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Abstract
Neurodegenerative disorders have become the leading cause of chronic pain and death. Treatments available are not sufficient to
help the patients as they only alleviate the symptoms and not the cause. In this regard, stem cells therapy has emerged as an
upcoming option for the replacement of dead and damaged neurons. Stem cells, in general, are characterized as cells exhibiting
potency properties, i.e., on being subjected to specific conditions they transform into cells of another lineage. Of all the types,
mesenchymal stem cells (MSCs) are known for their pluripotent nature without the obstacle of ethical concern surrounding the
procurement of other cell types. Although fibroblasts are quite similar to MSCs morphologically, certain markers like CD73, CD
90 are specific to MSCs, making both the cell types distinguishable from each other. This is implemented while procuring MSCs
from a plethora of sources like umbilical cord blood, adipose tissue, bone marrow, etc. Among these, bone marrowMSCs are the
most widely used type for neural regeneration. Neural regeneration is achieved via transdifferentiation. Several studies have
either transplanted the stem cells into rodent models or have carried out transdifferentiation in vitro. The process involves a
combination of growth factors, pre-treatment factors, and neuronal differentiation inducing mediums. The results obtained are
characterized by neuron-like morphology, expression of markers, along with electrophysical activity in some. Recent attempts
involve exploring biomaterials that may mimic the native ECM and therefore can be directly introduced at the site of interest. The
review gives a brief description of MSCs, their sources and markers, and the different attempts that have been made towards
achieving the goal of differentiating MSCs into neurons.
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Introduction

Brain and spinal disease, especially neurodegenerative disor-
ders, affect millions of people worldwide. Furthermore, spinal
cord injury caused due to accidents poses a major problem
globally. The symptoms that are presented in such patients
are treatable but the disease itself is incurable. In such cases,
the dopamine-producing neurons play a crucial role in the
nervous system as dopamine communicates with that part of
the brain which controls the movement of the body. In patients
suffering from Parkinson’s disease, there is an inadequate
production of dopamine, as the cells producing the same are
destroyed in the wake of the disease. As a result of this, the
patient experiences muscle rigidity and tremors, which in turn
slows down their movement. In addition to this, in MND,

‘motor neurons’which relay signals from the brain to muscles
in the body to control movement, are affected, which leads to
progressive paralysis, resulting in the patients suffering from a
variety of problems such as uncontrolled twitching, muscle
stiffness, difficulty in speaking, swallowing, and even breath-
ing. A certain amount of relief can be given to the patients
with the help of a combination of certain drugs, physiothera-
py, a healthy diet, and exercise. Unfortunately, these treat-
ments relieve the symptoms but are unable to reverse the dam-
age that has been done to these nerve cells.

Stem cells provide a very alluring method that can result in
the regeneration of cells leading to cell therapy. In cases of
neurodegenerative diseases, the mesenchymal stem cells are
the major type that can be developed to form distinct types of
neurons. These include the peptidergic neurons, dopaminergic
neurons, and the cholinergic neurons (Takeda and Xu 2015;
Ye et al. 2016). The mesenchymal stem cells, which are pro-
cured from the bone marrow, are known to sustain while re-
siding within the damaged brain and spinal cord tissue.
Subsequently, the MSCs tend to divide, migrate, and trans-
form into precursors of neurons. These precursors take over
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the function of damaged neurons, efficiently improving the
neurological state of the patients (Fairbairn 2015; Zheng
et al. 2017b; Ren et al. 2018; Alshawaf et al. 2018). Several
studies have shown differentiation of BM-MSCs into neural-
like modality constructing a network of connection and ex-
pression of neural markers (Xu et al. 2020). This helps in
enhancing neural regeneration considerably.

The study of neural regeneration has now moved on to the
application part of the process, where partial successful at-
tempts have been made in terms of peripheral nerve regener-
ation and functional recovery (Zheng et al. 2017a). Results
have also confirmed successful transplantation of differentiat-
ed cholinergic neurons in rat models for treatment of sciatic
nerve defects (Jang et al. 2018), and amyotrophic lateral scle-
rosis (Ciervo et al. 2017).

