7 0.193 37.76 2835.79
  JAK2 9 5 0.193 36.98 1443.24
  NFKBIA 8 5 0.193 33.46 1411.33

Hub genes identified from serum
  SOCS3 33 33 0.159 97.48 10,934.64
  UBE2S 28 23 0.159 97.11 12,929.74
  KLHL5 23 21 0.159 96.12 11,819.02
  FZR1 20 20 0.136 96.72 11,548.79
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grouped into high and low risk group. The survival analy-
sis plot showed that four genes (CASP3, GRN, GDI2, and 
SOCS3) was significantly associated with poor overall sur-
vival of GBM patients using p value < 0.05; at confidence 
interval (CI) = 0.95 (Fig. 4).

Discussions

In this study, we have performed integrative transcriptomic 
analysis of plasma- and serum-derived EVs from GBM sam-
ples and identified 269 and 636 significant DEGs in plasma 
and serum, respectively. The plasma and serum samples 
showed more upregulated DEGs than downregulated DEGs. 
To further elucidate the role of these DEGs in GBM-derived 
plasma and serum samples, we have carried out functional 
enrichment analysis and PPIs analysis for identification of 
hub genes. TFs associated with the hub genes were pre-
dicted, and finally, the expression levels of each of the hub 
genes were validated against TCGA-GBM dataset.

The hub genes identified from plasma were mainly linked 
to viral carcinogenesis and innate immune response regula-
tion. Several studies reported link between viral carcinogen-
esis and glioblastoma pathogenesis. Viruses such as herpes 
virus, papilloma virus, and polygamous virus are reported 
to be detected in GBM tissues and cell lines. The role of 
viral infection and its mechanism in GBM is still obscure 
(Alibek et al. 2013; Akhtar et al. 2018; Foster and Cobbs 
2019). Studies reported that most of the human cancers 
occur due to pathogen-related infections are associated with 
inflammation. There are numerous oncogenic viral patho-
gens such as HPVs, EBVs, and hepatitis B and C viruses 
which create an inflammatory environment that favors 
tumor development. Moreover, the class type of inflamma-
tory or immune response such as redness, swelling and pain 
in tumors is ascertained by the characteristics pathogenic 

feature involved with tumor generation. There are reports 
which state that most of the human cancers are associated 
with chronic inflammation likely to be caused by viral infec-
tions, autoimmunity, and dysregulation in immune response. 
There are oncogenic viral pathogens such as human papil-
lomaviruses (HPVs), Epstein-Barr viruses (EBVs) and hepa-
titis B and C viruses which create an inflammatory envi-
ronment that favors tumor development (Goldszmid et al. 
2014; Liggett 2014; Gonzalez et al. 2018). It was reported 
that viruses such as human cytomegalovirus (HCMV) were 
associated with GBM development or gliomagenesis (McFa-
line-Figueroa and Wen 2017). A recent study demonstrated 
that a significant percentage of GBM patients were infected 
by HCMV, and the tumor cells expressed several HCMV 
gene products. Moreover, inflammation or immunosuppre-
sion can lead to reactivation of HCMV which interferes with 
various cellular processes involved in oncogenesis (Cobbs 
et al. 2002). Studies revealed that GBM patients treated with 
antiviral drug valganciclovir along with standard therapy 
showed high survival rates which suggests that valganciclo-
vir may inhibit the viral oncogenic processes that can lead 
to GBM pathogenesis (Fornara et al. 2016).

The hub genes JAK2 and NFKBIA are known to be pro-
inflammatory mediators that are involved in the multiple 
cellular pathways associated with cancer development. JAK2 
was also reported to be involved in HPV-related cervical 
cancer. This indicates that JAK2 might play critical role in 
malignant tumor related to virus through immunomodu-
lation (Kundu and Surh 2008; Abdolmaleki and Sohrabi 
2018). The NF-kB signaling plays a significant role in GBM 
and provides a negative prognosis in GBM patients. The 
activation of NF-kB is one of the hallmarks of inflamma-
tion-induced cancer. In GBM, inflammation can be detected 
through infiltration of macrophages/microglia and lympho-
cytes, production of inflammatory cytokines, and NF-kB 
pathway activation (Puliyappadamba et  al. 2014). The 