The major effect of the decades of study conducted on stem
cells, especially on neural cell construction have led to the
development of pathways where stem cells are used for spinal
cord reconstruction along with neural regeneration,
remyelination, neural protection, and replacement of neural
cells that have been lost or damaged due to an injury or disease
(Lu 2017).

Mesenchymal Stem Cells: The Distinct
Preference for Differentiation into Neuronal
Lineage

The International Society for Cellular Therapy (ISCT) termed
MSCs as “multipotent mesenchymal stromal cells.” MSCs
have been proven to have a wide range of differentiation po-
tential and known to develop into all three germ layer cells.
For mesodermal origin cells, MSCs transform into
chondrocytes, adipocytes, and osteoblasts. Under very specif-
ic conditions, the MSCs are known to mature into cells of
ectodermal and endodermal origin like retinal pigment epithe-
lium, skin, lungs, hepatocytes, renal tubular cells, pancreatic
islets, sebaceous duct cells, and neural cells (Kobolak et al.
2016). The in vitro culture of MSCs shows genomic stability
over several passages and negligible occurrence of ethical
issues (Ullah et al. 2015; Kobolak et al. 2016). MSCs are
known to possess low immunogenicity and therefore have
the ability to function as universal donor stem cells. The
hypoimmunogenic nature of MSCs is due to the expression
of low levels of human leukocyte antigen (HLA) class I,
which are responsible for protecting the cells against natural
killer (NK) cell-mediated cytotoxicity. The lack of expression
of HLA-DR enables them to escape the nature of immune
surveillance (Rawat et al. 2019). Morphologically, fibroblasts
are quite similar to mesenchymal stem cells, and certain
markers such as CD73, CD 90, and more can be used to
distinguish between them. Different characteristic markers of
MSCs are described in Table 1.

This knowledge becomes crucial in procurement of stem
cells from various sources such as umbilical cord blood, adi-
pose tissue, dental pulp, and bone marrow. Advantages and
limitations of MSCs from these sources is listed in Table 2.

The MSCs exist almost in each and every type of tissue.
They are easily extracted, and can differentiate into almost any
type of end-stage lineage cells. It has been observed that
MSCs express neuronal markers and those markers associated
with astrocytes (Han et al. 2019). Stem cells, in general, are
known to simply change their morphology under DMSO/
BHA (neural inducers) treatment that promotes retraction of
cell margins and morphological changes to attain a stellate
pseudo neural appearance. In the case of MSCs, even a slight
chemical manipulation is able to induce the expression of
markers that are neuron-specific such as GFAP, NSE, NF-
200, Tau, and NeuN (Bertani 2005).

In contrast toMSCs, the neural stem cells show that there is
only limited ability for the NSCs to differentiate into neuroglia
when placed in an adult mammalian brain and are provided
with suitable conditions to grow. Therefore, MSCs are pre-
ferred as they are the adult stem cells from mesoderm that can
easily differentiate neuronal and glial cells when treated with
various growth inducers. The MSCs are also known to exert
autocrine and paracrine effects in order to replace the genes
and proteins that are responsible for different neurodegenera-
tive disorders for the improperly functioning neuroglia
(George et al. 2019).

Although recent developments have not reached to such a
point where the MSCs can totally replace the damaged neu-
rons, they can still initiate angiogenesis and therefore help in
the migration of the neurogenic cells of the host to the site of
damage in the central nervous system. Several other charac-
teristics of the MSCs have led to the inference that MSCs are
clearly the better choice for initiating the process of
transdifferentiation into neural cells. These include their
allogenicity that has allowed easy transplantation and migra-
tion of cells to the site of injury (Castorina et al. 2015).
Although MSCs have come up as the clear choice for tissue
regeneration into all the three germ layers, special references
have been used in case of neural tissue regeneration where the
native neurons were damaged as a result of oxidative stress
and consequent telomere shortening. This is due to the fact
that the MSCs are involved in paracrine secretion that protects
the cells from oxidation and apoptosis (Castorina et al. 2015;
Vono et al. 2018).

Transdifferentiation of MSCs into Neurons:
History and Progress

Transdifferentiation of MSCs into neurons is a topic that has
been sought after since the discovery of the fact thatMSCs can
be differentiated into cells of all three germ layers. Several
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attempts have been made to develop a conclusive process for
obtaining the same. Over the years, various endeavors have
also indulged in the differentiation of MSCs into neurons glial
tissues. The progress in achieving the same has been continu-
ous, with every experiment acting as a step further in achiev-
ing the goal.

Following are the endeavors that have taken place in the
decades following the discovery of the fact that neural
transdifferentiation can occur from MSCs.

From 1990 to 2000

The step–wise procedure involving transdifferentiation of
MSCs into neuronal lineage started with the discovery of
Nestin as the gene or marker that governs the development
for the next generation of cell types of the brain (Lendahl et al.
1990). Keeping the involvement of Nestin in deciding the type
of cell, CNS progenitor cells were applied with bFGF-induced
medium, exogenously. It was observed that two progenitor
cells types were developed. The first type gave rise to cells
showing similar morphological and antigenic properties as
shown by neurons and astrocytes. However, the second type
of cells generated showed only neural characteristics. The
progress in generating neural-like properties in progenitor
cells shows that regulations of growth factors and regulatory
genes play a major role in defining the neuronal regeneration
(Vescovi et al. 1993). In addition to these factors, the usage of
2–mercaptophenol in the culture medium increases the
chances of neurite outgrowth (Ishii et al. 1993).

The summation of the above discoveries was applied to the
cells that were isolated from the adult rat hippocampus in the
presence of FGF–2. The resultant cells expressed neuronal
and glial markers. When maintained for 1 year and
transplanted into adult rat hippocampus, the cells were found
to differentiate into neurons (Gage et al. 1995). The earliest
reference of development of neuron-like cells is when genet-
ically marked donor marrow cells were transplanted into adult
female mice; some astroglia and microglia cells emerged from
a precursor, which is a usual component of adult bone marrow
(Eglitis and Mezey 1997).

MSCs from wild-type mice were systemically infused into
irradiated 3-week-old mice and the donor DNA was observed
in various tissues including the brain (Pereira et al. 1998).
Later on, it was observed that upon direct injection of human
BM-MSCs into the rat brain, a relatively large recovery of
almost 20% of the infused cells could be achieved. It can be
inferred by this that the MSCs possess a high proliferation
potential even when subjected to a host environment (Azizi
et al. 1998).

NSCs isolated from the human fetal telencephalon were
transplanted into the germinal zones of the newborn mouse.
These cells were later observed to migrate to the established
pathways of the central nervous systems. It was seen that the

transplanted cells were tending to replace the specific deficient
neuronal populations pointing to the fact that these cells may
further help to elaborate the process of normal neuronal de-
velopment (Flax et al. 1998).

After this, several attempts of neurotransplantation have
been made where the procedure involved direct injection of
MSCs into the rat brain’s corpus striatum. When sections of
the brain were taken 5–72 days postinjection, it could be ob-
served that the cells migrated from the site of injection to the
successive layers of the brain along the established paths of
migration (Azizi et al. 1998). The migration of MSCs was
achieved, all through the forebrain and cerebellum by
injecting murine MSCs into the lateral ventricle of neonatal
mice. The injected MSCs were found to mimic the neural
progenitors. The cells further differentiated into astrocytes
and possibly in neurons, too. A population of donor-derived
cells was detected in brain and neural phenotypes. Even
when MSCs were injected into the lateral ventricle of the
neonatal mice, the resultant cells were seen to migrate to the
cerebellum and the forebrain. In these cases, the major posi-
tive point was that there was no detection of tumor formation
because of the injected cells (Kopen et al. 1999).

Subsequent studies showed that the generation of neural
phenotypes and cells expressing neuronal gene products
(NeuN, 200-kiloDalton neurofilament, and class IIIβ-tubulin)
were present in adult mouse brain 1–6 months post bone mar-
row transplant (Brazelton 2000). The marrow cells were also
found to express neuron-specific antigens after differentiation
and migration to the brain (Mezey 2000).

Under specific conditions, mouse and human BM-MSCs,
when treated with EGF or BDNF in the culture showed pos-
itive expression of a neuron-specific nuclear protein (NeuN),
Nestin, and Glial fibrillary acidic protein (GFAP). Limited
cases of BM-MSC-derived cells were also known to differen-
tiate into neuron-like cells with expression of glial cells and
NeuN, with positive levels of GFAP (Sanchez-Ramos et al.
2000).