Table 4   Identification of TFs associated with hub genes. The table represents the interaction of the hub genes and Transcription factors from 
plasma and serum. Each hub gene is associated with several classes of TFs

Hub genes Predicted TFs Degree

CREB1 PRDM1, FOXC1, STAT1, PPARG, TP53, NFKB1, RELA, TFAP2C 8
JAK2 MYB, E3F1, NKX3-1, ELK1, JUN, TP53, PRDM1, FOXL1, CREB1, GATA2, TFAP2C 11
TLR1 TP63, MEF2A, FOXA1, JUND, ARID3A, HINFB, FOXC1, GATA2 9
NFKBIA NFIC, HOXA5, TFAP2A, NFKB1, RELA, FOXC1, FOXL1, TFAP2C 8
GDI2 NFYA, ELK4, SOX5, SREBF1, USF2, USF1, MAX, FOXC1, GATA2 9
GRN HINFP, MEF2A, TFAP2C, GATA2, CREB1, NFIC, FOXC1
SOCS3 CEBPB, TEAD1, ELK4, TP63, RELA, FOXC1, YY1, E2F1, E2F6 9
UBE2S NFIC, SRF, NFYA, CREB1, SREBF1, FOXC1 6
KLHL5 RELA, NFYA, GATA3, NFKB1, STAT3, HNF4A, PRDM1, FOXC1, FOXL1, USF2, MAX, USF1, YY1, E2F1 14
FZR1 PPARG, RUNX2, NR2F1, GATA2, MAX, SREBF1, FOXC1, FOXL1, USF2, MAX, USF1, YY1, E2F6, E2F1, 

CREB1, FOXF2
16
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activity of NF-kB is found to be significantly higher in glio-
mas as compared to that of normal brain tissues. However, 
recent studies reported that NFKBIA is deleted in 25% of 
glioblastoma patients (Kinker et al. 2016). In our study, the 
expression of NFKBIA was significantly upregulated. TLR1 
belongs to the class of Toll-like receptor family (TLRs) that 

plays an important role in both innate and adaptive immune 
system regulation. It binds to the microbial repertoire and 
initiates a series of signaling cascade and activates numerous 
inflammatory genes. There are evidences that some viruses 
encode specific proteins that inactivate the TLR-mediated 
signaling and contribute to virulence (Noreen and Arshad 

Fig. 3   Validation of the mRNA expression level and associated 
genetic alteration of hub genes identified from GBM-derived plasma 
and serum. a The gene expression level of ten hub genes was vali-
dated between TCGA-GBM dataset and normal brain tissues (red: 

tumor samples; green: normal samples). All the ten hub genes were 
upregulated in GBM as compared to controls. The red * is considered 
as p value < 0.01. b The oncoprint from cBioportal shows that hub 
genes are genetically dysregulated in 32% (44/136) of the GBM cases
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2015). Studies revealed that TLR2 and TLR1 makes a heter-
odimer complex and acts as a functional sensor for HCMV 
(Cobbs et al. 2002). CASP3 is an important member of the 
cysteine protease family which plays a key role in apoptotic 
regulation. CASP3 along with CASP9 were reported to be 
overexpressed in malignant brain tumor including GBM 
(Yamabe et al. 1999; Ray et al. 2002). CREB1 acts as an 
oncogene and was reported to be involved in the develop-
ment of wide array of cancers through transcriptional acti-
vation of many genes (Chen et al. 2017). There are several 

reports which suggested that CREB1 acts as an important 
gene in the progression of GBM pathogenesis (Mantama-
diotis et al. 2012; Tan et al. 2012). Further studies will be 
needed to understand the mechanism of CREB1 behind 
GBM progression. The GRN gene encodes a protein called 
progranulin which is involved in proliferation of active 
cells that are dividing rapidly such as fibroblasts, immune 
cells, and certain brain cells. The GRN gene was reported 
to be associated with tumor progression in astrocytoma and 
can serve as a prognostic marker in GBM. A recent study 