The first major breakthrough was the development of adult
rat stromal cells into neural precursor cells using the neural
inducing growth factors. The results showed expression of
neural phenotype. The cells formed showed positive expres-
sion of NSE (neuron-specific enolase), NeuN, neurofilament –
M (NF-M) and Tau. Nestin, a characteristic of neural precur-
sor cells, was also expressed during the initial days of neural
induction. Later stages showed minimal or no detection of the
precursor marker, suggesting further development of the pre-
cursor cells (Woodbury et al. 2000).

From 2001 to 2010

The peripheral mesenchymal cells were developed into neu-
rons through an in vitro culture. The cultured human and rat
BM-MSCs, under specific conditions, lead to 80% of cells
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expressing nerve growth factor (bNGF) and neuron-specific
enolase (NSE). In such cases, Retinoic acid (RA) and
neurofilament-M (NF-M) were known to serve as a potent
enhancer for neural differentiation and were recommended
for transformation of human ES cells into a potent unlimited
cell source for neurons (Schuldiner et al. 2001).

In cases where hMSCs were treated with a specific compo-
sition of FGF and RA, retinoic acid led to the initiation of
differentiation of cells into potential neurons (Kim et al. 2002).

Various growth factors have been recognized as agents that
can bring BM-MSCs towards neuronal phenotypes. However,
the features and expressions related to neuronal proteins or
neurotransmitters may not get equalized with the potential to
attain usual neuronal functions (Jin et al. 2003).

Cultured adult green fluorescent protein (GFP)-transgenic
mice MSCs in the presence of hippocampal slice, mandates
contact with the host brain tissue for differentiation of marrow
stromal cells into neurons (Abouelfetouh et al. 2004). The
presence of retinoic acid was seen to help in enhancing the
number of differentiated cells and synaptic transmission
(Abouelfetouh et al. 2004; Cho et al. 2005). On the other hand,
the differentiation of MSCs into neurons was also accompa-
nied by the formation of several types of neuronal supporting
cells like Schwann cells (Keilhoff et al. 2006; Caddick et al.
2006; Yang et al. 2008).

Various techniques like culture surface modification (Qian
and Saltzman 2004), stimulation with various factors like inter-
leukin (IL)-1α (Cho et al. 2005), retinoic acid, synthetic nano-
structures (Yim et al. 2007), cocktail of induction agents (Greco
et al. 2007), epidermal and basic fibroblast growth factors
(EGF-bFGF) (Delcroix et al. 2010), recombinant human eryth-
ropoietin [rhEPO] (Koh et al. 2009), extracellular matrix
(ECM) proteins—fibronectin, laminin-, laminin-10/11,colla-
gen-1, collagen-IV (Mruthyunjaya et al. 2010), astrocyte-
derived soluble factor (Oh et al. 2009) were implemented to
effectively accomplish neuronal differentiation or enhancement
of neurotrophic factors’ production. Increased expression of
neurotransmitters and neuronal markers like class III β-tubulin,
NF-L (neurofilament- light, or neurofilament 70 kDa) (Tropel
et al. 2006), microtubule-associated protein 2 (MAP2) (Yim
et al. 2007), transcription factors (Greco et al. 2007),
Schwann cell markers S100, P75, and GFAP (Caddick et al.
2006; Yang et al. 2008), Nestin, Ngn2, Pax6, neurotrophin
receptor tyrosine kinase1 and kinase3 have been reported.

The adult human BM-MSCs were induced to transform
into dopamine neurons (DA) in an in vitro culture by using a
cocktail of factors like sonic hedgehog and fibroblast growth
factors. Electrophysiological studies revealed that the formed
DA cells were actually DA neural progenitors. They
expressed DA-specific genes and also secreted DA-specific
markers. However, the Na+ and Ca2+-gated channels were
found to be poorly formed, suggesting that the cells are still
immature (Trzaska et al. 2007).

It has also been reported that miR-124 suppresses non-
neuronal genes in neural tissue that complements the role of
RE-1 silencing transcription factor (REST/ NRSF) and miR-9
facilitates the neuronal precursor production by inhibiting pro-
neural transcription factors (Lim et al. 2010).

The surface topography has a crucial role in stem cell dif-
ferentiation. The hBM-MSC were differentiated into neurons
in the absence of BDNF by being subjected to specific surface
topography. Hydrogenated amorphous carbon (α-C:H)
groove topography has been known to drive the differentiation
of hBMMSCs towards neural lineage (D’Angelo et al. 2010).

From 2011 to 2020

Micro-RNAs were also found to perform a prerequisite func-
tion role in stimulating neural differentiation. miR-9
(microRNA-9) takes an active part in promoting neuronal dif-
ferentiation of mouse MSCs by notch signaling (Zhang et al.
2015).

When the differentiation of hBMSCs into neurons like cells
was accomplished using several differentiating factors includ-
ing edaravone, the differentiated neuron-like cells expressed
membrane channel proteins with ion current formation.
However, in spite of the expression of sodium channels, sodi-
um currents were absent. Therefore, it can be inferred that the
cells formed by the method were immature in nature (Zeng
et al. 2011).

Co-effects of low elasticity and aligned topography of AFG
were seen in neuro-differentiation of human umbilical cord
mesenchymal cells, suggesting that aligned topography and
matrix stiffness also plays a significant role in differentiation
(Yao et al. 2016).

WhenMSCs from umbilical cord blood (UCB) were inves-
tigated with innate neurogenic potential (Divya et al. 2012),
theWJ-MSCs were found to express secreted factors involved
in angiogenesis and neurogenesis. The cells were known to
exhibit better neuroprotection efficiency when compared to
BM-MSCS. As WJ-MSCS possess a unique secretome, they
are recommended as better MSC sources for promoting
neurorestoration (Hsieh et al. 2013).

Several factors have been used over the years in order to
enhance effective neuronal cell differentiation. These include
the following –

& Chemicals such as valproic acid as a pre-treatment for
hMSCs (Jeong et al. 2013); salidroside, which is a known
neuroprotective phenylpropanoid glycoside as one of the
neuronal inducers for rat MSCs (Zhao et al. 2014); cobalt
chloride treatment of hMSCs, which resulted in upregula-
tion of miR-124a and downregulation of anti-neural pro-
teins SOX9 and SCP1 (Jeon et al. 2014); treatment with
antidepressants like imipramine, desipramine, fluoxetine,
and tianeptine (Borkowska et al. 2015b); induction with
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TMP (tetramethylpyrazine) (Nan et al. 2016), or resvera-
trol, which is a natural polyphenolic and is known for anti-
inflammatory properties (Geng et al. 2017), and zinc when
applied to undifferentiated stage od ADMSCs (Moon
et al. 2018), have led to enhanced neuronal differentiation
and expression of neuronal markers.

& Usage of a different induction medium such as KoSR
(synthetic serum replacement) along with low concentra-
tion of β–methionine in adipose-derived stem cells (Taha
et al. 2014), hippocampal astrocyte conditioned medium,
and glioblastoma conditioned medium (Borkowska et al.
2015a).

& Several attempts have induced certain conditions to attain
neuronal transdifferentiation, such as induction of autoph-
agy of BMSCs by rifampicin, which decreases the S-
phase population (Li et al. 2016), mediation of
Schwann–cell like development from BMSCs using len-
tivirus (Zheng et al. 2016), and usage of pulsated electro-
magnetic field (Urnukhsaikhan et al. 2016).

The differentiation of MSCs into neuron-like cells has not
been limited to specific sources. Different sources from all
over the body have been reported for the differentiation of
MSCs into neural lineages. Along with bone marrow, adipose
tissue (Xu et al. 2017; Marei et al. 2018) is used as a common
MSC source, dental pulpMSCs (Ullah et al. 2016; Singh et al.
2017), dermal MSCs (Saulite et al. 2018), and menstrual
blood (Wu et al. 2018)-derived MSCs have also been reported
recently for having the capability to differentiate into neuronal
lineages. On comparing the ability to generate dopaminergic
(DAergic) neurons by bone marrow (BM), adipose tissue
(AD), and dental pulp (DP)-derived MSCs, it was found that
DP MSCs possess remarkably better characteristics and can
serve as a better candidate for future studies on dopaminergic
neurons (Singh et al. 2017). The Men-MSCs transplantation
and their subsequent differentiation showed improved hind
limb motor functions when implanted for the treatment of
incomplete thoracic (T10) spinal cord injury (SCI) rats.
From the above observation, it can be implicated that the
MenSCs uphold therapeutic potential and can be used for
SCI (spinal cord injury) patients in the future (Wu et al. 2018).