Fig. 4   Overall survival analysis of hub genes in TCGA dataset of gliomas using log rank test. The patients are stratified into high- and low-risk 
group according to the median expression level of each hub gene
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showed that the survival rate of granulin-positive tumors 
has lower survival rate and higher recurrence than granu-
lin-negative tumors (Ryu et al. 2017; Vachher et al. 2020). 
GDI2 belongs to the class of Rho GDP dissociation inhibitor 
family which regulates several important cellular processes. 
GDI2 is mostly expressed by hematopoetic cells and were 
reported to be highly dysregulated in ovarian adenocarci-
noma (Lee et al. 2010). GDI2 was found to be highly over-
expressed in anaplastic thyroid cancer (ATC) and are also 
involved in the development of liver metastasis in colorectal 
cancer (Onda et al. 2004; Yamasaki et al. 2007). A study 
on differential ceramide distribution and nitric oxide (NO) 
exposure in glioma cell lines reported GDI2 as one of the 
potential marker associated with tumor aggressiveness in 
high grade glioma cell lines (Leone et al. 2015). However, 
the role of GDI2 in GBM pathogenesis or progression has 
not been reported yet.

The hub genes identified from PPIs network of serum are 
significantly associated with ubiquitin mediated proteolysis 
and response to interleukin-6. Ubiquitins are highly conserved 
and abundant 9-kD protein that regulates several cellular pro-
cesses, such as cell proliferation and apoptosis, and are also 
known to function in inflammatory processes such as cancer. 
Studies reported that dysregulation in ubiquitin mediated pro-
teolysis of important cell cycle related genes or house-keep-
ing genes may promote cancer. A high percentage of GBM 
patients possess EGFR mutation which is likely to be caused 
by CBL-mediated ubiquitination (Mani and Gelmann 2005; 
Hoeller et al. 2006), which indicated that protein ubiquitinyla-
tion might involve in GBM pathogenesis. The UBE2S (ubiqui-
tin enzyme E2 S) gene was reported to be highly expressed in 
the majority of patients suffering from glioma III–IV grades. 
The overexpression of UBE2S is associated with reduced sen-
sitivity towards chemotherapy (Hu et al. 2017). The KLHL5 
(Kelch-like family member 5) is a recently identified novel 
protein coding gene related to action binding protein which 
plays important role in various cellular processes such as cell 
cycle regulation, apoptosis, metabolic processes, etc. In cancer, 
KLHL5 decreases the anticancer drug sensitivity as they are 
involved in degradation of cell cycles genes related to chemo-
therapeutics (Xu et al. 2003; Schleifer et al. 2018). However, 
no studies related to KLHL5 have been reported in GBM. 
FZR1 (fizzy and cell division cycle 20 related 1) is an acti-
vator for anaphase promoting complex/cyclosome (APC/C) 
that functions in the mitosis process and also functions in the 
regulation of G1 phase of the cell cycle. Most of the FZR1 
substrate such as mitotic and S-phase cyclins, DNA replica-
tion factors are highly overexpressed in wide array of human 
cancers (Sigi et al. 2009; Wan et al. 2017). The role of FZR1 
gene in GBM is still poorly understood. SOCS3 (suppressor of 
cytokine signaling) is a regulator of cytokine signaling path-
way which inactivate cytokine signaling in wide range of cell 
types that mainly includes immune cells and cells of the CNS. 

The expression of SOCS3 was found to be dysregulated in 
various solid tumors including GBM which facilitates tumor 
progression through increased signal transduction and lead to 
radiotherapy resistance in GBM (Zhou et al. 2007; Baker et al. 
2009; Ventero et al. 2019).

Using systems level integrative analysis of transcrip-
tomic data, our study identified significant hub genes from 
GBM derived EVs in plasma and serum samples, which 
were CASP3, CREB1, NFKBIA, JAK2, TLR1, GRN, GDI2, 
SOCS3 UBE2S, KLHL5, and FZR1. Among the 11 hub genes, 
CASP3, GRN, GDI2, and SOCS3 were associated with poor 
clinical outcome in GBM and might act as potential biomark-
ers for the prognosis of GBM patients. The results from the 
present study will provide the basis for conducting targeted 
experiments for further clinical validation.

Conclusion

The present study generated a system level molecular under-
standing of DEGs from GBM-derived EVs in plasma and 
serum. The identified hub genes can further be validated to 
develop clinically usable blood-based diagnostic and prognos-
tic biomarkers for GBM.
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