Several efforts have been made to perform successful dif-
ferentiation of MSCs into neuron-like cells for a couple of
decades. However, no studies have reported fully functional
neurons that are formed as a result of MSCs differentiation.

Criteria for Characterization of Differentiated
Neuronal Cell Functionality

Several procedures that have been implemented over the years
have led to several criteria to decide whether the process
followed has given the desired result of the formation of

neuronal lineage cells. Depending on the basis on which the
degree of transformation of MSCs is accessed, we have
attempted to discuss below the resultant cells for the process
of neuronal transdifferentiation.

On the Basis of Morphology

Morphology of the derived cells from the MSCs have greatly
differed depending of the source of the initial cells, i.e., the
source from which the MSCs are derived as well as on the
growth factors and the conditions that the MSCs have been
subjected to in order to produce the desired neuronal lineage
cells.

In cases where neurons are differentiated from adipose-
derived hMSCs, the cells present an elliptical or spherical-
shaped morphology when differentiated using two different
sets of differentiation medium, one consisting of a combina-
tion of DMEM, FBS, antibiotic and retinoic acid, and the
other consisting of DMEM, FBS, antibiotic, FGF2, and hep-
arin. Similar results were obtained while using a mixture of
DMEM, FBS, antibiotics, FGF2, EGF, BMP-9, and retinoic
acid as the differentiation medium (Marei et al. 2018). When
the same cells were used to obtain Schwann cells as a product
of transdifferentiation by using appropriate differentiation me-
dium, the morphology of the resultant cells showed a complex
cytoplasm with increased number of cells (lo Furno et al.
2018).

When human nucleus pulposus MSCs were subjected to
neural differentiation by using an induction media that was
composed of DMEM-F12 along-with B27, antibiotics, FGF-
basic, EGF, IGF (insulin-like growth factor), neural- like cells
were obtained, demonstrating a morphology having a small
oval-shaped cell body and emerging protrusions were recog-
nized (Lazzarini et al. 2019).

However, instances where hMSCs derived from various
sources were induced with FGF2 and BDNF, the neuronal
morphology in regard to the perikaryal feature of neuronal
cells depicted that the nucleus of the cells showed a shift
towards the periphery of the cell body. Long and distinct
axons emerging from axon hillock and multiple neuritis from
nucleus were also observed irrespective of the source of
hMSCs. The average neurite length was found to be higher
when BDNF was added to the induction media (Singh et al.
2017).

On the Basis of Neuronal Markers

The functionality of the differentiated neurons is evaluated by
analyzing some neuronal-specific markers at the protein and
mRNA level. The markers are categorized based on the type
of cell that expresses them. However, the groups may overlap,
as one marker may be expressed by more than one cell type.
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For example, both Nestin and Notch1 are categorized as
neuroepithelial markers where, Nestin is an intermediate fila-
ment protein whose expression endured in radial glia until
astrocyte development (Kriegstein and Götz 2003), whereas
Notch1 regulates generation, migration, and differentiation of
neural crest cells (Noisa et al. 2014). Neuroepithelial cells get
converted into glial cells through neurogenesis.

Similarly, radial glial cells show markers like PAX6,
Nestin, and Vimentin, along with some astrocyte markers like
GFAP (present as chief ingredient of intermediate filaments in
mature astrocyte and provide mechanical strength) (Hol et al.
2003), GLAST (Glutamate transporter), BLBP, SOX2 (tran-
scriptional factor; expressed in proliferating cells and cells
acquiring glial fate) (Papanayotou et al. 2008). Markers like
Nestin and NeuN are considered to be early neuronal markers
(Kriegstein and Götz 2003; Gusel’nikova and Korzhevskiy
2015), whereas MAP2 are a property of mature neurons
(Soltani et al. 2005).

Oligodendrocytes are accountable for myelin production in
the central nervous system and are marked by transcription
factors like Olig 1,2,3 (they aid in oligodendrocyte develop-
ment) (Dennis et al. 2019), SOX10 (directs neural stem cells
to differentiate into cells for glial lineage) (Pozniak et al.
2010), and several oligodendrocyte surface proteins such as
OSP (oligodendrocyte-specific protein), and MOG (myelin
oligodendrocyte glycoprotein).

Schwann cells, which are also known for their myelin-
producing properties in the peripheral nervous system, show
markers like NCAM and S100 (Liu et al. 2015).

Differentiated neurons derived from dental MSCs have
been reported to express markers like MAP2, β-tubulin III,
and NFs along with synaptic markers like synapsin and
synaptophysin (Ullah et al. 2016) as well as cholinergic
neuron-specific markers like ChAT. ISL1, BETA-3, HB9
(Kang et al. 2019).

Dopaminergic neuron-specific markers include FOXA2,
NR4A2, EN1, PITX3, TH (Nandy et al. 2014; Chabrat et al.
2019). Induced neurons from different sources were observed
with expression of DCX, NDM, TAU, NCAM, GABA,
NeuN, ENO2, Nestin, NSE, NeuN, S100, NF-200, GFAP
(glial fibrillary acidic protein) at different levels (Lu et al.
2004; Neuhuber et al. 2004; Barnabé et al. 2009; Cortés-
Medina et al. 2019).

On the Basis of Electrophysiology

The presence of electrophysiological activity, viz. action po-
tential and synaptic transmission, is another one of the vital
factors to substantiate functionality of induced neurons. These
studies are carried out by using the patch clamp technique.

Differentiated neuronal cells are first cultured on poly–L–
lysine-coated glass coverslips and then a patch clamp ampli-
fier is used for recording Na+ and K+ potentials.

Ca2+, Na+, and K+ voltage-gated channels have been found
to co-exist along with Na+ and K+ currents in induced neurons
(Ullah et al. 2016; Li et al. 2019). Electrophysiological record-
ings show the presence of Ca2+, Na+, and K+ voltage-gated
channels on the membranes of the differentiated neuronal cells
(Subbarao et al. 2015; Ullah et al. 2016; Li et al. 2019).

Calcium ion imaging is used to analyze synaptic plasticity.
Higher extracellular K+ causes changes in the intracellular
calcium concentration of the cell, which indicates cellular ex-
citability. Calcium activity at a certain level has been observed
after depolarizationwithKCl in differentiated neurons (Nandy
et al. 2014; Singh et al. 2017).When hMSCs were induced for
neuronal transdifferentiation by the addition of any chemical
stimulatory, the Ca2+displays spontaneous activity (Karakaş
et al. 2020).

In many studies, despite showing good neuronal morphol-
ogy along with neuronal markers, differentiated neurons either
failed or expressed partial electrophysiological activity
(Barnabé et al. 2009; Zhu et al. 2017; Lazzarini et al. 2019;
Cortés-Medina et al. 2019). Therefore, these cannot be con-
sidered as functional neurons. The exact criteria for consider-
ing differentiated neurons as functional ones are still elusive.

According to a study of stem cell differentiation, the niche
in which the cell is differentiated directly affects them
(Rahimi-Sherbaf et al. 2020). The fate of the stem cells is
defined by the design of the scaffold and its interface with
the growth factors. Therefore, the scaffold has to be imple-
mented in accordance with neuronal transdifferentiation.
Some 3-D nanostructured microarchitectures have also been
shown to encourage cell alignment, leading to efficient neural
differentiation of hMSCs (Poudineh et al. 2018).

Studies have been conducted to see the effect of scaffolds,
both of natural and synthetic origin, on the differentiation of
MSCs into neurons (Guo et al. 2016). Induced neurons on
PLLA/PCL scaffolds (Rahimi-Sherbaf et al. 2020), PCL/
collagen scaffold (Guo et al. 2016; Bagher et al. 2016) and
PCL nanofibrous scaffold (Shirian et al. 2016) showed better
results in terms of higher gene expression and survival per-
centage of cells compared to the cultures grown on tissue
culture plates. Some special scaffolds have been engineered
that can target effective neural differentiation of MSCs. These
include PVA/SA nanofibrous scaffold (with 30 wt% SA)
(Hazeri et al. 2020), 3D rGO-collagen hybrid scaffold (Guo
et al. 2016) (Shirian et al. 2016) and 3-D Col–HA (Her et al.
2013).

Scaffolds that have been regularly implemented to enhance
neuronal differentiation are listed below –

& Electrospun poly (ε–caprolactone) scaffold: The PCL
nanofibrous scaffold and TCP (tissue culture polystyrene)
have been successfully used to differentiate hBM-MSCs
and hEnSCs into motor neuron-like cells. The resultant
cells showed high expression of markers like β-tubulin –
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III, NF – H, HB9, Islet 1, Pax6, ChAT. This is due to the
fact that the polymer imitates the local tissue environment.
The process of electrospinning that is implemented in the
production of the scaffold enables the user to define the
diameter of the individual fibers and their alignment. It
was found that a diameter of 200–300 nm is ideal for
neurite outgrowth and neural differentiation (Shirian
et al. 2016).

& 3D rGO – collagen hybrid scaffold: This scaffold is
formed by layers of reduced graphene oxide (rGO) nano-
sheets, assembled on 3D porcine acellular dermal matrix
(PADM) channels that are mainly composed of collagen
type I. The result is a conductive, biocompatible, and bio-
degradable PADM–rGO hybrid scaffold. When rat BM–
MSCs were cultured on both PADM and the hybrid scaf-
fold and induced for neuronal differentiation, then the
cells cultured on the hybrid scaffold showed better results.
This was because of the increased cell-to-cell communi-
cation that occurs due to the rGO. The enhanced commu-
nication increases the neurite outgrowth, as a result of
which the electrical conductivity between the formed cells
increases (Guo et al. 2016).

& PLLA/PCL scaffold: This scaffold is prepared by
electrospinning poly–L–lactide acid (PLLA) and
Polycaprolactone (PCL). The PDMSCs cultured on the
said scaffold along with neural induction medium showed
neural genes for β–tubulin, GFAP, and Nestin, thus
resulting in a better outcome than the cells that were cul-
tured as control having only the neural induction medium
(Rahimi-Sherbaf et al. 2020).

& PCL/collagen scaffold: This scaffold is generally used for
seedingWJMSCs along with several neurotrophic factors.
The resultant cells have shown expression of biomarkers
Islet 1, HB9, ChAt, and NF–H (Ebrahimi-Barough et al.
2017).

& PVA/SA nanofiber scaffold: The fabricated polyvinyl
alcohol/sulfated alginate (PVA/SA) nanofiber scaffold is
the preferable substrate for hBMSCs proliferation and
neurogenesis. It has been observed that neural cells started
to form 2 weeks after seeding without any external addi-
tion of growth factors (Hazeri et al. 2020).

Conclusions

There is no doubt in consideringMSCs as one of the preferred
sources for trans-differentiation of cells into neuronal lineage.
Its presence in almost every type of tissue in the bodymakes it
an accessible source too. The differentiation potential of
MSCs towards neuronal lineage has been explored since the
1990s. A number of strategies, growth factors, and neural
inducers have been implemented to differentiate them.

While reviewing hundreds of research articles, we have seen
that no study has reported functionality of differentiated neu-
rons in all aspects. Also, different studies have considered
different aspects in defining differentiation, most of time con-
tradicting each other. Many of those show neuronal morphol-
ogy and specific markers, but fail to possess an electrophysi-
ological function, which is a crucial factor for defining neuro-
nal functionality.

Although in the recent past most of the studies have been
focused on exploiting both allogeneic and autologous poten-
tial of MSCs into neural cell lines, the exact procedure for
achieving the same remains elusive. Therefore, making
MSCs a controversial mode of treatment for neurodegenera-
tive diseases among the scientific minds. Henceforth, success-
ful transdifferentiation of MSCs into fully functional neurons
is still to be achieved, marking scope for more experiments
that can pave the way in achieving the same.
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